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ABSTRACT 

 
The light field is a well known image-based rendering technology. The traditional way to capture a light field is to move 
a camera on a plane and take images at every gird points. However, due to device defects it is hard to ensure that the 
captured light field is ideal. For example, the camera’s imaging plane is not on the image plane of the light field and the 
camera is not in the right position. To solve this problem we propose a correction and rectification framework that uses 
only four images. This framework involves un-distortion, feature point detection, homography computation to correct 
the orientation of the camera, and positional error correction. It is the first to take positional error into consideration. 
Our experiments show that our method is effective. 
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1. INTRODUCTION 
 
The light field [1] is a well known image-based rendering technique. It uses a two-plane parameterization to index the 
light rays in regions of space free of occluders. Every light ray can be defined by connecting a point on the camera 
plane to another point on the image plane (Figure 1(a)). With a light field, new views can be easily synthesized by 
interpolating among appropriate rays. A light field is usually captured by moving a camera on a camera plane and 
taking pictures at every grid points of the camera plane (Figure 1(b)). However, in real cases due to device defects the 
captured light field usually not ideal. For example, the camera is not moving on a plane, or the camera’s optical axis is 
not perpendicular to the camera plane, or the camera is not in the right position precisely (Figure 1(c)). Moreover, lens 
distortion can also  

makes the ray query incorrect. On the other hand, correcting the light field and rectifying it, i.e., making the epipolar 
lines of the images parallel to the coordinate axes in the image space, facilitate further treatment on the light field, such 
as rendering and stereo matching among the images. Therefore, correction and rectification is necessary so that the light 
field is close to ideal.  

 
1.1. Previous Work 
There has been some work on the rectification between stereo images [2][3][4], where the number of images is usually 
two or the images are on a line. In [3], the epipolar lines are aligned by estimating two projective parameters. The 
results of this algorithm have much shearing distortion. Similar distortion exists in [4] because it only aligns the 
epipolar lines and does not consider the visual effect of overall image. In [2], the estimation of shear transform is 
proposed and thus the results are much more satisfactory. It recovers the fundamental matrix first and then estimates the 
rectifying homography (see Section 2.2.1), which relates the coordinates of a planar object in two views. But calculating 
the fundamental matrix is sensitive to correspondence accuracy, so this two-step algorithm causes error to accumulate. 

Though there are commons between the rectification of light fields and that of stereo images, light field rectification 
needs more constraints and conventional methods used in stereo image rectification cannot be applied directly, because 
the light fields are taken by a camera moving in a plane. The requirement that the epipolar lines are aligned is not 
enough [2]. Therefore, more constraints must be imposed. There is little previous work on the problem of rectifying a 
light field. In [1], warping to a common plane is mentioned as camera pans and tilts, but there are few words about how 
to warp and the precision of the warping, which are critical for the application of light fields. The warping is a rectifying 
process. We find that the pose of the camera is usually fixed when moving, which means recovering a single rectifying 
homography is enough for a whole light field. In our algorithm, we adopt a novel method by decomposition and 
iteration that insures the globally optimal solution and also avoids error accumulation. It is also noteworthy that our 
framework is the first to take positional error into consideration. 
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For the computation of homographies and positional error correction, feature points are indispensable. Therefore, it 
is important to design markers to facilitate the detection of feature points. In [5], markers consisting of concentric rings 
were used for tracking from a hand-held camera. Youngkwan Cho proposed a multi-ring color fiducial system for 
augmented reality in [6]. Concentric rings were also used in [9]. We also choose to use such markers for the detection of 
independent feature points. What is different is that we also use dots between the concentric-rings as dependent feature 
points. The main advantage of using dependent features is that the pattern of all markers is smaller so that it is visible in 
more views simultaneously. 

 
1.2. Overview of Our Method 
Our framework consists of positional error correction and rectification of the light field, where the correction also 
depends on the homography computed in the rectification process. It involves the following steps: 

1. Un-distorting every image in the light field, 
2. Detecting the independent and dependent feature points of each marker, 
3. Calculating the intermediate homography that transforms the quadrangle of feature points into rectangle, 
4. Computing the affine transform that scales the image transformed by the intermediate homography 

appropriately, 
5. Iterating the steps 3 and 4 to refine the homography,  
6. Combining the iterative results to compute the final homography and rectifying the whole light field, and 
7. Correcting the positional error after estimating the error. 
The rest of this paper is organized as follows. In Section 2 we present the details of our framework, including feature 

design and detection, the computation of the homography, and the correction of positional error. Finally we show our 
experiments in Section 3 and conclude in Section 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

2. FRAMEWORK 
 
2.1. Feature Design and Detection 
Our framework is based on positions of several feature points in different views. To simplify the process of feature 
detection and matching, a fiducial system is used. The fiducial system consists of detecting two kinds of features: 
independent ones and dependent ones. The positions of both kinds of features can be detected independently and the 
features are printed on a planar board. However, the identity of an independent feature can also be detected 
independently, while that of a dependent feature can not until its neighbors are recognized.  
 
2.1.1.  Independent features 

                         

(a) 

(b) 

(c) 

Figure 1. The concept of light field and the correction and
rectification problem. (a) The two-plane parameterization. (b)
In the ideal light field, the imaging plane of the camera are in
the right position. (c) In practice, it is hard to make the imaging
plane of the camera on a fixed plane and the camera may not be
on the camera plane or at the grids precisely. 

Figure 2. The detection of independent feature points. (a) The original
multi-ring marker. (b) The marker after a projection (c) The contours
are detected and be fit by ellipses. (d) The relative radii Rr . 



We choose concentric rings as markers since they can be detected accurately and stably. A typical marker and its image 
under projective projection are shown in Figures 3(a) and (b). The centers of the markers are the independent features. 
The detection for such feature points consists of the following steps: 

1. All elliptic contours are recognized and fit by ellipses (Figure 3(c)) using the Open Source Computer Vision 
Library by Intel Corporation [8]. 

2. Since the centers of ellipses and the projected center of concentric circles are collinear [11], by fitting this line, 
the relative radii of the circles that correspond to the smaller ellipses can be computed from the preservation of 
cross ratio (Figure 3(d)). These relative radii are used as features to identify which marker it is. 

 
2.1.2. Dependent features 
As shown in the above figures, an independent feature should be relatively large in a single view. Otherwise its details 
will merge together. Moreover it needs to be carefully designed. Otherwise there may be similar markers that can cause 
trouble in recognition. Therefore, we cannot use too many independent features. In most cases, the number of 
independent features in a single view is less than 9. So we make use of dependent features that exploit the relation 
between the features. 

The position of each feature in the original pattern is known. After a projective transform, if three collinear features 
are visible in the image, the positions of other features on the same line can be computed using the cross ratio. If four 
visible features form a quadrangle, the positions of all features on the plane can be estimated from the homography. 
Then the positions of previously found markers are compared with these estimated positions. If the distance between the 
two is within a threshold (typically 1~2 pixels), these markers are identified. In our system, we use the pattern in Figure 
3, which has 9 independent features (concentric-rings) and 16 dependent features (dots). 

 
2.1.3. Error analysis 
Our feature detection algorithm is tested with different poses of the camera. To obtain correct feature positions as the 
ground truth for error analysis, we use a virtual camera so that both intrinsic and extrinsic parameters are known. The 
camera is located on a hemisphere, with the optical axis pointing to the center of the hemisphere (Figure 4 (a)). The 
pattern is placed on the center of the base of the hemisphere and images are captured as camera moves on the 
hemisphere (Figures 4(b)(c)). Figure 5 shows the relation of the errors in pixel with the position of the camera. We can 
see that our feature detect algorithm is robust and accurate with the maximal error less than 1 pixel and the average 
error less than 0.2 pixels. 
 
 
 
 
 
 
 
 

 
 

2.2. Homography Computation 
 
2.2.1. The homography 
 

A planar object in two views is related by a perspective transform. The homography determines the relation between the 
coordinates of the planar object in two views by a matrix: 

Figure 3. The pattern with independent features and dependent
features. The left is the original pattern. All features in this
pattern are numbered 0 to 24, from left to right, top to bottom.
The center is the pattern after a perspective transform. The right
is the pattern after another transform. The features 0, 2 and 4 are
visible independent features. The features 1 and 3 can be found
using the cross ratio.  

Figure 4. The synthetic experiment to test our feature
detection algorithm. (a) The virtual camera translates on the
hemisphere with its optical axis pointing to the center of the
hemisphere. (b) (c) Patterns taken at different positions of the
camera. The definitions of α  and β  can be found in (a). 
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where homogeneous coordinates are used for 2D points in the image space:  
 ( )TwyxX = . 

For 0≠λ , ( )Twyx  and ( )Twyx λλλ  represent the same point in the projective space (In the sequel, λ  stands 
for an appropriate scaling parameter.). Therefore, for 0≠w , ( )Twyx  is the ordinary point ( )Twywx . As a result, 
only 8 parameters are independent in (1) and we may set 9h =1. Then the transform of X under the homography H can 
be written as: 

 HXX =' . 
To determine the homography, only four pairs of corresponding points with non-degenerate configuration (i.e., they 

form a convex quadrangle) are enough. Due to the fact that the camera’s pose is usually fixed when moving, a single 
homography is enough to rectify all images. So we capture four images of the markers using our light field capturing 
device (Figure 6(a)) to estimate this homography. All images are undistorted using the algorithm in [10] before 
processing by taking images of the un-distortion pattern shown in Figure 6(b). 

 

 
(a) °−= 45α                       (b) °−= 90α  

 
 

 
Let us investigate one feature point captured at different camera positions. The feature point appears in the upper-

left, upper-right, bottom-left and bottom-right images as pixels 
3210 ,,, PPPP , respectively. And the coordinates of iP  is 

( )Tii yx 1  )3,,0( L=i , respectively. Then the homography H must satisfy: 
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where ( )Tii yx 1''  are the rectified coordinates, and 
 '' 20 xx = ,  '' 31 xx = ,  '' 10 yy = ,  '' 32 yy = .         (3)               

A direct computation of H will lead to a system of non-linear equations 
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By eliminating 'ix ’s and 'iy ’s in (2) using relation (3). Such method is computationally intensive and inaccurate. 
So we choose an indirect way as in [2]. On the other hand, the constraints in (3) are too weak to compute all the entries 
in H  because they only require the rectified quadrangle is a rectangle. The size of the rectangle is not specified. So we 

Figure 5. The relation between the errors (in pixels) and the
position of the camera. Curves with circles denote the average
errors of all detected feature points in x. Those with crosses are
the average errors in y. Dashed ones with stars are the maximal
errors of all detected features in x, and with dots are the
maximal error in y. All 25 feature points are detected in every
image tested here.  

Figure 6. (a) The light field capturing device. It is a vertical 
XY-table. The object inside the white box is a CCD camera. 
(b) The pattern used for un-distortion. The images are 
undistorted using this chessboard image before rectification. 



add two constraints on H  so that it keeps the image center invariant and avoids clipping. Consequently, the 
computation of rectifying homography consists of two parts:  

1. Computation of the intermediate homography H  that maps the quadrangle 3210 PPPP  into a rectangle. 

2. Computation of the affine transform A  that keeps the image center invariant and avoids clipping. 
For the computation of H , we decompose it into an affine transform and a perspective transform as in [2]. Then the 

estimated homography is HAH ≈ . 
As estimating H only once may not be accurate enough, we may iterate the above steps to make it more accurate. 
 

2.2.2. Estimation of H  
 

From [2]: 
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We can estimate the affine transform A~  and the perspective transform P~  separately. 
Let A~  satisfy (2) and (3), we get: 
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Hence, we can solve 
21 aa  and 

54 aa  by the least-square method. As we can see later, only the ratios are necessary. 
The two parameters 

3a  and 
6a , which are related to the translation of the image, are still not solved yet. However, they 

are not critical because the translation will be solved in another affine transform A . 
On the other hand, binding (2)(3)(4)(5), the two parameters 

7h  and 
8h  can be calculated from the following linear 

system: 
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2.2.3. Estimation of A  
Till now, four constraints on the homography are obtained, namely, 21 aa , 

54 aa , 
7h  and 

8h . Additional four 
constraints must be applied to solve all entries of H . There are many ways to impose constraints, as mentioned in [2]. 
Those we choose are to keep both the image center and the size of image invariant. Let: 
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where xs  and 
ys  account for the horizontal and vertical scaling, respectively, 

xd  and 
yd  account for the translation. 



Suppose the image is of size hw× , and on the image plane, the x-coordinate ranges from 0 to 1−w , and the y-
coordinate ranges from 0 to 1−h , then the image center is ( 2)1(,2)1( −− hw ). Let Q be the quadrangle of four corners 
of the original image, and QHQ =' . The constraint of keeping the image center invariant gives: 
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To avoid clipping of the rectified image, let Tyx )1,,(  be the center of the image after applying homography H : 
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As the image center is invariant, xs and ys should be chosen as: 
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so that the scaled image does not beyond the area ],[],[ topbottomrightleft ×  on the rectified image, where left is the 
minimum of the x-coordinates of 'Q , right, top, and bottom are defined alike.  

Combining (6) (7) and (8), we get xd  and yd  from:  
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Finally, PAAH ~~
=  is computed. 

 
2.2.4. Homography estimation by iteration  
A single linear approximation of a non-linear problem is not accurate enough, but each estimated H can be used to 
transform all coordinates of feature points. Then we may estimate H again by the transformed coordinates. When the 
errors are below a preset threshold, the iteration stops and all homographies are concatenated together to get the final 
homography, i.e., )1()2()3()( HHHHH n L= , 

where )(iH  is the homography computed in ith iteration. Figure 7 shows the reduction of errors with the iteration, 
where the errors are defined as follows: 
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N is the number of images in the light field and ( )Ti
j

i
j yx 1'' )()(  ( 3,,0 L=i ) are the transformed feature points after 

applying )(iH . 
 

2.3. Rectification Positional Error 
The markers shown in Figure 2 can be put in the scene if the user does not care the presence of the markers or the object 
of interest is relatively small such that it does not occlude the markers a lot. Otherwise we may capture the light field of 
the markers and compute the homography. This homography are also used to rectify the light field of interested object.  

Till now, we only investigate the problem when the optical axis of the camera is not perpendicular to the camera 
plane, there is possibility that the camera is not at the desired position. The use of markers can also solve this problem. 
The positional error can be computed because the positions of the feature points are computable. Then we again use the 
positional error measured from the light field of markers to correct the interested light field. The error that the camera is 
not on the camera plane is negligible. 



To demonstrate, our capturing device captures two light fields with the same configuration. We show the average 
error of the two light fields in Figure 9. For one image in the light field, the error in x direction is defined as the average 
deviation in x of each feature point from the topmost image in the column; the error in y direction is defined as the 
average deviation in y of each feature point from the leftmost image in the row. The average errors in x and y are the 
mean error of each column and row, respectively. From this figure, we can see that the errors are unbiased. The errors 
of one light field are used as the benchmark. After subtraction, the errors reduce in both x and y directions, especially 
the maximal errors (Figure 8). 

 

  
 
 

 
3. EXPERIMENTAL RESULT 

 
Parts of some light fields before and after rectification are shown in Figure 9. Before rectification, positions of 
correspondences in light field are not aligned vertically and horizontally. Take Figure 9(a) for example, a feature point 
in the status on the top-left image is 5 pixels lower than its correspondence on the top-right one, and moves 3 pixels 
right compared to its correspondence on the bottom-left one (Figure 9(c)). After rectification, the deviation is less than 1 
pixel (due to the error of manually selecting feature points) without positional error correction (Figures 9(b) and (d)). 
After correcting the positional error, the average error over the entire light field drops to less than 0.5 pixels. The results 
after positional error correction are not shown here because the further improvement is too small to be visually detected. 
These examples show that our algorithm is rather effective. The run time for detecting markers in four images and 
calculating the homography is 400~500 ms on a Pentium III 800 with 256M RAM. 
 

4. CONCLUSION 
 

We have proposed an effective framework that both corrects the positional error of the light field and rectifies the light 
field, in which a light field of a pattern is taken to compute the rectification homography and positional error. Other 
light fields taken at the same positions of the camera use the same homography and the positional error. As the core of 
our framework, the rectifying homography is computed in a divide-and-conquer manner, and the iteration refined the 
homography. Our experiments show that our feature detection, positional error correction and rectification are all robust 
and accurate. 
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