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ABSTRACT

In this paper, a new approach to sequential estimation of the time-
varying prior parameters of nonstationary noise is presented us-
ing the log-spectral or cepstral data of the corrupted noisy speech.
Incremental Bayes learning is developed to provide a basis for
noise prior evolution, recursively updating the noise prior statis-
tics (mean and variance) using the approximate Gaussian posterior
computed at the preceding time step. The algorithm for noise prior
evolution is derived in detail, and is evaluated using the Aurora2
database with the root-mean-square (RMS) error measure. Experi-
mental results show that when the time-varying variance and mean
of the nonstationary noise prior are estimated and exploited, supe-
rior performance is achieved compared with using either no noise
prior information or using the time-invariant, fixed mean and vari-
ance in the noise prior distribution.

1. INTRODUCTION

In a wide class of speech feature enhancement algorithms, includ-
ing spectral subtraction and Bayesian estimation [4, 3, 5], the es-
timation accuracy of the corrupting noise or of its statistics is the
most crucial factor determining the effectiveness of the enhance-
ment algorithms. This is especially true when the corrupting noise
is nonstationary, or varying over time in its statistics. In [2] and
[3], we introduced the maximum-likelihood (ML) and maximum a
posteriori (MAP) techniques, respectively, for sequential point es-
timation of nonstationary noise using an iteratively linearized non-
linear model for the acoustic environment.1 It was demonstrated
in [3] that with the use of a simple Gaussian prior model for the
distribution of the noise, the MAP estimate outperformed the ML
counterpart in the quality of the noise estimate. This leads to better
speech feature enhancement and greater robust speech recognition
accuracy.

In the MAP technique presented in [3], the mean and variance
parameters associated with the Gaussian noise prior are fixed from
a segment of each speech-free test utterance. When the noise is
nonstationary, however, it is natural to expect that the noise prior
should also change as a function of time in order to reflect realistic
noise prior statistics. Just how to achieve such improved modeling
is the subject of this paper.

A new approach to tracking time-varying parameters of non-
stationary noise is presented in this paper using the log-spectral
data of the corrupted noisy speech. The theoretical basis of the
new sequential estimation algorithm is incremental Bayes learn-
ing, where a time-varying noise prior distribution is assumed and
its hyperparameters (mean and variance) are updated recursively

1Non-iterative versions of the ML technique for noise estimation can
be found in [1, 7].

using the approximate Gaussian posterior computed at the preced-
ing time step. In contrast to the earlier noise tracking approaches
based on ML and MAP point estimates, the new approach provides
additional uncertainty information regarding the time-varying vari-
ance of the noise. Experimental results using the root-mean-square
(RMS) measure show that incorporating the time-varying mean
and variance of the noise estimate gives superior performance com-
pared with the earlier work which uses either no noise prior infor-
mation [2] or uses the time-invariant, fixed mean and variance in
the noise prior distribution [3].

This paper is organized as follows. In Section 2, we provide
a general principle for incremental Bayes learning based on a re-
cursive formulation of Bayes’ rule, and its specific application to
tracking noise prior evolution. An algorithm for estimating time-
varying mean and variance in the noise prior distribution, under
the Gaussian assumption of the prior, is derived and presented in
Section 3. Experimental evaluation of the algorithm is included
in Section 4, using the Aurora2 database and the RMS error mea-
sure. Finally, in Section 5, we provide a summary of the work and
discuss potential use of the estimated noise statistics for speech
feature enhancement.

2. INCREMENTAL BAYES LEARNING OF
NONSTATIONARY NOISE

Let �������� ��� �
	 ��� � � � �� ��� � � � � � be a sequence of noisy speech ob-
servation data, expressed in the log domain (such as log-spectra or
cepstra), and are assumed to be scalar-valued without loss of gen-
erality. Data ���� are used to sequentially estimate the corrupting
noise sequence � � ��� � ��� � 	 ��� � � ��� � � � � � with the same data length�
. Within the Bayesian learning framework, we assume that the

knowledge about noise � (treated as an unknown parameter) is
contained in a given a-priori distribution of ������� . If the noise se-
quence is stationary, i.e., the statistical properties of the noise do
not change over time, then the conventional Bayes inference (i.e.,
computing the posterior) on noise parameter � at any time can be
accomplished via the “batch-mode” Bayes’ rule:

������� � �� � � ��� ���� � ��� ���������� ��� � �� � ��� ���������
� �

where � is an admissible region of the noise parameter space.
Given ������� ���� � , any estimate on noise � is possible in principle.
For example, the conventional MAP point estimate on noise � is
computed as a global or local maximum of the posterior ������� � �� � .
The minimum mean square error (MMSE) estimate is the expec-
tation over the posterior ������� ���� � .

However, when the noise sequence is nonstationary and the
training data of noisy speech � �� is presented sequentially as in



most practical speech feature enhancement applications, new noise
estimation techniques are needed in order to track the noise statis-
tics that is changing over time. One common technique, which we
explore in this work, is based on iterative applications of Bayes’
rule [8, 6]:

����� � � � �� � ���� � ��� � � � � ��� �� � � � � ����� � � � ��� �� � �

where
� � � ��� ���� � � ��� �� � � � � ��� � � � � ��� �� � � � � ����� � � � ��� �� ���
� � .

Assuming conditional independency between noisy speech � �
and its past � ��� �� given � � , or ��� � � � � ��� �� � � � � � ��� � � � � � � , and as-
suming smoothness in the posterior: ����� � � � ��� �� ��� ����� ��� � � � ��� �� � ,
we obtain

����� � � � �� ��� �� � ��� � � � � � � ����� ��� � � � ��� �� � � (1)

Incremental learning of nonstationary noise can now be estab-
lished by repeated use of Eq. 1 as follows. Initially, in absence
of noisy speech data � , the posterior PDF comes from the known
prior �����	��� � ��� � �����	��� . Then use of Eq. 1 for

� � � produces:

����� � � � � ��� �� � ��� � � � � � � �����	��� � (2)

and for
� ��
 it produces:

����� 	 � � ��� �
	 ��� �� 	 ��� �
	 � � 	 � ����� � � � � � �
using the ����� � � � � � already computed from Eq. 2. For

� �� , Eq. 1
becomes:

�����	��� � �� ��� �� � ��� � ��� �	��� ����� 	 � � ��� �
	 � �
and so on. This process thus recursively generates a sequence of
posteriors (provided that ��� � � � � � � is available):

����� � � � � � � ����� 	 � � 	� � � � � � � �����  � � � � � � � � � ����� � � � �� � ��� � � (3)

which provides a basis for making incremental Bayes’ inference
on the nonstationary noise sequence � � � . The general principle of
incremental Bayes’ inference discussed so far will now be applied
to a specific acoustic distortion model, which supplies the frame-
wise data PDF ��� � � � � � � , and under the simplifying assumption that
the noise prior be Gaussian.

3. NOISE PRIOR EVOLUTION

3.1. Prior evolution and sequential update of noise hyperpa-
rameters

The essence of incremental Bayes learning is to update the current
“prior” distribution about the parameter (noise in our case) using
the posterior given the observed data up to the most recent past,
since this posterior is the most complete information about the pa-
rameter preceding the current time. Therefore, the posterior se-
quence in Eq. 3 becomes a time-varying prior sequence (i.e., prior
evolution) for noise distributional parameters of interest (with the
time shift of one frame in size).

For data likelihood ��� � � � � � � , which is non-Gaussian (and will
be described shortly), the posterior is necessarily non-Gaussian.
A successive application of Eq. 1 would result in a fast expand-
ing combination of the previous posteriors and lead to intractable

forms. It is well known that approximations are needed to over-
come the intractability [6]. The approximation that we introduce
in this work is to apply the first-order Taylor series expansion to
linearize the nonlinear relationship between � � and � � . This leads
to a Gaussian form of ��� � � � � � � . Therefore, the time-varying noise
prior PDF ����� �� � � , which is inherited from the posterior for the
past data history �����  � � � � , can be approximated by the Gaussian:

�����  � � � � � �
� 
�� � ��� 	���� � ����� ��� �
! � 

�!" � ���� �$# 	&%��('*) � �+ " � � � � 	� �-, � (4)

where

" � � and
� 	� � are called the hyperparameters (mean and

variance) that characterize the prior PDF. Then the posterior se-
quence in Eq. 3 computed from recursive Bayes’ rule Eq. 1 offers
a principled way of determining the temporal evolution of the hy-
perparameters, which we describe below.

3.2. Acoustic-distortion and clean-speech models for comput-
ing data likelihood ��� � � � � � �
We first assume a time-invariant mixture-of-Gaussian model for
log-spectra of clean speech . :

���/. � �10�2 ���/3 � '*) . + "54 �/3 � � � 	4 �/3 � , � (5)

We then use a simple nonlinear acoustic-distortion model in
the log-spectral domain (discussed in more detail in [2]):����� � � � � ����� �/. �	6 ����� ����� � or � � .7698 ��� � . � � (6)

where the nonlinear function is:8 �;:
� �=< >@?�) � 6 ����� �;:
� , �
In order to obtain a useful form for the data likelihood ��� � � � � � � ,

we employ Taylor series expansion to linearize nonlinearity 8 in
Eq. 6. This gives the linearized model of

� �=.7698 ���	� �!"54 �/3A��� �	698CB ���	� �!"54 �/3A��� � ��� � �	��� � (7)

where �	� is the Taylor series expansion point and the first-order
series expansion coefficient can be easily computed as:8CB ���	� �!"54 �/3A��� � � ����� ���	�������� ) "54 �/3A��� , 6 ����� ���	��� �
In evaluating functions 8 and 8 B in Eq. 7, the clean speech value .
is taken as the mean (

"54
�/3A��� ) of the “optimal” mixture Gaussian

component 3A� .
Eq. 7 defines a linear transformation from random variables .

to � (after fixing � ). Based on this transformation, we obtain the
PDF on � below from the PDF on . (Eq. 5):

��� � � � � � � �D0�2 ���/3 � '*) � � + "5E �/3 � � � � � 	E �/3 � � � ,� '*) � � + "5E �/3A� � � � � � 	E �/3A� � � � , � (8)

where the optimal mixture component is determined by3A� �F�G�?IHJF �2 '*) � � + "5E �/3 � � � � � 	E �/3 � � � , �



and where the mean and variance of the approximate Gaussian are2"5E
�/3A� � � � �

"54
�/3A���	698 2�� 698CB2�� � ��� �

�
�	���� 	E �/3A� � � � � � 	4 �/3A���	698CB 	2�� � 	� � � (9)

3.3. Algorithm for estimating time-varying mean and variance
in the noise prior

Given the approximate Gaussian form for ��� � � � � � � as in Eq. 8 and
for �����  � � � � as in Eq. 4, we now derive the algorithm for deter-
mining noise prior evolution, expressed as sequential estimates of
time-varying hyperparameters of mean

" � � and variance
� 	� � .

Substituting Eqs. 4 and 8 into Eq. 1, we obtain��� � �	��
 � ���� 	� ���� ��� � ����
 E � � � ��� � ��� 	E � � � ��� ��� ��� � ��� � ��
 � ����� ��� 	� ����� � ��� ! B2�� � ��� � ��
 � ��� 	E � � � ��� ��� ��� � ��� � ��
 � ����� ��� 	� ����� � (10)

where

"
� � � �

� "54
�/3A��� � 8 2�� 6A8 B2�� �	� , and the assumption of

noise smoothness was used. We match the means and variances,
respectively, of the left and right hand sides in Eq. 10 to obtain the
prior evolution formulas:" � � � 8 B2��#"" � � 	� ����� 6 " � ����� � 	E �/3A� � � � � �8 B 	2�� � 	� ����� 6 � 	E �/3A� � � � � � � (11)� 	� � �

� 	E �/3A� � � � � � � 	� �����8 B 	2�� � 	� ����� 6 � 	E �/3A� � � � � � �
where

"" � � � �
� "54

�/3A��� � 8 2�� 6 8 B2�� " � ����� . In establishing
Eq. 11, we used the previous time’ prior mean as the Taylor series
expansion point for noise; i.e., �5� � " � ����� . We also used the well
established result in Gaussian computation (setting $ � 8 B2�� ):����%'& ��
 � ��� 	� � ��� & ��
 	 ��� 		 �)( *+-, � � � 	/.�021 3�4 *+65 &

4 
�87 	:9<;>= �
where 
 ( % 
 � � 		 9 
 	 � 	�% 	 � 		 9 � 	� � � 	 ( � 	� � 		% 	 � 		 9 � 	�@?

4. EVALUATION EXPERIMENTS

The algorithm for noise prior evolution described in the preceding
section has been evaluated on the Aurora2 database. Since the true
noise in the form of log-spectrum is available from the database,
it is possible to quantitatively evaluate exactly how accurate the
estimated noise is.

4.1. Baseline estimates of nonstationary noise

In order to evaluate the effectiveness of the noise prior evolution al-
gorithm presented in Section 3.3, in addition to baseline estimates,
we also need to establish a corresponding point estimate of noise
based on the estimated prior evolution sequence. Since the mode
of a Gaussian is its mean, the MAP (point) estimate for the time-
varying noise A� � is in the same form as Eq. 11 for prior evolution
of the noise mean:A�@BDC)E� � 8 B2�� " BDC)E� � 	� ����� 6FA� BDC)E��� � � 	E �/3A� � � � � �8 B 	2�� � 	� ����� 6 � 	E �/3A� � � � � � � (12)

2As a notational shorthand, we use
! 2��

to denote
!G� � � 4 
 4 � � � ��� ,

and
! B2�� to denote

! B � � � 4 
 4 � � � ��� .

where

" BDC)E� � � �
� "54

�/3A��� � 8 2�� 6 8 B2�� A� BDC)E��� � . Using such
a MAP estimate of noise and the true noise in the same form of
log-spectra, we can then compute the RMS error to evaluate the
effectiveness of the noise prior evolution algorithm.

In our experiments, we compare three point estimates of non-
stationary noise in the Aurora2 database:

A. The MAP estimate ( A� BDC)E� ) of Eq. 12, incorporating time-
varying noise prior mean and variance hyperparameters de-
termined by the noise prior evolution algorithm;

B. The MAP estimate (denoted by A� 2IHKJ� ) of Eq. 12, except
replacing the estimated hyperparameters

" � ����� (which isA� BDC)E��� � ) and
� 	� ����� by fixed, time-invariant values of A" �

and A� 	� computed from the first 15 speech-free frames in
each of the Aurora2 utterances. This estimate becomes3

A� 2IHKJ� � 8 B2�� " 2IHKJ� A� 	� 6LA" ��� 	E �/3A���8 B 	2�� A� 	� 6 � 	E �/3A���
� 
 8 B2�� A� 	� A" � 6 � 	4 �/3A���GA" � 6 � �
 8 B 	2�� A� 	� 6 � 	4 �/3A��� � (13)

where

" 2IHKJ
� � � �

�!"54
�/3A��� � 8 2�� 698 B2�� A" � , and� � � 8 B2�� A� 	� � ) � � �!"54 �/3A��� � 8 2�� , .

C. The ML estimate (denoted by A� BNM� ), as a special case of
Eq. 13 by setting

� 	�PORQ
and taking the limit of the ratio.4

4.2. Experimental results

The new MAP noise estimate (A: A� BDC)E� ) computed from Eq. 12,
which incorporates the time-varying noise prior mean and variance
according to Eq. 11, is evaluated by comparing its RMS error with
the RMS errors from two baseline noise estimates (B: A� 2IHKJ� or
MAP estimate with a fixed noise prior mean and variance; and C:A� BNM� or ML estimate). The estimates are computed in the Mel log-
spectral domain first, and then converted to the cepstral domain
(13 MFCCs: C0-C12) via the cosine transform. The RMS error
is computed using the MFCCs of true noise via the same cosine
transform on the Mel log-spectra.

The comparative RMS values for the full range of MFCCs are
listed in Table 1, averaged over the utterances from the SNR=0dB
portion of the Exhibition environment condition (N4) in the Au-
rora2’s Set-A. While the new noise estimate A is uniformly better
(i.e., lower RMS errors) than the two baseline estimates, the great-
est gain is on C0, resulting in approximately 10% RMS error re-
duction. The higher-order MFCCs tend to have lower gains. Also,
as consistent with the robust speech recognition results published
in [3], the MAP estimate (B) with a fixed noise prior is slightly but
consistently better than the ML estimate (C).

The same type of RMS-error comparison for the SNR=10dB
portion of the N4 condition in Set-A is shown in Table 2. Similar
advantages of the new estimate A over that of B or C are demon-
strated. We note that the overall errors of the estimates are slightly
higher for the SNR=10dB than the SNR=0dB conditions.

For a different type of noise, N1 (Subway) of Set-A, in the
Aurora2 database, we also computed the RMS errors for the three
point estimates of the noise. The results for the SNR=5dB portion

3Note this is a special case of the MAP estimation algorithm in [3],
which also used the same first 15 speech-free frames in each of the Aurora2
test utterances to estimate the time-invariant hyperparameters.

4Note this is a special case of the ML estimation algorithm in [2].



C0 C1 C2 C3 C6 C9 C12
A 5.4 3.2 2.7 2.4 2.3 1.9 1.5
B 5.9 3.5 2.8 2.5 2.4 2.0 1.5
C 6.1 3.7 2.9 2.5 2.5 2.0 1.5

Table 1. RMS errors for the new MAP noise estimate (A: A� BDC)E� )
and the two baseline MAP (B: A� 2IHKJ� ) and ML (C: A� BNM� ) noise
estimates. A and B differ in whether the noise prior’s mean and
variance are fixed, or are allowed to change over time according
to Eq. 11. Noise and noisy speech data are from the SNR=0dB
portion of the N4 condition (Exhibition) in the Aurora2’s Set-A.

C0 C1 C2 C3 C6 C9 C12
A 6.2 3.4 3.0 2.6 2.1 1.8 1.6
B 6.7 3.7 3.2 2.7 2.2 1.9 1.7
C 6.9 3.8 3.3 2.7 2.4 1.9 1.7

Table 2. Data: SNR=10dB portion of the N4 condition of Set-A

of the utterances are listed in Table 3. Since the “subway” noise in
N1 is significantly more nonstationary than the “exhibition” noise
in N4, the RMS errors (in C0) are much larger also. This reflects
the well-known difficulty of estimating highly nonstationary noise.
However, with the use of the time-varying noise prior as proposed
in this paper, again the RMS error in C0 has been reduced by about
10% for the more difficult type of noise of N1. The RMS-error re-
sults for the same type of noise but with SNR=15dB are presented
in Table 4. Again, the overall RMS errors are somewhat higher
compared with the condition having a lower SNR. But again, the
RMS error reduction with a similar magnitude to Table 3 is ob-
served due to the use of the time-varying noise prior.

C0 C1 C2 C3 C6 C9 C12
A 10.0 3.6 3.1 2.5 2.3 1.6 1.4
B 11.2 3.8 3.2 2.6 2.4 1.7 1.4
C 11.5 3.9 3.3 2.6 2.4 1.7 1.4

Table 3. Data: SNR=5dB portion of the N1 (Subway) condition

5. SUMMARY AND DISCUSSIONS

In this paper, we propose and evaluate an incremental Bayes learn-
ing approach to sequential estimating or tracking the time-varying
mean and variance of nonstationary noise, using the log-spectral
or cepstral data of the corrupted noisy speech. This approach gen-
eralizes the earlier noise tracking approaches based on the ML and
MAP point estimates, where either no prior information about the
noise was exploited [2], or such information was assumed to be
fixed over the entire length of the utterance [3].

The main contribution of this paper is to apply incremental
Bayes learning, which has been successfully used for on-line adap-
tation of HMM parameters [6], to the problem of nonstationary
noise tracking. Key differences, however, exist between these two
types of applications. First, the parameter update interval is sig-
nificantly shorter in noise tracking (frame as the interval) than

C0 C1 C2 C3 C6 C9 C12
A 11.5 4.0 3.1 2.6 2.2 1.7 1.5
B 12.4 4.2 3.2 2.7 2.3 1.8 1.5
C 12.5 4.3 3.4 2.8 2.3 1.8 1.5

Table 4. Data: SNR=15dB portion of the N1 (Subway) condition

in HMM adaptation (utterance as the interval). Second, the data
likelihood for noise tracking is derived from a linearized acoustic
distortion model, while that for HMM adaptation comes from the
HMM likelihood computation. Third, the form of the prior PDF
for noise tracking is assumed with a much simpler form to facil-
itate the tracking algorithm development. Based on a set of sim-
plified yet effective assumptions, we used approximate recursive
Bayes’ rule and quadratic term matching to successfully derive the
noise prior evolution formulas as summarized in Eq. 11.

Experimental results show moderate improvement on the noise
tracking accuracy, measured by RMS error reduction, compared
with the two baseline noise tracking algorithms developed from
the previous work [2, 3]. Our future work will focus on utilizing
both the estimated mean and variance in the noise prior to im-
prove the effectiveness of speech feature enhancement within the
framework of phase-sensitive modeling of acoustic environments
established in [3, 5]. The enhancement algorithm presented in [3]
was only able to use the point (mean) estimate of noise. Extension
of the algorithm to make use of the variance information provided
by the prior evolution algorithm presented in this paper is expected
to improve the enhancement performance, thus demonstrating the
practical value of noise prior evolution.
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