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Recursive Estimation of Nonstationary Noise
Using Iterative Stochastic Approximation

for Robust Speech Recognition
Li Deng, Jasha Droppo, and Alex Acero

Abstract—We describe a novel algorithm for recursive estima-
tion of nonstationary acoustic noise which corrupts clean speech,
and a successful application of the algorithm in the speech feature
enhancement framework of noise-normalized SPLICE for robust
speech recognition. The noise estimation algorithm makes use
of a nonlinear model of the acoustic environment in the cepstral
domain. Central to the algorithm is the innovative iterative sto-
chastic approximation technique that improves piecewise linear
approximation to the nonlinearity involved and that subsequently
increases the accuracy for noise estimation. We report com-
prehensive experiments on SPLICE-based, noise-robust speech
recognition for the AURORA2 task using the results of iterative
stochastic approximation. The effectiveness of the new technique
is demonstrated in comparison with a more traditional, MMSE
noise estimation algorithm under otherwise identical conditions.
The word error rate reduction achieved by iterative stochastic
approximation for recursive noise estimation in the framework
of noise-normalized SPLICE is 27.9% for the multicondition
training mode, and 67.4% for the clean-only training mode,
respectively, compared with the results using the standard cepstra
with no speech enhancement and using the baseline HMM sup-
plied by AURORA2. These represent the best performance in the
clean-training category of the September-2001 AURORA2 evalua-
tion. The relative error rate reduction achieved by using the same
noise estimate is increased to 48.40% and 76.86%, respectively, for
the two training modes after using a better designed HMM system.
The experimental results demonstrated the crucial importance
of using the newly introduced iterations in improving the earlier
stochastic approximation technique, and showed sensitivity of the
noise estimation algorithm’s performance to the forgetting factor
embedded in the algorithm.

Index Terms—Author, please supply your own keywords or send
a blank e-mail to keywords@ieee.org to receive a list of suggested
keywords.

I. INTRODUCTION

NOISE-ROBUST speech recognition under the acoustic en-
vironment where speech is corrupted by unknown noise,

especially by unknown and fast changing nonstationary noise,
has been a long-standing and unsolved problem (e.g., [19]). One
important class of techniques for noise-robust recognition op-
erate by enhancing speech features via front-end denoising, pro-
ducing cleaned inputs to speech recognizers for decoding. Such
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techniques have also been effectively used to enhance either nat-
urally or intentionally corrupted training data, followed by sub-
sequent re-training of the HMM systems to remove the residual
mismatch between the training and test sets after speech feature
enhancement [4]. Use of denoising or preprocessing in this way
is shown to be superior to re-training recognizers under matched
noisy conditions with no preprocessing, beating the conven-
tional wisdom that the matched noisy condition sets the upper
limit for the performance. Recently, we have successfully devel-
oped a class of front-end denoising algorithms based on the use
of a limited set of stereo training data [4], [5]. The basic version
of the algorithm has been called SPLICE, short for Stereo-based
Piecewise Linear Compensation for Environment. For most of
the noisy test speech data that have been collected and generated
internally at Microsoft, we found that SPLICE has been highly
effective.1

More recently, we started applying SPLICE to the AURORA2
task [12], which is noisy connected digit recognition used in the
September-2001 evaluation participated by about 20 systems.
AURORA2 is based on the TIDigits database that is corrupted
digitally by passing them through a linear filter and/or by adding
different types of realistic, nonstationary noises at a wide range
of SNRs. The AURORA2 task has strongly constrained the cov-
erage of the noise conditions in designing the stereo training
data. We discovered in our earlier AURORA2 work that when
the training set used to obtain the correction vectors in SPLICE
are under very different noise environments than the environ-
ment for the test data, the performance often becomes undesir-
ably low [8]. One obvious solution to this mismatch problem is
to normalize, in an instantaneous-SNR-dependent manner, the
test and training environments. Some carefully designed diag-
nostic experiments have confirmed the crucial importance of
the accuracy of noise estimation in successful applications of
denoising under seriously mismatched conditions between the
SPLICE’s training and deployment environments. The nonsta-
tionary nature of the noise represents one major source of dif-
ficulty for accurate noise estimation, which will be specifically
addressed in this work.

Toward solving the problem of accurate noise estimation
(especially for the nonstationary noise), we have developed
an effective recursive noise estimation method based on a
nonlinear model of the acoustic environment. There is vast lit-
erature in signal processing on recursive algorithms, also called
sequential, online, or adaptive algorithms, and on stochastic

1Some of the results were reported in [4], [5], [7].
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approximations which provide theoretical foundations for the
recursive algorithms (e.g., [3], [10], [15], [18], [20]). One main
contribution of the work reported in this paper is to devise a new
technique that generalizes these well-studied algorithms so that
they can be effectively used to handle the potentially complex
nonlinearity involved in the underlying models for generating
noisy speech data. Specifically, the novel technique developed
for the generalized algorithm makes use of the newly developed
iterative stochastic approximation technique to achieve a high
degree of accuracy in approximating the nonlinearity via
truncated Taylor series expansion. This is accomplished by
introducing new auxiliary or nuisance parameters (as the Taylor
series expansion points) that are jointly optimized with the
desired parameters. This new technique has been successfully
applied to improve the accuracy of the nonstationary noise
estimate, which is exploited in noise-normalized SPLICE as
the basis for enhancing the cepstra of speech embedded in
nonstationary noises. Significant performance improvement
has been achieved in noise-robust speech recognition using
such enhanced speech features. In addition to its successful use
in noise-normalized SPLICE, the new technique presented in
this paper for high-performance nonstationary noise estimation
has applications in other areas of speech processing such as
spectral subtraction and voice activity detection (not reported
in this paper).

The organization of this paper is as follows. Section II, we
outline the noise-normalized SPLICE framework in which the
new nonstationary noise estimation technique is exploited in
cepstral feature enhancement intended for noise-robust speech
recognition. Section III, we first introduced a nonlinear model of
the acoustic environment in the cepstral domain, and use it as the
basis for developing the recursive-EM algorithm for noise esti-
mation using a linearized version of the nonlinear model. The
developed algorithm is built upon some recent noise estimation
work in robust speech recognition (e.g., [2], [14]), but it gener-
alizes the earlier work by making the linearization process in-
clude auxiliary parameters that are subject to joint optimization
with the noise parameters. One effective approach to solving
this joint optimization problem is presented in Section IV, using
iterative stochastic approximation. Section V, we report com-
prehensive experimental results that demonstrate the effective-
ness of the new noise estimation method for the AURORA2 task
using the noise-normalized SPLICE framework for speech fea-
ture enhancement. We provide evidence that demonstrates the
crucial importance of using the newly introduced iterations in
stochastic approximation in terms of the noise estimation accu-
racy (measured by root mean square error) and of the speech
recognition accuracy (measured by error rate reduction). We
further report the results on the importance of the forgetting
mechanism embedded in the algorithm that enables the algo-
rithm to effectively track the time-varying noise.

II. NOISE-NORMALIZED SPLICE
FOR CEPSTRAL FEATURE ENHANCEMENT

In this section, we outline the noise-normalized SPLICE
framework, which makes use of the recursively estimated noise
to enhance the noisy speech in the Mel-Frequency Cepstral

Coefficient (MFCC) domain. This section summarizes and
enriches the earlier descriptions of SPLICE, including its var-
ious improved versions, which appeared in [4], [5], [8]. While
noise estimation, rather than speech feature enhancement, is
the primary focus of this paper, the latter serves as the best ap-
plication area of the former. Hence, we present the framework
of enhancement here in order to set up the background for
the use of the outputs of the novel recursive noise estimation
algorithm, which will be presented following this section.

A. SPLICE Basics

One of the two basic modeling assumptions in SPLICE is
that the noisy (corrupted) speech MFCC vector , under each
distinct distortion condition, follows a mixture of Gaussians:

The mixture component is a discrete random variable. It
takes a set of discrete values, one for each cepstral-space par-
titioning. A piecewise linear approximation between the clean
speech MFCC vector and its noisy counterpart is made for
each such partitioning.

The second modeling assumption in SPLICE is that the con-
ditional PDF for clean speech , given noisy speech and the
mixture component , is also a Gaussian. The mean vector is as-
sumed to be a shifted version of noisy speech . That is,

(1)

where are the correction vectors that need to be trained using
stereo training data.

The above two basic assumptions in SPLICE give
rise to a simple yet rigorous MMSE estimate of clean
speech MFCC vectors from their distorted counter-
parts. The MMSE is the mean of the conditional PDF of

. This gives

(2)

where

according to Bayes rule.
A fast implementation of SPLICE is to approximate the

weights above according to

otherwise.
(3)

This turns the MMSE estimate in (2) into the approximate MAP
estimate that was originally formulated in [4]. This approximate
MAP estimate consists of two sequential steps of operation: 1)
finding optimal “codeword” using the VQ codebook based on
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the parameters ( , ) and 2) adding the codeword-dependent
vector to the noisy speech vector.

The distribution parameters in are trained for each sep-
arate noisy condition using noisy speech data.2 The correction
vectors are trained using stereo training data ( and ).
Maximum likelihood training is used, and the estimation for-
mula is

(4)

(5)

B. Noise-Normalized SPLICE

The above basic version of the SPLICE algorithm for de-
noising in the MFCC domain has been improved to normalize
the difference in noise conditions between the training and test
data sets.3 The improved, noise-normalized SPLICE enhances
the basic version as follows. Instead of building codebooks for

from the training set, they are built from
, where is the estimated noise

vector sequence from . Then the correction vectors are esti-
mated from the training set using the noise-normalized stereo
data and .4 For denoising in the test data,
the noise-normalized noisy MFCCs are used to ob-
tain the noise-normalized MMSE estimate via the basic SPLICE
enhancement, and then the noise normalization is undone by
adding back to the MMSE estimate.

In addition to noise normalization, another improvement over
the basic version of SPLICE as used in our experiments is to
smooth the correction vectors through time frames using a care-
fully designed low-pass filter after completing the training of
the correction vectors [8].

III. RECURSIVE ESTIMATION OF NONSTATIONARY NOISE

Given the general outline of the noisy speech enhancement
framework presented above, we now describe how the noise
vector, , which varies in time (nonstationary) and is needed
for the noise normalization, is estimated via a recursive-EM al-
gorithm in a frame-by-frame manner. As a basis for this algo-
rithm, we first present a nonlinear environment model for the
constraining relationship among the noisy speech, clean speech,
and noise in the cepstral domain.

2For the AURORA2 experiments [12], which will be reported in Section V,
a total of 17 such distributions are used from the Set-A noisy data in the exper-
iments. These 17 distributions correspond to each of the four noise conditions
and for each of the four SNRs (5 dB, 10 dB, 15 dB, and 20 dB), in addition to
the distribution trained using clean speech data in Set-A.

3In the AURORA2 database, the training data come from Set-A and are used
to train the 17 codebooks and 17 sets of the codeword dependent correction
vectors. The test data consist of all Sets-A, -B, and -C.

4The correction vectors trained in this noise-normalized SPLICE will be dif-
ferent from those in the basic version of SPLICE. This is because the codebooks
are different (i.e., p(ijy ) is changed to p(ijy �n ) in (4)), although the term
(x �y ) in (4) remains the same due to the common n̂ subtracted from both
x and y .

A. Nonlinear Model for Acoustic Environment

Using a linear system model in time domain, one can easily
show that the power spectra of distorted or noisy speech
are related to those of clean speech , noise , and
the channel transfer function according to

(6)

where the approximation is due to omission of the cross term
( represents the random angle be-

tween the two complex variables and ).
Equation (6) in the domain of power spectra can be shown to

be equivalent to the following parametric model of the acoustic
environment in the cepstral domain ([1], [17])

(7)

where and are distorted and clean speech cepstral vectors,
respectively. and are cepstral vectors for the additive noise
and impulse response of convolutional distortion, respectively.

is the discrete cosine transform matrix. To simplify the nota-
tion, we define the vector function of

(8)

Then, we can write the model of (7) in short-hand

(9)

Note matrix is not a square one, and (9) can be
rewritten component-by-component as follows:

(10)
where ; is the dimensionality of cep-
stral vectors and is the dimensionality of Mel-frequency log-
channel spectra. We set and in the AURORA2
experiments described in Section V.

The model (9) that relates , , and is nonlinear. Com-
pared with the linear model of (6) in terms of power spectra, the
nonlinear model has higher complexity, but is more desirable
because the cepstral domain in which the model is expressed
is the same domain as that on which most speech recognizers
are operating. For developing the recursive estimation algorithm
based on the nonlinear model of (9), we make approximation by
truncating Taylor series expansion of the nonlinearity, around an
updated operating point, up to the linear term. In this way, when

, , and are Gaussian and since is linearized,
we effectively approximate with a Gaussian. In this paper, we
consider additive noise only, for which . Let and be
the operating points for the first-order Taylor series expansion
of . We then have

(11)
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where the gradient has the close form of

and above denotes conversion of a vector to a diagonal
square matrix, with the components of the vector placed on the
diagonal positions of the matrix.

B. Prior Models

While the model (9) expressively represents the relationship
among clean speech , noise , and (observed) distorted speech

, the main difficulty is that both the clean speech and noise are
unobserved. Prior information is thus needed to distinguish the
two simultaneous unknowns. We now first establish the statis-
tical model, as the prior information, for the clean speech cep-
strum ( as a random vector) to be a mixture of multivariate
Gaussians:

(12)

The speech frames ’s are assumed to be independent and iden-
tically distributed, and hence is not denoted in (12). The un-
observed missing random variable in (12) is the mixture com-
ponent .

In the work described in this paper, the noise cepstrum is as-
sumed to be a deterministic (rather than random) vector, which
is time varying and is the variable to be estimated for each time
frame .

C. Recursive-EM Algorithm for Noise Estimation

Recursive noise parameter estimation can be shown to be the
solution to the following recursive-EM optimization problem
[2], [14], [15]

(13)

where the objective function above is the conditional
expectation

(14)

In (14), is the sequence of (hidden)
mixture components in the clean speech model up to time

, and likewise . The expectation in
(14) is carried out with respect to the conditional distribution

. Note that the objective function of (14) in
the recursive-EM algorithm differs from the one in the conven-
tional batch-EM. in (14) is time indexed, and the observa-
tion sequence is used up to that time, as denoted by .

Appendix, we show that the above E-step objective function
can be computed by

where is the posterior probability as defined in (24) in
Appendix. We now incorporate an additional forgetting mech-
anism into the E-step described so far. This is accomplished by
modifying the objective function of , via the use of the forget-
ting factor , to

This, after using (25) (see Appendix), can be expressed as (after
ignoring constant term and other terms irrelevant to op-
timizing noise )

(15)

where

The value of the forgetting factor determines the tradeoff be-
tween the strength of noise tracking ability ( close to zero) and
the reliability of noise estimate ( close to one). The effects of
the forgetting factor on speech recognition accuracy have been
experimentally studied, which will be presented in Section V.

To carry out the M-step, one can use stochastic approxima-
tion [3], [15], [18] to sequentially update the noise parameter.
Generalizing from [18] (Theorem 3; pg.264–265, where )
and from [15] (Theorem 3.3, pg.2561, where also ), it can
be proved that in recursion (15) is maximized via the
following recursive form for the noise parameter updating (i.e.,
recursive M-step)

(16)

where

(17)

and

(18)

In (17) and (18), and are the operating points (auxil-
iary parameters) for the truncated Taylor series expansion, and

and are defined in Appendix.
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In the same way as for (15), we rewrite (18) in a recursive
form for efficient computation

(19)

where

(20)

We note that in some published work (e.g., [2]), (19) was ex-
pressed in a different form.5

IV. IMPLEMENTATION USING ITERATIVE STOCHASTIC

APPROXIMATION

Equations (16), (17), and (19) constitute a generic recur-
sive-EM algorithm based on the general principle of stochastic
approximation and on the approximate nonlinear model of
acoustic environment. It sequentially estimates the noise vector
for each frame, , using the information from its previous
frames as well as from the current frame. In this section, we
will describe practical considerations for implementing this
algorithm, where the key technique of iterative stochastic
approximation is introduced.

In (17) and (18), the vectors and are the operating
points for the truncated Taylor series expansion of the nonlinear
environmental model, and need to be appropriately determined.
For clean speech, , the operating points can be set naturally at
the most appropriate mean vector in the clean mixture speech
model.6

To determine , we assume that the noise does not change
abruptly, and hence when a new frame, at , of the obser-
vation is entered into the algorithm, the most reasonable noise
estimate would be the estimate from the immediately preceding
frame . Therefore, we set the operating point of the truncated
Taylor series expansion for the noise at (or a smoothed
version of it) in the evaluation of the vector function and
matrix function in (17), (18), (26) and (27).

A final consideration for improving the effectiveness of the
recursive EM algorithm is based on the earlier work that the
accuracy of linear approximation to the nonlinear environment
model is a key factor in speech enhancement performance, and
it is possible to improve the accuracy iteratively by using the
enhanced speech [11]. Since the goal of our algorithm is to esti-
mate the noise at the current frame at according to (16),
the operating point of the Taylor series expansion for noise can
be likewise iteratively updated after the estimation is completed

5In [2], that different form isK = � �K + (1� �)L , which clearly
deviates from the form of (19) required by the M-step as derived in this section.
In our comparative experiments conducted on the AURORA2 task, the rigorous
form of (19) always gave superior performance.

6In the current work, we have not re-estimated the parameters of this clean
speech model, which has been pre-trained using clean speech data and then
fixed. Hence, the term including (��� � ��� ) in (26) (used in (17)) becomes
zero.

at the same time frame . A smoothed version of the pre-
vious frame’s estimate is used to initialize this iteration.7

This generalizes the stochastic approximation described in Sec-
tion III into the new “iterative stochastic approximation”, within
the same recursive-EM framework.

Taking into account all the above implementation considera-
tions, we describe the practical algorithm execution steps below.
First, train and fix all parameters in the clean speech model:

and . Then, set at to be the average noise
vector based on a crude speech-noise detector,8 and initialize

. For each in a noisy utterance , set
iteration number and execute the following steps sequen-
tially (i.e., online).

• Step 1: Compute

where the likelihood is computed from
(25).

• Step 2: Compute

(21)

(22)

• Step 3: Compute

(23)

• Step 4: If (total number of iterations), then set
and increment by one.9 Then continue

the iteration by going to Step 1. If , then increment
by one and start the algorithm again by re-setting to
process the next time frame until the end of the utterance

.
In (23), is a heuristic parameter that controls the updating

rate for noise estimate. In our implementation, is set to be
inversely proportional to a crude estimate of the noise variance
for each separate test utterance. is also a function of , the
iteration number for each frame.

Several approximations have been made in the implementa-
tion of the above algorithm to significantly speed up computa-
tion. Among these approximations are: 1) a scalar-version im-
plementation to avoid any matrix inversion; 2) approximation

7This smoothing is found to be critical in achieving high speech recogni-
tion performance. We carried out the smoothing by interpolating the previous
frame’s estimate with some crude noise estimate from speech-free frames de-
termined by a silence detector.

8In the AURORA2 experiments we simply used the average of the first 20
frames (which are known to be speech free) of each utterance as the n .

9After the increment of j, the updated noise estimate n becomes the
new Taylor series expansion point n shown on the right hand side of (21) and
(22).
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TABLE I
COMPARISON OF AURORA2 RECOGNITION RATES (%) FOR THE COMMON, AURORA2-SUPPLIED HMM SYSTEM USING DIFFERENT FRONT-ENDS (AND A

DIFFERENT HMM IN SCHEME 5): 1) NOISE-NORMALIZED SPLICE USING A BASELINE NUMERICAL-INTEGRATION METHOD FOR MMSE NOISE ESTIMATION;
2) NOISE-NORMALIZED SPLICE USING THE NEW RECURSIVE-EM METHOD WITH ITERATIVE STOCHASTIC APPROXIMATION; 3)

AURORA-SUPPLIED STANDARD MFCCS WITH NO DENOISING; 4) BASIC SPLICE WITH NO NOISE NORMALIZATION; AND 5) SAME

AS SCHEME 2 EXCEPT USING A NEW, BETTER DESIGNED HMM SYSTEM

of to be either zero or one for each separate frame ; 3)
use of Euclidean distance to determine that gives a single

; and 4) use of the same for all within-frame
iterations . These approximations speed up the computa-
tion by about a factor of 20, incurring virtually no loss of per-
formance.

V. NOISE-ROBUST SPEECH RECOGNITION

The recursive-EM based noise estimation algorithm de-
scribed so far has been rigorously evaluated in the AURORA2
task [12]. As outlined in Section II, our basic denoising tech-
nique is SPLICE [4], [5], exploiting the availability of stereo
data (simultaneously pairwise clean and noisy data) in Set-A
of the database. The noise estimate is used in an enhanced,
noise-normalized version of SPLICE, which effectively handles
mismatched distortion conditions between Set-A and Set-B/C
in the AURORA2 task.

A. Baseline Noise-Normalized SPLICE System

A baseline noise estimation method used to evaluate the new
algorithm is direct computation of the traditional MMSE noise
estimate by numerically carrying out the required integral. The
MMSE criterion is similar to that used in [9]. In this baseline
system and all other recognition systems (with one exception)
described in this section, we use the standard HMM built from
HTK as specified and supplied by the AURORA2 task [12].

B. Full Recognition Results On the AURORA2 Task

The numerical integration technique in the baseline system
produces noise estimates independently for each noisy speech
frame and for each Mel-frequency component. The estimated
noise is then used in noise-normalized SPLICE outlined in Sec-
tion II-B to perform denoising for noise-robust speech recog-
nition. This baseline noise-normalized SPLICE system is used

to evaluate the effectiveness of the new recursive-EM noise es-
timation technique under the otherwise identical experimental
conditions.

Comparative recognition results are shown in Table I for the
full AURORA2 evaluation test data. Sets-A and -B each con-
sists of 1101 digit sequences for each of four noise conditions
and for each of the 0 dB, 5 dB, 10 dB, 15 dB, and 20 dB SNRs.
The same is for Set-C except there are only two noise condi-
tions. The recognition rates (%) in Table I are the average values
over all the noise conditions and over all the five SNRs. All the
results in Table I are obtained with the use of cepstral mean nor-
malization (CMN) for all data after applying noise-normalized
SPLICE to MFCC enhancement. The use of CMN has substan-
tially improved the recognition rate for Set-C.10

The results of Table I have been presented for four different
front-end feature enhancement schemes with the same fixed
HMM system provided by AURORA2 plus one scheme with a
better designed HMM system. For each scheme, the results for
both multi-condition training mode and the clean-only training
mode are presented. In the multi-condition mode, denoising
is applied to the HMM training set as well as to the test sets
(Set-A, B, and C). In the clean-only training mode, only the test
set is subject to denoising. From Table I, the new recursive-EM
method (Scheme 2) with iterative stochastic approximation
performs substantially better than the numerical integration
method (Scheme 1) for noise estimation, within the same
noise-normalized SPLICE for cepstral enhancement. They are
both consistently better than the standard MFCCs supplied by
the AURORA2 task using no robust preprocessing to enhance
speech features (Scheme 3), and better than the earlier version
of SPLICE with no noise normalization from training to test
sets (Scheme 4). The word error rate reduction using the

10Note that we assumed h = 0 in the recursive-EM for noise estimation.
This assumption would not be appropriate for Set-C which contains unknown
but fixed channel distortion. This deficiency has been, at least partially, offset
by the use of CMN.
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TABLE II
SPEECH RECOGNITION RATES (%) AS A FUNCTION OF THE FORGETTING FACTOR � (15) USED IN THE RECURSIVE-EM ALGORITHM FOR NOISE ESTIMATION. NOISE

CONDITION: STREET NOISE; SNR: 5 DB; SET-B RESULTS FOR CLEAN-ONLY TRAINING (HMMS TRAINED WITH CLEAN SPEECH SPECTRA)

new recursive-EM method is 27.9% for the multicondition
training mode, and 67.4% for the clean-only training mode,
compared with the results with standard MFCCs with no
enhancement. The final row of Table I (Scheme 5) shows the
results obtained by using the same noise-normalized SPLICE
cepstral enhancement as for Scheme 2 (i.e., recursive EM
with iterative stochastic approximation) but using a new, better
designed HMM. The relative error rate reduction increases
significantly to 48.40% and 76.86%, respectively, for the two
training modes. All the results shown in Table I are based on a
total of test utterances for each of the
multicondition and clean-only training modes.

C. Effects of the Forgetting Mechanism on Recognition Rate

In this subsection, we provide evidence for the importance of
striking a balance between the noise tracking ability and the es-
timation reliability associated with the recursive-EM algorithm
described in Section III. The “forgetting” mechanism imple-
mented by the use of the parameter in (15) is responsible for
the noise tracking ability. In Table II are shown the AURORA2
recognition rates (Set-B with , under the “Street”
noise condition, which is nonstationary, and with the clean-only
training mode) as a function of the value of .

We first observed in Table II that for the full range of , the
denoised features using the recursive-EM performs much better
than the mismatched case with no denoising (only 38% recog-
nition accuracy). Within the full range of , the accuracy varies
with an about 20% difference in the word error rate. At the one
extreme where , (15) is reduced to

Thus, the M-step11 in the EM-algorithm uses only the observa-
tion in the current single time frame to estimate the noise

at the same time frame . This does not explore the pos-
sible temporal coherence between the current and the previous
frames of the noise, and is expected to produce a noise estimate
not as reliable as compared with the noise estimate when the
previous noisy observations are taken into account. Indeed, in
Table II, we found that the recognition accuracy for is
lower than that by most cases of , which make use of all
previous noisy observations in estimating the noise at a given
time frame.

11When � = 0, the M-step can be carried out much more efficiently by
solving s = 0 without the need to involve the recursion in K .

Let us analyze the other extreme where . Equation (15)
now becomes

It is clear that all the noisy observation frames up to the current
frame, , are used for estimating the current-frame

noise vector . This should take into account the temporal
coherence of the noise for enhancing the reliability of the noise
estimate.12 However, all the current and its previous
frames have the same contribution to the estimate of the current
noise vector . That is, no forgetting mechanism is used to
place a greater emphasis on the more recent data than the more
distant data in the past. This strategy would be appropriate (and
indeed ideal13 ) for the stationary noise, but not for the nonsta-
tionary noise present in most of the AURORA2 data. For the
nonstationary noise, different observation data segments corre-
spond to different noise parameter values. Hence, it is highly
desirable to adaptively track the changing noise parameters by
incorporating a forgetting mechanism. Indeed, from Table II,
after implementing a simple forgetting mechanism by setting
appropriate values of , greater recognition performance is
achieved.

We found that there is a delicate balance between the noise
tracking ability and the estimation reliability in the recur-
sive-EM algorithm we have developed. This is represented by
the value of the forgetting factor , chosen empirically in this
work. Research on automatic optimization of the forgetting
factor appeared recently in the literature [2], which, unfortu-
nately, does not seem to have produced convincingly positive
results in speech recognition.14

Comparing our results in Table II with those in [2], similar
trends emerge while different noisy speech databases are used.
Sensitivity of the recognition rate to the values of the forgetting
factor is similar. The range of the variation in the recognition
rate for the fixed SNR (stationary white noise corruption) in [2]
is smaller than ours, and that for the variable SNR is greater than
ours. This is expected since in the AURORA2 data, the “fixed”
SNR is computed over the entire utterance with a variable in-
stantaneous SNR over time frames.

12In a limiting case, this would approach the estimation performance provided
by batch estimation algorithms.

13in the sense that it would maximize the estimation reliability for time-in-
variant parameters.

14In Table II of [2], the use of the automatically optimized forgetting factor
only reduces the relative recognition error by a small fraction of 3%, at the ex-
pense of introducing another empirical parameter � , which still need to be
tuned.
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TABLE III
SPEECH RECOGNITION RATES (%) AS A FUNCTION OF THE WITHIN-FRAME ITERATION NUMBER USED IN THE RECURSIVE-EM ALGORITHM WITH ITERATIVE

STOCHASTIC APPROXIMATION FOR NOISE ESTIMATION. NOISE CONDITION: STREET NOISE; RESULTS ARE AVERAGED OVER SNRS OF 0 DB, 5 DB, 10 DB, 15 DB,
AND 20 DB; SET-C RESULTS FOR MULTICONDITION TRAINING (HMMS TRAINED WITH DENOISED SPEECH CEPSTRA)

Fig. 1. RMS errors between the estimated noise from noisy speech and true noise. RMS errors are averaged over a large number of files in Set-B under the
“Restaurant” noise condition with SNR = 0 dB. The errors are plotted as a function of the MFCC coefficients and of the number of iterations J in the iterative
stochastic approximation technique.

D. Effects of Iterations in Stochastic Approximation on
Recognition Rate

In this subsection, we provide evidence for the importance of
using iterations in stochastic approximation when implementing
the recursive-EM algorithm for noise estimation. While we gave
theoretical motivations for using iterations in Section IV, we
show empirical evidence here now. In Table III are shown the
AURORA2 speech recognition rates (Set-C, averaged over the
results for , 5 dB, 10 dB, 15 dB, and 20 dB,
and under the “Street” noise condition with the multicondition
training mode) as a function of the iteration number in it-
erative stochastic approximation. Substantial improvement of
recognition rates is achieved as the iteration number increases
from one to eight. We note that the “Street” noise used here is
not one of the four noises used in training the SPLICE code-
books and correction vectors. This demonstrates that the novel
use of iterations in stochastic approximation is highly effective
in bridging the mismatched SPLICE training and deployment
conditions. The technique of iterative stochastic approximation
is also able to improve the prior art in using stochastic approxi-
mation, which would correspond to using a single within-frame
iteration .

E. Analysis of Noise Estimation and Speech Enhancement

In this subsection, we provide empirical analysis for and
examples of the noise estimate obtained from the new algorithm
based on iterative stochastic approximation. We also show
corresponding examples of enhanced speech after applying the

noise-normalized SPLICE procedure making use of the noise
estimate.

One analysis we have performed examines how close the es-
timated noise is to the true noise that was used to corrupt the
clean speech in creating the AURORA2 data. Fig. 1 shows the
Root Mean Square (RMS) errors computed between the esti-
mated noise and true noise. The noise is estimated using the re-
cursive-EM with iterative stochastic approximation from noisy
speech data. The RMS errors are averaged over all the time
frames in a large number of files in Set-B under the “Restaurant”
noise condition with . The RMS errors are shown
for each of the within-frame iterations in iterative stochastic ap-
proximation up to eight iterations, and for each of the MFCCs
from the first order to the 12th order. The results in Fig. 1 re-
veal several interesting aspects of the algorithm. First, the RMS
errors are, in general, decreasing as a function of the iteration
number. However, occasionally, the error decrease is not strictly
monotonic; see MFCC-2 results in Fig. 1. This is well under-
stood due to the general nature of stochastic approximation [3],
which does not follow the exact EM property. Second, the RMS
errors are reduced most significantly from iteration one to itera-
tion two, compared with the error reductions resulting from the
subsequent iterations. Third, the drop of the RMS errors tends to
saturate for all the MFCCs at about the same iteration number;
eight iterations for the results of Fig. 1. Fourth, the RMS errors
tend to be lower for higher-order MFCCs, with the exception
seen for the MFCC-3 and MFCC-4 in Fig. 1.

Since the RMS errors shown in Fig. 1 are averaged over all
time frames, they tend to hide the nonstationary nature of the
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Fig. 2. C0 sequences for the estimated noise (solid) and true noise (dashed). The noisy utterance from which the noise is estimated has the SNR of 5 dB.

noise and of its estimate. To show such nonstationarity, we plot
in Figs. 2 and 3 several detailed traces of the MFCCs for the es-
timated (solid) and true (dotted) noises for one utterance (with

). From these traces, we observed that the algo-
rithm indeed tracks the changing noise quite closely.

When the MFCC 0–5 shown in Figs. 2 and 3 (and the re-
maining MFCC 6–12 not shown) are combined as the input to
the inverse cosine transform, we recover the Mel-frequency log
spectra for this utterance. This is plotted in Fig. 4 in the format
of spectrogram. The top panel shows the reference spectrogram
of the noisy speech, from which the noise estimate is obtained
as plotted in the bottom panel. The noise estimate is generally
rather close to the true noise, whose spectrogram is shown in the
middle panel. Only during frames of around 50–60 and around
80–90, some speech energies leak through to be part of the in-
correct noise estimates. Such incorrect noise estimates can also
be seen in the C0 plot in Fig. 2 for the same utterance at around
the same frames.

After the estimated noise in Fig. 4 (bottom panel) is used
in noise-normalized SPLICE for cepstral enhancement, the
resulting denoised (i.e., enhanced) speech is plotted in Fig. 5
(bottom panel) in the same spectrogram format. Compared
with the clean speech shown also in Fig. 5 (middle panel), the
enhanced speech smears itself slightly during the frames where
the noise estimates are relatively poor. For all other frames, the
corrupting noises have been effectively removed.

VI. SUMMARY AND CONCLUSIONS

A novel algorithm for recursive estimation of parameters in a
nonlinear model involving incomplete data is presented in this
paper. The algorithm is applied specifically to time-varying de-
terministic parameters of additive noise in a nonlinear model
that accounts for the generation of the cepstral data of noisy
speech from the cepstral data of the noise and clean speech.
For the nonstationary noise that we encounter in robust speech
recognition, different observation data segments correspond to
different noise parameter values. Hence, recursive estimation al-
gorithms are more desirable than batch algorithms, since they
can be designed to adaptively track the changing noise param-
eters. One such design based on the novel technique of itera-
tive stochastic approximation in the recursive-EM framework is
presented and evaluated in this work. We provide the mathemat-
ical basis for this new technique in detail, and report a study on
the sensitivity of the new noise estimation algorithm’s perfor-
mance to the forgetting factor, the use of which constitutes the
essence of any online-adaptive, recursive technique. The forget-
ting factor is embedded in our noise estimation algorithm, aimed
to equip the algorithm with a desired balance of the tracking
ability of nonstationary noise and of the noise estimation relia-
bility.

The proposed recursive noise estimation algorithm tracks
the time-varying noise parameters while iteratively optimizing
the auxiliary parameters employed to piecewise linearly ap-
proximate a nonlinear generative model for the observed noisy
speech. The accuracy of approximation is shown to improve
progressively with more iterations. The key idea of using
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Fig. 3. Estimated noise (solid) and true noise (dashed) MFCC sequences. From top to bottom: C1, C2, C3, C4, and C5. The same utterance as in Fig. 2.

Fig. 4. Comparing Mel-spectra of estimated and true noise. From top to bottom: noisy speech (SNR = 5 dB), true noise, and estimated noise. The same
utterance as in Figs. 2 and 3.

iterations to improve estimation algorithms involving nonlin- earity originated from the early work of “iterated extended
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Fig. 5. Comparing Mel-spectra of enhanced speech (after noise-normalized SPLICE) and true speech. From top to bottom: noisy speech (SNR = 5 dB), clean
speech, and enhanced speech. The same utterance as in Figs. 2–4.

Kalman filter” [13], [16], and has been used in recent speech
recognition research dealing with various forms of nonlinearity
in speech production and in acoustic environments [6], [11].
One main contribution of the work described in this paper
is successful integration of this idea into the recursive-EM
framework, which in combination produces significant results
in the robust speech recognition practice. This integration gives
rise to the new technique of iterative stochastic approximation
presented in detail in Section IV.

While the focus of this paper has been on noise estimation,
one key application of the new noise estimate presented is to
provide the normalization term for MFCC enhancement in the
SPLICE framework for noise-robust speech recognition. (Other
possible applications of the new noise estimate, such as percep-
tual enhancement of speech, have not been dealt with in this
paper.) The noise-normalized SPLICE framework is outlined in
the earlier part of the paper (Section II) to provide the reader
with the right context before describing details of the noise es-
timation algorithm.

The full speech recognition results for the AURORA2 task are
presented that demonstrated the effectiveness of the new recur-
sive noise estimation algorithm in comparison with a more tra-
ditional, MMSE noise estimation method under otherwise iden-
tical experimental conditions. Future work will extend the al-
gorithm to represent the noise as time-varying random vectors
in order to exploit the variance parameter and new prior infor-
mation. The algorithm will also be extended to include more
complex speech models that incorporate dynamic features, and
to include more accurate environment models that capture more

detail properties of acoustic distortion than the model presented
in Section III-A of this paper.

APPENDIX

In this Appendix, we outline the intermediate steps that sim-
plify the objective function of (14) into a form that can
be easily subject to the M-step optimization. The simplification
steps are

where is a constant term (independent of noise to be
estimated), is the Kronecker delta function (taking values
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of one if , or zero otherwise), is shown below
to be the “occupancy” (posterior) probability

The above can be computed using Bayes rule

(24)

where the likelihood is computed using the lin-
earized version of the nonlinear acoustic environment model of
(11). This gives

(25)

where the mean for the given mixture component is

(26)

and the corresponding covariance matrix is

(27)

Note that (27) becomes clear after rewriting (11) into

where is a deterministic term not affecting the form of the
covariance matrix.

In (26) and (27), is the operating point for noise in the
Taylor series expansion, serving as the auxiliary parameter that
will be iteratively optimized with the noise parameter (see
Section IV). ( in (26) and (27) is the operating point for
clean speech in the Taylor series expansion, which is chosen
from one of the mean vectors in the prior mixture-of-Gaussian
speech model that best accounts for the observed noisy speech
vector.) Given and given the previously updated noise pa-
rameter , is computed using Bayes rule (24) with
the likelihood computed by (25).
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