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ABSTRACT

In this paper we present a new statistical model, which de-
scribes the corruption to speech recognition Mel-frequency spec-
tral features caused by additive noise. This model explicitly repre-
sents the effect of unknown phase together with the unobserved
clean speech and noise as three hidden variables. We use this
model to produce noise robust features for automatic speech recog-
nition.

The model is constructed in the log Mel-frequency feature do-
main. In addition to being linearly related to MFCC recognition
parameters, we gain the advantage of low dimensionality and in-
dependence of the corruption across feature dimensions.

We illustrate the surprising result that, even when the true
noise Mel-frequency spectral feature is known, the traditional spec-
tral subtraction formula is flawed. We show the new model can be
used to derive a spectral subtraction formula which produces su-
perior error rate results, and is less sensitive to tuning parameters.

Finally, we present results demonstrating that the new model
is more general than spectral subtraction, and can take advantage
of a prior noise estimate to produce robust features, rather than
relying on point estimates of noise.

1. INTRODUCTION

Automatic speech recognition systems without explicit provisions
for noise robustness degrade quickly in the presence of additive
noise. As a consequence, how to best add noise robustness to such
systems is an area of active research.

This paper is organized as follows. Section 2 illuminates a
flaw with standard spectral subtraction. One would expect that
when the true noise spectra are available, basic spectral subtrac-
tion should do a good job of removing the noise. In Section 3,
we propose a new non-linear model for the environment, and de-
rive a better spectral subtraction formula. Section 4 presents how
this non-linear model can be embedded in a Bayesian framework.
The model is leveraged to produce posterior probabilities about
the unobserved clean speech, and consequently, noise robust fea-
tures. Careful attention is paid to the accuracy of the model, and
initial experiments show that it is useful for producing noise robust
features.

All experiments were conducted using the data, code, and train-
ing scripts provided within the Aurora 2 evaluation framework[1].
The task consists of recognizing strings of English digits embed-
ded in a range of artificial noise conditions. Although the frame-
work provides for evaluation against three sets of data, we present
here results for set A only. The acoustic model used is the “clean”
acoustic model trained with the standard scripts on uncorrupted
data. It consists of eleven whole word models, containing a total
of 546 diagonal 39 dimensional Gaussian mixture components.
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conform with our probabilistic models, the feature gener-
as modified slightly from the reference “FE V2.0” imple-

ion. In particular, we replaced the log energy feature with
changed from using spectral magnitude to using power

l density as the input to the Mel-frequency filterbank. Ad-
lly, the decoder was modified to use uncertainty estimates
he noise removal process to better decode the speech as

2. REVIEW OF SPECTRAL SUBTRACTION

rd spectral subtraction is motivated by the observation that
nd speech spectra mix linearly, and therefore their log spec-
uld mix according to

|Y [k]|2 = |X[k]|2 + |N [k]|2

pically, this equation is solved for |X[k]|2, and a maxi-
ttenuation floor F is introduced to avoid producing negative
spectral densities.
∣∣∣X̂[k]

∣∣∣2 = |Y [k]|2 max

( |Y [k]|2 − |N [k]|2
|Y [k]|2 , F

)
(1)

ran several experiments to examine the performance of
sing the true spectra of n, and floors F from e−20 to e−2.
e noise spectra were computed from the true additive noise
ries for each utterance. The first row of Table 1 reports the
ror rates.

1. Average digit error rates for set A of the Aurora 2 task.
rsions of a log-domain spectral subtraction algorithm with
ise feature estimates are compared.

Floor
Method e−20 e−10 e−5 e−3 e−2

dard (Eq. 1) 87.50 56.00 34.54 11.31 15.56
osed (Eq. 9) 6.43 5.74 4.10 7.82 10.00

is somewhat surprising that even when we know the noise
exactly, spectral subtraction can not do a perfect job. The

ction is dedicated to building a better model for the environ-
hich can be used to derive better noise removal formulae.

3. A NEW MODEL OF THE ENVIRONMENT

nt end processes each spectral frame by passing it through
itude-squared operation, a Mel-frequency filterbank, and a
m.



For our case where the noisy signal is a linear combination of
speech and noise, Y [k] = X[k]+N [k], the noisy log Mel-spectral
features yi can be directly related to the unobserved spectra X[k]
and N [k].

exp yi =
∑

k

wi
k |X[k]|2 +

∑
k

wi
k |N [k]|2

+
∑

k

wi
k |X[k]| |N [k]| cos θk (2)

Here, wi
k is the kth coefficient in the ith Mel-frequency filterbank.

The variable θk is the phase difference between X[k] and N [k].
When the clean signal and noise are uncorrelated, the θk are un-
correlated and have a uniform distribution over the range [−π, π].

Eq. 2 can be re-written to show how the noisy log spectral
energies yi are a function of the unobserved log spectral energies
xi and ni.

exp yi = exp xi + exp ni + 2αi exp
xi + ni

2
(3)

αi =

∑
k wi

k |X[k]| |N [k]| cos θk√∑
k wi

k |X[k]|2
√∑

k wi
k |N [k]|2

As a consequence of this model, when we observe yi there
are actually three unobserved random variables. The first two are
obvious: the clean log spectral energy and the noise log spectral
energy that would have been produced in the absence of mixing.
The third variable, αi, accounts for the unknown phase between
the two sources.

If the magnitude spectra are assumed constant over the band-
width of a particular filterbank, the definition of αi collapses to a
weighted sum of several independent random variables:

αi ≈
∑

k

wi
k∑

j wi
j

cos θk. (4)

Figure 1d shows the true distributions of α for a range of fre-
quency bins. They were estimated from a set of joint noise, clean
speech, and noisy speech data by solving for the unknown α. The
higher frequency, higher bandwidth filters produce α distributions
that are more nearly Gaussian. As the bandwidth increases, so does
the number of effective terms in Eq. 4, and the central limit theo-
rem begins to apply. In practice, a frequency-dependent Gaussian
approximation pαi(αi) = N(αi; 0, σ2

αi
) works well.

3.1. Conditional observation probability

Eq. 3 places a hard constraint on the four random variables, in
effect giving us three degrees of freedom. We can express this by
solving for y and writing the conditional probability distribution,

p(y|x, n, α) = δ
(
y − ln

(
ex + en + 2αe

x+n
2

))
. (5)

The conditional probability p(y|x, n) is found by forming the
distribution p(y, α|x, n) and marginalizing over α. Note that here
we are assuming p(α|x, n) = p(α), which is reasonable.

p(y|x, n) =

∫ ∞

−∞
p(y|x, n, α)pα(α)dα

=

∫ ∞

−∞
δ
(
y − ln

(
ex + en + 2αe

x+n
2

))
pα(α)dα

n−
y
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(a) Conditional observation probability p(y|x, n) with Nor-
proximation for pα(α). (b) Sample distribution for filter-
3 in set A, noise 1, SNR 10. (c) Normal approximation of
n) as a function of v. (d) True distribution of α for several
cy bins.

w, we can use the identity
∫ ∞

−∞
δ (f(α)) pα(α)dα =

∑
{α:f(α)=0}

pα(α)∣∣ d
dα

f(α)
∣∣

uate the integral in closed form:

|x, n) =
1

2
exp

(
y − x + n

2

)
pα

(
ey − ex − en

2e
x+n

2

)
(6)

en we introduce the approximation pα(α) = N(α; 0, σ2
α),

lihood function becomes

|x, n) = y− x + n

2
− 1

2
ln 8πσ2

α− (ey − ex − en)2

8σ2
αe(x+n)

. (7)

ure 1a contains a plot of this conditional probability distri-
Note that due to the shift invariance of the model, there

y two independent terms in the plot. Figure 1b shows an
lent plot, directly estimated from data, confirming Eq. 7.

elationship to Spectral Subtraction

use Eq. 7 to derive a new formula for spectral subtraction.
st step is to hold n and y fixed, and find a maximum like-
estimate for x. Taking the derivative with respect to x in
nd equating it to zero results in

ex−n =

√
(ey−n − 1)2 + (2σ2

α)2 − 2σ2
α. (8)

is formula is already more well-behaved than standard spec-
traction. The first term is always real because we are taking
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Fig. 2. (a) Output SNR versus input SNR for spectral subtraction
(Eq. 1). (b) The new model (Eq. 9) treats the points y < n differ-
ently.

the square root of the sum of two positive numbers. Furthermore,
the magnitude of the second term is never larger than the mag-
nitude of the first term, so both sides of Eq. 8 are non-negative.
The entire formula has exactly one zero, at n = y. This auto-
matically prevents us from taking the logarithm of any negative
numbers during spectral subtraction, allowing us to severely relax
the maximum attenuation floor F .

When we set σ2
α = 0 and solve for x in Eq. 8, the result is the

familiar spectral subtraction equation, with an unexpected absolute
value operation.

x̂ = y + ln
∣∣1 − en−y

∣∣ (9)

The difference between Eq. 1 and Eq. 9 is confined to the re-
gion y < n, as shown in Figure 2. Eq. 9 has more reasonable
behavior in this region. As the observation becomes much lower
than the noise estimate, the function approaches x = n. Our model
indicates the most likely state is that x and n have similar magni-
tudes and are experiencing destructive phase interference.

Table 1 compares the relative accuracy of using Equations 1
and 9 for speech recognition, when the true noise spectra are avail-
able. Although our new method does not require a floor to prevent
taking the logarithm of a negative number, we include it in our
results because it does yield a small improvement in error rate.

Regardless of the value chosen for the floor, the new method
outperforms the old spectral subtraction rule. Although the old
method is quite sensitive to the value chosen, the new method is
not, producing less than 10% digit error rate for all tests.

4. A BAYESIAN APPROACH

The major advantage of deriving the conditional observation prob-
ability, Eq. 7, is that we can embed it into a unified Bayesian
model. In this model the observed variable y is related to the hid-
den variables, including x and n.

p(y, x, n) = p(y|x, n)px(x)pn(n)

To produce noise-removed features for conventional decoding,
we simply take conditional expectations of this model.

E[x|y] =

∫ ∞

−∞
x p(x|y) dx, where (10)

p(x|y) =

∫ ∞
−∞ p(y, x, n) dn∫ ∞

−∞
∫ ∞
−∞ p(y, x, n) dx dn

(11)
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e Bayesian approach can additionally produce a variance
stimate of E[x|y]. It has been shown in [2] that this vari-
n be easily leveraged within the decoder to improve word
y. In this uncertain decoding, the static feature stream is re-
with an estimate of p(y|x). The noise removal process out-
gh variance for low SNR features, and low variance when
R is high. To support this framework, we also need

E[x2|y] =

∫ ∞

−∞
x2p(x|y) dx, and (12)

p(y) =

∫ ∞

−∞

∫ ∞

−∞
p(y, x, n) dx dn. (13)

tter results are achieved with a stronger prior distribution
n speech, such as a mixture model.

px(x) =
∑
m

px(x|m)pm(m).

a mixture model is used, Equations 10, 11, 12, and 13 are
oned on the mixture m, evaluated, and then combined in
dard way:

=
∑

m p(y|m)p(m) E[x|y] =
∑

m E[x|y, m]p(m|y)

|y) = p(y|m)p(m)
p(y)

E[x2|y] =
∑

m E[x2|y, m]p(m|y)

pproximating the observation likelihood

nvironmental model were linear, the expectations could be
computed at this point. Unfortunately, the true relation-

tween y, x, and n, as manifested in the form of p(y|x, n), is
on-linear. Furthermore, our model is capable of producing
istributions p(y, x, n) that are not well modeled by a sin-
ussian approximation. This complicates obtaining a closed
lution, and necessitates finding a good approximation.
use a Gaussian approximation along one dimension only,

allows us to preserve the true shape of p(y|x, n), and im-
t a numerical integration along the remaining dimension.
e weighted Gaussian approximation is found in four steps.
ate the coordinate space, choose an expansion point, find a
order Taylor series approximation, and express the approx-
as the parameters of a weighted Gaussian distribution.

e coordinate rotation is necessary because expanding along
directly can be problematic. We choose a 45 degree rotation,
makes p(y|x, n) approximately Gaussian along u for each
f v.

, x, n) = 1√
2

(x + n − 2y) , v(y, x, n) = 1√
2

(x − n)
(14)

gh the new coordinates u and v are linear functions of y, x,
we drop the cumbersome functional notation at this point.
ter this change of variables, the conditional observation like-
becomes,

n p(y|x, n) = − 1√
2
u − 1

2
ln 8πσ2

α

−
(
1 − e

u√
2

(
e

v√
2 − e

− v√
2

))2

8σ2
α exp

(√
2u

) .

e Taylor series expansion point is found by performing our
of variables on Eq. 3, holding v constant, letting α = 0,



and solving for u. The result is,

uv = v −
√

2 ln
(
1 + exp

√
2v

)
.

The coefficients of the expansion are the derivatives of p(y|x, n)
evaluated at uv .

p(y|x, n)|u=uv
=

ln
(
1 + cosh

√
2v

) − ln 4πσ2
α

2
d

du
ln p(y|x, n)

∣∣∣∣
u=uv

= −1

2

√
2

d2

du2
ln p(y|x, n)

∣∣∣∣
u=uv

= −1 + cosh
√

2v

4σ2
α

The quadratic approximation for p(y|x, n) at each value of v
can be expressed as a Gaussian distribution along u. Our final
approximation is given by:

p(y|x, n) = eKv N
(
u; µv, σ2

v

)
, where (15)

σ2
v =

4σ2
α

1 + cosh
√

2v
,

µv = uv − 1√
2
σ2

v , and

Kv =
1

2
ln 2 +

σ2
α

1 + cosh
√

2v
.

As Figure 1c illustrates, approximating p(y|x, n) as a Gaus-
sian function of v captures the true shape of p(y|x, n) quite well.

The approximation for p(y|x, n) is complete, and is now com-
bined with the priors px(x) and pn(n) to produce the joint proba-
bility distribution. To conform with our approximation of the con-
ditional observation probability, we transform these prior distribu-
tions to the (u, v) coordinate space, and write them as a Gaussian
in u whose mean and variance are functions of v.

px,n(x, n) = px(x)pn(n) = N(u; ηv, γ2
v). (16)

From the joint probability, we compute Equations 10, 11, 12,
and 13. Each equation requires at least one double integral over x
and n, which is equivalent to a double integral over u and v. For
example:∫ ∞

−∞

∫ ∞

−∞
xp(y, x, n) dx dn

=

∫ ∞

−∞

∫ ∞

−∞

(
u + v√

2
+ y

)
N(u; µv, σ2

v)N(u; ηv, γ2
v) du dv

=

∫ ∞

−∞
eKv

(
µ̂v + v√

2
+ y

)
N(µv; ηv, σ2

v + γ2
v) dv,

where µ̂v =
σ2

vηv + γ2
vµv

σ2
v + γ2

v

.

Here, we have made use of Eq. 14 for x, as well as Eq. 15
and Eq. 16 for p(y, x, n). The Gaussian approximation enables a
symbolic evaluation of the integral over u, but the integral over v
remains.

The integration in v is currently implemented as numerical in-
tegration, a weighed sum along discrete values of v. For this paper,
we use 500 equally spaced points in the range [−20, 20]. Most of
the necessary values can be precomputed and tabulated to speed
up computation.
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xperimental results

we did for spectral subtraction, we can test our model by
it the true noise log Mel-frequency energies. We then sim-
perfect noise estimates by artificially increasing the vari-
these perfect values.

tead of using an attenuation floor, as we did for spectral
tion, these experiments leverage the Bayesian framework
oducing a simple diagonal Gaussian mixture prior for clean
. The number of mixtures is varied from 2 to 8.

2. Average digit error rates for set A of the Aurora 2 task
e Bayesian estimate for clean speech, and uncertainty de-
.

Clean Speech Artificial Variance
GMM Mixtures σ2

n=0 σ2
n=0.5 σ2

n=1.0
2 5.98 10.09 12.10
4 2.63 8.62 11.72
8 2.28 8.04 11.12

e first column of Table 2 shows that our model, together
simple clean speech prior and known accurate noise esti-
produces very low digit error rates for this task. These error
re much smaller than those achieved through spectral sub-
. The other columns show that when we simulate imperfect
stimates, the system degrades gracefully.

5. SUMMARY AND CONCLUSION

omising architecture for noise removal is to define a prob-
c model that unites the observation together with the unob-
noise and clean speech. Prior information about speech and
and possibly its dynamics, can be incorporated with stan-
ference techniques to obtain estimates of the hidden speech
ise variables.
is paper describes such a system, and tests the performance
f the architecture. Care is taken such that the conditional

ation probability is correct, and is evaluated as accurately as
e.
show that the new model can be used to derive a superior

l subtraction rule for the case where point estimates of noise
ilable, and that it can also take advantage of more general,
cal estimates of the noise input.
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