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Abstract

This paper reports our recent efforts to develop a uni£ed,
non-linear, stochastic model for estimating and removing the
effects of additive noise on speech cepstra. The complete sys-
tem consists of prior models for speech and noise, an observa-
tion model, and an inference algorithm. The observation model
quanti£es the relationship between clean speech, noise, and the
noisy observation. Since it is expressed in terms of the log Mel-
frequency £lter-bank features, it is non-linear. The inference
algorithm is the procedure by which the clean speech and noise
are estimated from the noisy observation.

The most critical component of the system is the observa-
tion model. This paper derives a new approximation strategy
and compares it with two existing approximations. It is shown
that the new approximation uses half the calculation, and pro-
duces equivalent or improved word accuracy scores, when com-
pared to previous techniques. We present noise-robust recogni-
tion results on the standard Aurora 2 task.

1. Introduction

It is well known that automatic speech recognition systems
without provisions for noise robustness degrade quickly in the
presence of additive or convolutional noise. The noise robust-
ness can be constructed either in the model domain or the fea-
ture domain. Model domain techniques try to modify the acous-
tic model as if it were trained on speech similar to the current
test utterance. By design, such a technique can not do better
than a matched training and testing condition. On the other
hand, feature domain techniques process the acoustic features
before they arrive at the recognition system. It has been shown
that feature domain techniques can achieve lower word error
rates than the matched training and testing condition [1]. As a
result, we continue to explore feature domain techniques.

The class of feature domain techniques is rich, including
algorithms such as spectral subtraction [2], cepstral mean nor-
malization [3], SPLICE [1] and Algonquin [4]. The systems
discussed in this paper explore two extensions to the observa-
tion model in [4]. The £rst modi£cation is to provide a better £t
to the data, and the other simpli£es the inference calculations.

This paper is organized as follows. Section 2 describes
the overall system design, including the prior models for clean
speech and noise. Section 3 describes the observation models
that are used to unify the clean speech and noise prior models.
Section 4 presents the inference methods used to approximate
the posterior distribution of clean speech and noise, after the
noisy observations are incorporated. Section 5 analyzes the ef-
fectiveness of the different system con£gurations presented in
this paper.

2. System Description
The features for the system presented in this paper are log Mel-
frequency £lter-bank features. This feature space has two ad-
vantages: it is linearly related to MFCC recognition parameters,
and the corruption is independent across feature dimensions.
This allows us to work with features that are closely related
to those used for recognition, while maintaining computational
ef£ciency.

The system £rst represents clean speech and noise as ran-
dom vector processes. We have chosen multivariate Gaussian
mixture models, with diagonal components, for clean speech xt

and noise nt:

p(xt) =
∑
st

N(xt; µ
x
st

, σx
st

)p(st) (1)

p(nt) = N(nt; µ
n, σn). (2)

The parameters of this prior model include the state-
conditional means and variances, µx

s , σx
s , µn and σn, as well

as the mixture component weights p(st).
The observation model then represents the relationship

among xt, nt, and the observed noisy signal yt. It’s noted
that even for the case when the clean speech and noise features
are known exactly, the noisy observation is not uniquely deter-
mined. The major cause of this uncertainty is the unknown rel-
ative phase between the speech and noise spectra. This random
error will be treated differently by each of the three observation
models explored in this paper.

The £rst observation model considered is the one described
in [5]. It models the error as a random variable whose variance
is a function of the local SNR. We will call this the SNR de-
pendent variance model (SDVM). The advantage of using the
SDVM is that it provides a good match to the data. The disad-
vantage is that rigorous inference takes a lot of computational
power.

The second observation model we consider in this paper
£rst appeared in [4]. It assumes the error is independent of x
and n. We will call this the SNR independent variance model
(SIVM). The advantage of using the SIVM is that it can be ef-
fectively used with fewer computations than the SDVM.

The third observation model presented for the £rst time in
this paper simpli£es the above two models by ignoring the error
term entirely. This yields a good £t to the data at the extreme
SNR regions, and a slight mismatch in the x ≈ n region. We
will call this the zero variance model (ZVM). It is a special case
of either the SIVM or the SDVM, when the variance of the error
term is set to zero. Inference with the ZVM is twice as fast as
with the SIVM, with a slight improvement in word accuracy, as
shown in section 5.



3. The Observation Models
All three observation models outlined in the previous section are
built upon an approximate relationship between the log-spectra
of the clean speech and noise. Details of this relationship can
be found in [5] and [4].

In the time domain, it is assumed that the clean speech and
noise mix linearly. For the log Mel-frequency £lter-bank fea-
tures, this relationship is approximated by

y = ln(ex + en) + ε. (3)

If, within each £lter-bank, x and n are constant and have the
same phase, then ε = 0 and the relationship is exact. A stochas-
tic ε was introduced to account for the fact that these assump-
tions are seldom true on real data. Although the expected value
of ε may be zero, the actual samples from the random process
are not.

3.1. SNR Dependent Variance Model

It has been shown previously that the variance of ε should be a
function of x and n [5]. Under weak simplifying assumptions,
the relationship between x, n, and y should be

ey = ex + en + 2αe
x+n

2 . (4)

The random variable α accounts for the effects of the unseen
random phase between x and n. We empirically found that α
is well modeled by a zero-mean Gaussian with a variance of
σ2

α = 0.15. If x � n, then the £rst term dominates Eq. 4.
When n � x, the second term dominates Eq. 4. It is only when
x and n have similar magnitudes, that the third term becomes
important.

This model produces the conditional observation probabil-
ity function [5]

ln p(y|x, n) = y − x + n

2
− 8 ln 2πσ2

α − (ey − ex − en)2

8σ2
αex+n

,

and provides a good approximation for all regions of the true
distribution simultaneously. Unfortunately, although [5] pre-
sented a slow technique that works well, there is not yet any
practical technique that achieves the theoretical advantage of
using the SDVM.

3.2. SNR Independent Variance Model

Another option is to model ε as N(ε; 0, ψ2), a zero-mean ran-
dom variable independent of x and n.

The variance ψ2 can be tuned to change the shape of the
approximate observation probability. One must choose a value
for ψ that trades off modeling the true variance where x ≈ n
with a small value that agrees when x � n or x � n. For very
small values of ψ, the extreme SNRs are well modeled. Moder-
ate values of ψ model the region near x = n well. The SIVM
produces the conditional observation probability function

p(y|x, n) = N(y; ln(ex + en), ψ2) (5)

and works well with simple inference techniques such as the
iterative vector Taylor series (VTS) approximation [4].

3.3. Zero Variance Model

Finally, we introduce a new derivation that is a special case of
either the SIVM or SDVM. It assumes the error term of Eq. 3

is equal to zero. This is a good approximation when x � n
or n � x, but under-estimates the true variance of ε around
x = n.

This zero variance approximation is the same as used for
spectral subtraction. Indeed, the classical spectral subtraction
formula appears if we set ε = 0 and solve Eq. 3 for x:

x = ln(ey − en).

The inherent problem is that, as the estimate of n approaches y,
the estimate of x becomes unstable. Additionally, care must be
taken to avoid estimating n ≥ y. These problems are overcome
by the technique described below.

Instead of estimating x or n and inferring the other variable,
we can estimate the local SNR r, de£ned as

r = x − n.

Unlike the spectral subtraction formula above, we are free
to estimate any real value for r. These can be mapped into
estimates of x and n through,

x = y − ln(er + 1) + r, and (6)

n = y − ln(er + 1). (7)

These formulas satisfy the intuition that as the SNR r gets
more positive, x approaches y from below. As the SNR r gets
more negative, n approaches y from below. The result is no
longer unstable because, regardless of the SNR, x and n are
always separated by exactly r.

Two immediate advantages of the ZVM are dimensional-
ity reduction and implicit correlation modeling in the speech
and noise posterior. In the SIVM or SDVM models, inference
must be performed on both x and n. For the ZVM, inference
is performed only on r. This yields an immediate halving in
computational cost. Additionally, it is known that the poste-
rior distribution of speech and noise should be correlated. With
the SIVM or SDVM models, this correlation must be explicitly
modeled. The ZVM includes this correlation in the posterior
automatically, when appropriate.

3.4. Joint PDF for the ZVM

The joint PDF for the ZVM is a distribution over the clean
speech x, the noise n, the observation y, the SNR r, and the
speech state s.

p(y, r, x, n, s) = p(y|x, n)p(r|x, n)p(x, s)p(n).

The observation and SNR are both deterministic functions
of x and n. As a result, the conditional probabilities p(y|x, n)
and p(r|x, n) can be represented by Dirac delta functions:

p(y|x, n) = δ (ln (ex + en) − y) (8)

p(r|x, n) = δ (x − n − r) . (9)

This allows us to marginalize the continuous variables x
and n, as follows:

p(y, r, s) =

∫
dx

∫
dn p(y, r, x, n, s)

=

∫
dx

∫
dn p(y|x, n)p(r|x, n)p(x, s)p(n)

=

∫
dx

∫
dn δ (ln (ex + en) − y) δ (x − n − r) p(x, s)p(n)

= p(x, s)|x=y−ln(er+1)+r p(n)|n=y−ln(er+1)

= N(y − ln (er + 1) + r; µx
s , σx

s )p(s)

N(y − ln (er + 1) ; µn, σn) (10)



The only remaining continuous hidden variable is r. The be-
havior of this joint PDF is intuitive. At high SNR, r � 0, and

p(y, r, s) ≈ N(y; µx
s , σx

s )p(s)N(y − r; µn, σn)

That is, the observation is assumed to be clean speech, and the
noise is at a level r units below the observation. The converse
is true for low SNR, where r � 0.

4. Estimation of Clean Speech
The inference algorithm produces posterior distributions for the
hidden variables x and n, given the observation y.

All three systems use an iterative VTS approximation al-
gorithm to the non-linear observation model. This algorithm
proceeds as follows. For each mixture component,

1. Initialize expansion point at the mean of the prior.

2. Approximate the non-linear observation model with a
vector Taylor series.

3. Update expansion point as mean of the approximate pos-
terior.

Steps 2 and 3 are repeated until convergence; typically £ve it-
erations are suf£cient. The £nal step is to compute the MMSE
estimate of the hidden variables given the observation, e.g.,

x̂ = E[x|y] =
∑

s

E[x|y, s]p(s|y) (11)

p(s|y) =
p(y|s)p(s)∑
s p(y|s)p(s)

(12)

It is the nature of this iterative VTS that it converges to a
local extremum of the model’s posterior. The estimate x̂ is only
the MMSE estimate given the observation and the approximate
model. If there is a discrepancy between the mean and mode of
the exact model (as in the SDVM, below), then the inference is
inaccurate.

4.1. SIVM

The iterative VTS inference algorithm for the SIVM was pre-
sented in [4]. It consists of an iterative VTS algorithm applied
to the non-linear term in Eq. 5.

As Figure 1 shows, the SIVM produces a posterior whose
mean and mode tend to coincide. So, if it converges to the cor-
rect mode, the expected value of the posterior is also correct.

4.2. SDVM

In general, iterative VTS with the SDVM produces poor feature
enhancement accuracy. The root cause appears to be a discrep-
ancy between the posterior mean and mode of the SDVM, as
demonstrated in Figure 1. Although the posterior mean is the
optimal estimate for clean speech, iterative VTS will converge
to the mode instead.

An alternative, computationally intensive, inference algo-
rithm for the SDVM model was presented in [5].

4.3. ZVM

This section derives an iterative VTS approximation for infer-
ence under the ZVM. Under this approximation, the non-linear
function in Eqs. 6 and 7 becomes an af£ne function of r:

ln(er + 1) ≈ f(r0
s) + F (r0

s)(r − r0
s). (13)

The vector function f(r0
s) and the matrix function F (r0

s)
represent the £rst two terms in the Taylor series expansion of
f(r) = ln(er + 1) around the state-conditional point r = r0

s .

f(r0
s) = ln(er0

s + 1) = f0
s

F (r0
s) = diag

(
1

1 + e−r0
s

)
= F 0

s

The distribution of r based on this approximation is derived
by substituting the Taylor series approximation for ln(er + 1)
into Eq. 10.

p(y, r, s) ≈ N(y − f0
s + F 0

s r0
s − (F 0

s − I)r; µx
s , σx

s )

N(y − f0
s + F 0

s r0
s − F 0

s r; µn, σn)p(s)

= N(r; µ̂r
s, σ̂r

s)N(as; bs, Cs)p(s)

= p(r|y, s)p(y|s)p(s)

Standard Gaussian manipulation formulas are used to bring
p(y, r, s) into this factored form.

p(r|y, s) = N
(
r; µ̂r

s, σ̂r
s

)
(
σ̂r

s

)−1
= (F 0

s − I)T (σx
s )−1(F 0

s − I) + F 0
s (σn)−1F 0

s

µ̂r
s = σ̂r

s(F 0
s − I)T (σx

s )−1(y − f0
s + F 0

s r0
s − µx

s )

+σ̂r
sF 0

s (σn)−1(y − f0
s + F 0

s r0
s − µn))

p(y|s) = N(as; bs, Cs)

as = y − f0
s + F 0

s r0
s

bs = µn + F 0
s (µx

s − µn)

Cs = F 0
s σx

s F 0
s + (F 0

s − I)T σn(F 0
s − I)

As in the other iterative VTS algorithms, we use the ex-
pected value E[r|y, s] = µ̂r

s as a new expansion point for Eq. 13
and iterate.

After convergence, we compute an estimate of x from the
parameters of the approximate model:

x̂ =
∑

s

E[x|y, s]p(s|y)

E[x|y, s] ≈ y − ln(eµ̂r
s + 1) + µ̂r

s

Here, Eq. 6 has been used to map E[r|y, s] = µ̂r
s to E[x|y, s].

Since the transformation is non-linear, our estimate for x̂ is not
the optimal MMSE estimator.

Figure 1 shows an example of the true posterior under the
ZVM, together with the approximate posterior. Note that the
iterative VTS has converged to the mode of the true posterior of
the model.

5. Results
The experiments presented here were conducted using the data,
code, and training scripts provided within the original Aurora
2 task [6]. The task consists of recognizing strings of En-
glish digits embedded in a range of arti£cial noise conditions.
The acoustic model used for recognition is the “clean” acous-
tic model trained with the standard Aurora 2 scripts on uncor-
rupted data. It contains eleven whole word models, plus sil
and sp, with a total of 546 diagonal 39 dimensional Gaussian
mixture components. To conform with our observation models,
the feature generation was modi£ed slightly from the reference
“FE V2.0” implementation. In particular, we replaced the log
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Figure 1: Exact posteriors under the three observation models. Parameters areµx = −4, µn = 0, σx = 2, σn = 1, y = 0. The SDVM
and SIVM plots showp(x, n|y). The ZVM plot shows the truep(r|y) (solid) together with the iterative VTS approximation (dashed).

energy feature withc0, and changed from using spectral mag-
nitude to using power spectral density as the input to the Mel-
frequency £lter-bank.

The prior GMM for clean speech was trained from the data
provided in the “clean1” subset of the multi-style training set.
The number of components in the system is varied to explore
system performance at different operating points.

For each utterance, we trained an utterance-speci£c noise
model on the features that the noise would have produced in the
absence of speech. This paper is concerned with comparing ob-
servation models, and does not address the issue of how to track
or learn the parameters of the noise model. It has been pre-
viously demonstrated how the noise parameters can be learned
from the current utterance [7], although a rough speech/non-
speech detector may be enough to make this system practical.

Table 1: Average word accuracy using the iterative VTS algo-
rithm. Task is Aurora 2, Set A, clean acoustic model. Baseline
accuracy is63.66%.

Components 4 16 64 256
SDVM, σ2

α = 0.15 46.30 64.17 66.89 69.00
SIVM, ψ2 = 0.050 82.70 85.73 86.68 87.12
SIVM, ψ2 = 0.025 82.87 85.90 86.82 87.23
ZVM 83.21 86.29 87.04 87.38

Table 1 presents word accuracy results for the three sys-
tems. The poor results for the SDVM are mostly due to the
discrepancy between the posterior mean and mode described
above. Note that whenψ2 approaches zero, the performance of
the SIVM approaches that of the ZVM.

6. Summary
This paper quanti£es the differences between three different ob-
servation models within a uni£ed Bayesian framework.

The SDVM provides the best theoretical £t to the true ob-
servation model. A computationally intensive numerical inte-
gration solution exists, but when using the faster iterative VTS
technique, the discrepancy between mean and mode of the pos-
terior causes serious errors.

In contrast, the SIVM does not £t the true observation
model globally. However, after choosing an appropriateψ2, it
works quite well in practice with the iterative VTS technique.

The ZVM is faster and produces better noise-robust fea-
tures than the SIVM. It is faster because the dimensionality of
the inference problem is cut in half. It produces better features
because the gains in modeling the extreme SNR regions well
outweigh the loss in thex ≈ n region. Although one could the-
oretically get the same result from the SIVM by settingψ2 = 0,
in practice the existing derivations can not handle this case due
to the singularity. The new ZVM derivation presented in this
paper successfully overcomes this problem.
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