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ABSTRACT

Stereo-based Piecewise Linear Compensation for Environ-
ments (SPLICE) is a general framework for removing distortions
from noisy speech cepstra. It contains a non-parametric model for
cepstral corruption, which is learned from two channels of training
data.

We evaluate SPLICE on both the Aurora 2 and 3 tasks. These
tasks consist of digit sequences in five European languages. Noise
corruption is both synthetic (Aurora 2) and realistic (Aurora 3).

For both the Aurora 2 and 3 tasks, we use the same training
and testing procedure provided with the corpora. By holding the
back-end constant, we ensure that any increase in word accuracy
is due to our front-end processing techniques.

In the Aurora 2 task, we achieve a 76.86% average decrease
in word error rate with clean acoustic models, and an overall im-
provement of 62.63%. For the Aurora 3 task, we achieve a 75.06%
average decrease in word error rate for the high-mismatch experi-
ment, and an overall improvement of 47.19%.

1. INTRODUCTION

The Aurora tasks [1] focus on noise-robust distributed speech
recognition applications, in which the user has either a plain phone
or a smart phone, and speech recognition may be performed by a
centralized server. ETSI is in the process of standardizing a front-
end and noise robustness techniques for these applications that of-
fer low bit-rate and robustness to noise and channel distortions [2].

In a distributed speech recognition system, the SPLICE tech-
nique described in this paper may either be applied within the front
end on the client device, or on the server. Implementation on the
server has several advantages. Computational complexity becomes
less of an issue, and continuing improvements can be made that
benefit devices already deployed in the field.

SPLICE is a frame-based noise removal algorithm for cepstral
enhancement in the presence of additive noise, channel distortion,
or a combination of the two. We have previously presented a rig-
orous MMSE formulation of the algorithm, as well as presenting
accuracy results on several tasks with synthetic training data, and
both synthetic and realistic test data [3, 4].

In this paper, we report minor new developments of the algo-
rithm and present full sets of evaluation results for the Aurora 2
and 3 noisy digit recognition tasks. The Aurora 3 results represent
the first time SPLICE has been successfully trained and tested on
non-synthetic signals.

The organization of this paper is as follows. In Section 2, we
give a brief review of the basic SPLICE algorithm together with
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difications used in the current implementation. Full experi-
results for the Aurora 2 and 3 noisy digit recognition tasks
sented and discussed in Section 3. We summarize in Sec-
hat SPLICE works effectively on these corpora, and outline
or improvement.

2. A REVIEW OF SPLICE

E is a general framework used to model and remove the
f any consistent degradation of speech cepstra. It learns a

robability distribution of noisy and clean cepstra, and uses
tribution to infer clean speech estimates from noisy inputs.

cause it takes noisy cepstra as input, and outputs clean cep-
timates, SPLICE can be characterized as a cepstral noise re-
function. Other algorithms construct rigid functions based
roximations to known causes of distortion, such as addi-
ise and linear convolutional channels. By contrast, SPLICE
t include any assumptions about how noisy cepstra are pro-
rom clean cepstra, and can model any combination of these
as well as others, including nonlinear and possibly non-

ary distortions.

e parameters of SPLICE’s joint probability distribution are
from simultaneous recordings of clean and noisy speech.

pstral degradation is embedded in the statistical relationship
n these two channels. SPLICE requires the training data to
itioned into sets of utterances with similar corruption. In
e of unlabeled training data, unsupervised clustering can be

Bayesian Formulation

ay to model the joint probability distribution function be-
he clean speech x and the distorted speech y is to train both
nd p(x|y), and combine them to form the joint probability
).

p(x,y) = p(x|y)p(y).

proach is, however, infeasible because p(x|y) will have
ters which are non-linear functions of y.

tead, SPLICE introduces an auxiliary discrete random vari-
which partitions the acoustic space into local regions, where
ationship between x and y is approximately linear within



each region:

p(x,y) =
∑

s

p(x|y, s)p(y|s)p(s)

p(x|y, s) = N(x;y + rs,Γs)

p(y|s) = N(y;µs,Σs).

Under this piecewise linear assumption, p(y) is a Gaussian
mixture model for the noisy cepstra, and p(x|y, s) describes a lin-
ear rule for producing x from y. For each local region defined
by s, the rule is to take y and add a correction vector rs, which
produces an estimate of x with expected variance Γs.

2.2. Cepstral Enhancement

One significant advantage of the piecewise linear assumption is the
inherent simplicity in deriving and implementing a rigorous min-
imum mean squared error (MMSE) estimate of clean speech cep-
stral vectors from their distorted counterparts. The estimate is the
conditional expectation of clean speech vector given the observed
noisy speech:

x̂ = Ex [x|y]

=
∑

s

p(s|y)Ex [x|y, s]

= y +
∑

s

p(s|y)rs.

The MMSE estimate of x is the noisy speech vector corrected
by a linear weighted sum of all mixture component dependent cor-
rection vectors.

2.3. Time Smoothing

Although SPLICE processes each frame independently, we know
that the output cepstra should have a smoothness constraint. A
rigorous smoothness constraint can be defined, but we have seen
similar accuracy result from imposing a fixed, empirical filter on
the correction vector sequence. For this paper, we used a simple
zero-phase, non-causal, IIR filter to smooth the correction vector
sequence as described in [5]:

H(z) =
−0.5

(z−1 − 0.5) (z − 2)
.

2.4. SPLICE Training

We train one complete set of SPLICE parameters for each type of
distortion. The noisy speech model p(y) generally contains 256
diagonal Gaussian mixture components, and is trained from noisy
data using standard EM techniques.

The parameters rs of the conditional PDF p(x|y, s) can be
trained using the maximum likelihood criterion.

rs =

∑
n p(s|yn)(xn − yn)∑

n p(s|yn)
, where (1)

p(s|yn) =
p(yn|s)p(s)∑
s p(yn|s)p(s) . (2)

This training procedure requires a set of stereo (two channel) data.
One channel contains the clean utterance, and the other contains
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e utterance with distortion, where the distortion repre-
by the correction vectors is estimated above. The two-
l data can be collected, for example, by simultaneously
ng utterances with one close-talk and one far-field micro-

oise Mean Normalization

ersions of SPLICE require that the distortions present in
t data match those under which SPLICE was trained. The

ean normalization (NMN) technique is used to mitigate
ect. In [5], we demonstrate NMN improving recognition
y in both mismatched and matched testing conditions.

r every frame of the training and testing data, a noise es-
µ(n) is created and used to normalize the inputs and out-
SPLICE. It has been our experience that even simple esti-
such as taking the mean of the first ten frames of the utter-
how improvements over unmodified versions of SPLICE.
r benefit is that as the noise estimate improves, even the
y of the matched testing conditions improve.

e mathematical theory, algorithm, and implementation de-
he noise estimation technique used for this paper were pre-
in [6], with more thorough treatment in [7]. The noise es-
n algorithm uses iterative stochastic approximation (ISA)
forgetting mechanism to effectively track non-stationary
and is quite robust. All of the parameters, including the
ing factor, number of iterations, and the variance-dependent
g rate, are identical to those used for Aurora 2 without any
for Aurora 3.

nsupervised Noise Clustering

raining set is well labeled with noise type and SNR, as with
2, partitioning the data to create SPLICE parameters is sim-
ne set of parameters can be trained for each unique noise

hen the training set is not well labeled, as with Aurora 3,
a suitable partition of the data is not as simple.
find the hidden noise classes within the training data, we

imple form of unsupervised clustering. The beginning and
of every utterance not occurring in any test set is gathered,
d to train a Gaussian mixture model with six components:

(y) =
∑

m

p(y|m)p(m) =
∑

m

N(y; νm, ψ
2
m)p(m).

ter training is complete, we use the mixture model, together
ayes’ rule, to choose the best label for each utterance in the

set, according to

= arg max
m

p(m|y) = arg max
m

p(y|m)p(m)∑
m′ p(y|m′)p(m′)

.

ese labels partition the training data into the six disjoint sets
to create six sets of SPLICE parameters for each language.

nvironment Detection

E conditions its processing on the presence of a known type
rtion, which has been encountered during training, but the
data consists of unlabeled utterances. To find the appro-
et of SPLICE parameters (a codebook and associated cor-
vectors) for a given utterance, we evaluate p(y) for each
ter set, and use the most likely condition. The details of
hnique were presented in [4].



2.8. Blind Equalization

To account for possible discrepancies in linear channel between
training and testing data, all of the experiments reported in this pa-
per use a simple offline cepstral mean normalization (CMN) pro-
cedure. After each utterance is processed, we subtract from each
frame the mean cepstrum computed over the entire utterance.

This procedure is of course not optimal, but increases the per-
formance on Aurora 2 Set C dramatically. This is to be expected,
because this set is meant to test performance in the presence of a
linear convolutional distortion not seen in the training data. CMN
also increases the word accuracy on Aurora 3. The data was
presumably collected using a variety of automobiles and micro-
phones, so this is also expected.

Also under investigation are joint optimization techniques
which integrate blind equalization directly into SPLICE. In prin-
ciple, using the speech model already present in SPLICE should
produce even better results.

2.9. Endpointing

The baseline results provided for this evaluation pre-process ev-
ery utterance, eliminating all but 200ms of non-speech at each end
of every utterance. Since this paper is concerned with noise re-
moval in the presence of speech, and not voice activity detection,
we attempt to match this perfect endpointing algorithm as closely
as possible.

For each language in the Aurora 3 task, we start with an acous-
tic model trained only on close-talk microphone data. This model
is used to perform a forced alignment of all of the close-talk data in
the corpus. Finally, these alignments are used to eliminate all but
at most 200ms of non-speech from the beginning and end of each
utterance. When using the same front end as the baseline (WI007),
the resulting average word error rate of 23.33% is very close to the
reference 23.48%.

3. EXPERIMENTAL RESULTS

All speech recognition results reported in this paper use HMMs
trained in the manner prescribed by the scripts included with the
Aurora tasks. When training is complete, we have 16-state whole-
word models for each digit in addition to the “sil” and “sp” models.
The Aurora 2 models are the standard “complex back-end” with
20 diagonal Gaussian mixture components in each state, and the
Aurora 3 models have 3 diagonal Gaussian mixture components.

The cepstral features used in this paper were produced by the
reference WI007 front end, with two modifications. These modifi-
cations are necessary to maintain compatibility with our in-house
noise estimation software. The WI007 baseline uses a log frame
energy feature, and computes cepstra based on the magnitude fre-
quency spectrum. We replace these with the DC cepstral coeffi-
cient c0, and the power spectral density.

3.1. Aurora 2

The Aurora 2 task consists of recognizing English digits in the
presence of additive noise and linear convolutional distortion.
These distortions have been synthetically introduced to clean (TI-
Digits) data. Three test sets measure performance against noise
types similar to those seen in the training data (set A), different
from those seen in the training data (set B), and with an additional
convolutional channel (set C).
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data consists of 8440 utterances. The multi-style acoustic
training data consists of the same utterances synthetically
with four different noise types at varying amplitudes, for
of 17 unique noise conditions. We trained one SPLICE
ok and corresponding correction vectors for each of the 17
ons.

1. Aurora 2 word error rate results. NMN SPLICE with
ve stochastic approximation” noise estimate.

Set A Set B Set C Overall
i 11.93% 12.78% 15.44% 12.97%
n 41.26% 46.60% 34.00% 41.94%
age 26.59% 29.69% 24.72% 27.46%

Set A Set B Set C Overall
i 6.66% 8.99% 7.85% 7.83%
n 11.67% 12.25% 13.67% 12.30%
age 9.17% 10.62% 10.76% 10.07%

Set A Set B Set C Overall

i 50.58% 43.80% 53.23% 48.40%
n 76.96% 80.39% 69.59% 76.86%
age 63.77% 62.10% 61.41% 62.63%

Aurora 2 Reference Word Error Rate

Aurora 2 Word Error Rate

Aurora 2 Relative Improvement

ble 1 presents accuracy results for Aurora 2, using NMN
E and noise estimates from the iterative stochastic approxi-
algorithm [6].

e improvement over the baseline using clean acoustic mod-
uite dramatic, with a 76.86% reduction in word error rate.
using multi-style acoustic models, we can still reduce the
y 48.40%. The performance for Set C is comparable to the
ets, indicating that this technique is robust to the linear con-
nal distortion present in Set C.

urora 3

rora 3 task consists of recognizing Danish, German, Span-
Finnish digits in realistic automobile environments.

ch utterance in the corpus consists of two recordings, and
led as coming from either a high, low, or quiet noise en-
ent. Each pair of recordings was made simultaneously on
-talk microphone and a hands-free, far-field microphone.
the Aurora 2 task, which employed artificially created dis-

s, here each recording contains realistic channel, noise, and
ration effects. Although they do not contain perfectly clean
, the close-talk microphone recordings should always ex-
greater signal-to-noise ratio than the far-field microphone
ngs. Hence, we use the close-talk recordings as “clean
” when training SPLICE.
ree experiments are defined for the evaluation: well-
d, high-mismatch, and mid-mismatch. The experiment



names refer to the relationship between the testing and training
data. Both the testing and training data in the well-matched ex-
periment use mixed close-talk and far-field microphone data from
all noise classes. The high-mismatch experiment uses only the
close-talk data from all noise classes for training, and the high and
low far-field data for testing. The mid-mismatch experiment trains
acoustic models from the far-field quiet and low noise classes, and
uses the far-field high data for testing.

To evaluate SPLICE on this task, we train six complete sets of
SPLICE parameters for each language, using unsupervised clus-
tering as described in Section 2.6. These parameters are used to
process all of the training and test data for each experiment.

Table 2. Aurora 3 word error rate results. NMN SPLICE with
“iterative stochastic approximation” noise estimate.

Finnish Spanish German Danish Average
Well (x40%) 7.26% 7.06% 8.80% 12.72% 8.96%
Mid (x35%) 19.49% 16.69% 18.96% 32.68% 21.96%
High (x25%) 59.47% 48.45% 26.83% 60.63% 48.85%
Overall 24.59% 20.78% 16.86% 31.68% 23.48%

Finnish Spanish German Danish Average
Well (x40%) 5.57% 4.20% 5.39% 6.80% 5.49%
Mid (x35%) 12.59% 8.56% 12.88% 20.18% 13.55%
High (x25%) 8.59% 10.74% 9.48% 16.87% 11.42%

Overall 8.78% 7.36% 9.03% 14.00% 9.79%

Finnish Spanish German Danish Average
Well (x40%) 23.28% 40.51% 38.75% 46.54% 37.27%
Mid (x35%) 35.40% 48.71% 32.07% 38.25% 38.61%
High (x25%) 85.56% 77.83% 64.67% 72.18% 75.06%
Overall 43.09% 52.71% 42.89% 50.05% 47.19%

Aurora 3 Referance Word Error Rate

Aurora 3 Word Error Rate

Aurora 3 Relative Improvement

Table 2 presents accuracy results for Aurora 3, using NMN
SPLICE and noise estimates from the iterative stochastic approxi-
mation.

The improvement over the baseline in the high-mismatch ex-
periments is large. This is to be expected for any good noise-
removal technique, as the original accuracy was quite low, and
we are trying to make the noisy cepstra similar to the clean cepstra
used to train the acoustic model.

The improvement over the baseline in the mid-mismatch ex-
periments is smaller, but still significant. For this case, the training
data consists of cleaned far-field data from the low and quiet noise
types. The test data consists of similar data from the high noise
type. SPLICE tries to make all of these utterances similar to clean
data, and the accuracy improves.

We also see a large relative increase in accuracy for the well-
matched experiments. The acoustic models for this experiment are
trained on close-talk and cleaned far-field microphone data from
all noise types, and the test data consists of a similar mix. The
reference word error rate, 8.96%, is already low, and we are able
to bring it down to 5.49%.

The Danish language exhibits the worst absolute recognition
accuracy for all of our Experiments. Since this is also true of the
baseline, we believe that it is an inherent property of the data and
not due to any deficiency of SPLICE.

The SP
algorith
distribu
speech
tortion
of corr

We
improv
realisti

Ou
gorithm
We are
moval

[1] H.
fra
nit
AS
Ne

[2] D.
de
trib
pu
Ma

[3] L.
“H
tra
Ma

[4] J. D
en
rec
UT

[5] J. D
alg
20

[6] L.
of
tiv
Ma
4 p

[7] L.
usi
tio
an

[8] B.
NQ
of
20
90

[9] J.
tio
spe
be
4. SUMMARY AND DISCUSSION

LICE algorithm, as described in this paper, is an efficient
m that can be run either on the client or the server in a
ted speech recognition system. It models cepstra of noisy
as a mixture of Gaussian components for each separate dis-
condition. We can leverage this model to identify the type

uption currently being encountered in each test utterance.
show in this paper that SPLICE is equally effective for

ing the word recognition accuracy of both artificially and
cally distorted speech.
r current work involves improving the noise estimation al-

to further enhance the performance of NMN SPLICE.
also investigating direct parametric methods for noise re-

[8, 9].
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