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Abstract

Speech recognition accuracy degrades significantly when the
speech has been corrupted by noise, especially when the system
has been trained on clean speech. Many compensation algo-
rithms have been developed which require reliable online noise
estimates or a priori knowledge of the noise. In situations where
such estimates or knowledge is difficult to obtain, these methods
fail. We present a new robustness algorithm which avoids these
problems by making no assumptions about the corrupting noise.
Instead, we exploit properties inherent to the speech signal it-
self to denoise the recognition features. In this method, speech
is decomposed into harmonic and noise-like components, which
are then processed independently and recombined. By process-
ing noise-corrupted speech in this manner we achieve significant
improvements in recognition accuracy on the Aurora 2 task.

1. Introduction

The performance of automatic speech recognition systems de-
grades significantly when the speech signal is corrupted by ad-
ditive noise. This is a major obstacle to the widespread deploy-
ment of speech recognition systems in real-world applications.
Many algorithms have been proposed in the literature to com-
pensate for the detrimental effect additive noise has on recog-
nition performance. Many of these methods, such as [1], rely
on an accurate estimation of the corrupting noise signal. This
in itself is a very difficult problem in situations where the en-
vironmental noise is non-stationary. In such conditions, these
methods fail.

Other methods rely on the use of noise models for com-
pensation (e.g. [2]), or train a recognition system on noise-
corrupted speech. When the test conditions are well-matched
to the noise model or the training conditions, such methods per-
form well. However it is impossible to account for the sheer
variety of noises found in real world environments.

Yet, in all of these situations, the human user remains con-
stant. That is, environmental noise does not directly alter the
speech production mechanism. As a result, we can improve the
robustness of speech recognition systems by finding ways to ex-
ploit properties of the human speech signal itself. Algorithms
created based on this premise can potentially perform well with-
out making assumptions about the noise signal or its properties.

One such feature of speech is the strong presence of a funda-
mental frequency and its harmonics in voiced speech. The fact
that voiced speech has a well-understood, predictable harmonic
structure makes this feature attractive as the basis for noise com-
pensation algorithms. Several researchers have explored the use
of the harmonicity of voiced speech for robust speech recogni-
tion. For example, Gu and Rose developed Perceptual Harmonic
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Cepstral Coefficients, which utilize a peak-picking algorithm to
emphasize the harmonic spectral peaks in voiced speech [3]. In
[4], Ealey et al. developed a harmonic “tunneling” algorithm in
which noise estimation is performed based on the nulls between
the harmonic peaks in the spectrum which is used for spectral
subtraction.

Over the last several years, the field of speech coding has
benefitted from exploiting this harmonic structure of speech sig-
nals. Harmonic coding schemes are based on the principle that
speech can be decomposed into a deterministic (also called peri-
odic or harmonic) component and a noise-like or random com-
ponent. Each of these signals can then be parameterized sep-
arately by exploiting the properties inherent in each one. Var-
ious researchers have proposed methods of performing such a
decomposition. In [5], Yegnanarayana et al. use an iterative
comb-filtering approach to perform the decomposition, while
Laroche et al. proposed a harmonic+noise model in which a
sum-of-sinusoids model is fit to the speech signal [6].

In this paper, we present an new algorithm for generating
noise-robust features for speech recognition based on the har-
monic+noise model (HNM) in [6]. Like most speech coding
methods, the HNM aims to find a parameterization which most
accurately represents the input signal. It has no noise-reduction
capability, and does not differentiate between speech and en-
vironmental noise. As a result, the HNM will not inherently
improve recognition accuracy.

However, the capability to decompose the speech signal into
two different signals with known properties provides an appeal-
ing framework for noise compensation; once the signal has been
split into its harmonic and random parts, each one can be pro-
cessed independently, and then recombined to generate an en-
hanced signal. We present an novel extension of this model,
called the weighted harmonic+noise model, and describe how
it can be used to extract cleaner speech features from noise-
corrupted speech in order to achieve significant improvements
in recognition accuracy.

In Section 2 we review the harmonic+noise model, and dis-
cuss its application to noisy speech. In Section 3 we describe the
proposed weighted HNM for improving the harmonic/stochastic
decomposition in noisy speech in order to generate enhanced
features. Experimental results evaluating our method are pre-
sented in Section 4. Finally, we summarize our findings in Sec-
tion 5.

2. Harmonict+Noise Model of Speech

The harmonic+noise model (HNM) of speech is based on the
premise that a speech signal = is composed of a deterministic
signal x5, and a random signal x,.. It is assumed that the deter-



ministic component is well-modeled as a sum of harmonically-
related sinusoids given by

K
zp(t) = Z ax, cos(kwot) + by sin(kwot) ()
k=1
where wy is the fundamental frequency and K is the total num-
ber of harmonics in the signal. Given a frame of speech, we
would like to estimate the parameters of this harmonic model,
namely the pitch or fundamental frequency wo and the values
of the amplitude parameters {a1, a2, ... ,ax,b1,b2,... ,br }.
The pitch can be estimated using any number of pitch tracking
algorithms in the literature. Given an estimate of the pitch, we
can determine a least-squares solution for the amplitude param-
eters. To do so, we rewrite (1) in vector form as

x = Ab
where x is a vector of NV samples, A isan N x 2K matrix given
by
A = [Acos Asin]
with elements
Acos(k,t) = cos(kwot) Asin(k,t) = sin(kwot)
and bisa 2K x 1 vector given by
bt = [a1az...aK by ba...bk]

Then, the least-squares solution for the amplitude coefficients
is

b=(ATA) 'ATx )

Using b, we can get an estimate for the deterministic portion of
the speech signal, xn

%n = Ab 3)

An estimate of the random component is then obtained simply
as

% = X~ %n @

The HNM algorithm has no noise-reduction capability.
It was designed to accurately capture the salient information
present in the signal. Thus, when the HNM is applied to a speech
signal corrupted by additive noise, the resulting harmonic and
random components will be distorted by the noise. More ex-
plicitly, a HNM decomposition of noisy speech produces

Yy = yntyr ®)
= Xn+Dn+Xr + 0y (6)

where ny, is the portion of the noise signal which resides at the
harmonics of the fundamental frequency and n, is the noise at
the non-harmonic frequencies. Thus, while a particular frame
may have a given signal-to-noise ratio (SNR), the SNR of the
harmonic and random components may be quite different de-
pending on the energies of the speech and noise captured by
each component.

If we have knowledge of the pitch and voicing state of the
speech, we can use the harmonic model to help separate the
signal from the noise. For example, in highly voiced frames,
we know that a clean speech signal will be captured almost en-
tirely by the harmonic component. Therefore, we can infer that
any residual signal captured by the random component is mostly
noise.

In the next section, we describe how we can apply the HNM
to speech corrupted by additive noise to generate enhanced fea-
tures for speech recognition.

3. A Weighted HNM Front End for Speech
Recognition

Conventional Mel-frequency cepstral coefficients (MFCC) are
derived for a frame of speech as follows. First a window is
applied to a frame of speech, followed by a DFT. The power
spectrum of the signal is then computed and the spectrum is
smoothed using a series of triangular weighting functions ap-
plied along the Mel scale to capture the energy in a series of
overlapping frequency bands. If we define X as the Mel spec-
tral vector for a frame of speech x, we can explicitly express the
Mel spectrum as

X = M|DFT(x)|?

where M is the matrix of Mel weighting coefficients. Finally, a
truncated DCT is the applied to the logarithm of this Mel spec-
trum.

If we assume the harmonic and random components gener-
ated by the HNM are uncorrelated, the Mel spectrum of a frame
of speech is simply the sum of the Mel spectra of the harmonic
and random components. If we assume that the noise and the
speech are also uncorrelated, then we can translate equations (5)
and (6) directly into the Mel-spectral domain. Moreover, be-
cause Mel spectrum is a measure of energy, we can conclude
that the observed noisy Mel spectral value is an upper bound
on the actual clean speech value, i.e. X < Y, where X and
Y represent a Mel spectral component of the clean and noise-
corrupted speech, respectively.

Based on these observations, we can derive an estimate for
the clean Mel spectral component of a noise-corrupted frame of
speech within the framework of the HNM.

X=anVn+aY, O0<apar <1 )

where Y3, and Y. are Mel spectral components of the harmonic
and random signals of the observed speech frame, respectively,
and «, and «,- are scaling factors applied to these components.
These scaling factors represent the fraction of the total energy
in the observed harmonic and random components that was pro-
duced by speech and not noise. Thus, the values of «; and
a,- are proportional to the SNR in the harmonic and random
components, respectively. We call this model the Weighted Har-
monic+Noise Model (WHNM) to emphasize the fact that we are
using scaled versions of the harmonic and random components
to obtain an estimate of features of the underlying clean speech
signal.

Clearly, the key to the success of this model is the accurate
estimation of the scaling parameters «, and «.,.. There are sev-
eral potential methods for estimating these parameters. In this
work, we chose to utilize the HNM framework itself in order to
estimate these parameters. We assume for simplicity that a sin-
gle scaling parameter can be applied to the entire Mel spectral
vector. As mentioned in Section 2, the harmonic component of
the HNM decomposition to capture most of the signal energy for
strongly voiced frames when the signal is clean. As noise cor-
rupts these frames, more energy will be present in the random
component, and the proportion of the total signal energy cap-
tured by the harmonic component of the signal will decrease.
This observation leads to an estimate for a,.

-\ 2
o = ) 0

>y
where the numerator represents the harmonic energy in the
frame, and the denominator is the total energy of the frame.
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Figure 1: «j vs. time for an utterance corrupted by sub-
way noise to various SNRs. The top left plot shows the
voiced/unvoiced labeling.

From (5), it is clear that this estimate will always be between
0 and 1. Figure 1 shows «y, for the frames of the utterance “2-
7-0h-6-5-7-1" for clean speech and speech corrupted by subway
noise to various SNRs from 20 dB down to -5 dB. The estimated
voiced/unvoiced labeling is plotted as well. The plots clearly
show that ay, has a high correlation to the SNR in the voiced
regions. In the unvoiced and silence frames, this measure of o,
serves simply as an energy-reduction parameter. While this es-
timate of «, is sub-optimal for these segments, we found a sig-
nificant benefit from processing all frames in the same manner,
regardless of voicing state. This ensures that transition frames
between voiced and unvoiced segments, whose harmonic and
random components both contain significant information, are
processed consistently. This reduces the frame-to-frame vari-
ability of the resulting features which is critical for accurate es-
timation of the delta and acceleration cepstral features used for
recognition.

Obtaining an estimate for the scaling parameter of the ran-
dom signal component is a more difficult task. Due to the very
nature of the signal, there is no predictable underlying structure
we can exploit. As with a,, we expect o, to be a function of
SNR. In an attempt to learn this function from data, an experi-
ment was performed studying the recognition performance ob-
tained when a range of values of «, are used with the estimate
of «ay, given by (8). Figure 2 shows the absolute improvement
over baseline performance (no compensation) in word accuracy
as a function of SNR for various values of «,-. In this experi-
ment, the pitch estimation was performed on clean speech. As
the plot indicates, there is a single value for c,- which results in
the best performance across all SNRs.

Based on these results, we can rewrite the WHNM formula-
tion for Mel spectral estimation as

X (1) = an(t)Yu(t) + a, Ye(t) ©

where the time index ¢ has been added to emphasize that «, is
a time-varying parameter, while «.. is fixed. The value of «;,
is computed according to (8) and «.- can be optimized using a
cross-validation set.
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Figure 2: Absolute improvement over baseline vs. SNR using
various constant values of «,. using pitch estimates from clean
speech.

4. Experimental Results

To test the performance of the proposed Weighted Har-
monic+Noise Model algorithm, experiments were conducted us-
ing the Aurora 2 corpus [7]. This corpus consists of strings of
connected digits, corrupted by several different noises to SNRs
between -5 and 20 dB. Speech recognition was performed us-
ing the HTK recognition system. The system was trained using
the Aurora clean training set. Whole word models were trained
using conventional 39 dimensional features vectors composed
of 13-dimensional Mel-frequency cepstral coefficients plus the
delta and acceleration features. In our experiments, a frame size
of 20ms was used, rather than the 25ms specified in the Au-
rora standard, in order to reduce the variability of pitch within
a frame. All other front-end, training, and testing specifications
matched the Aurora specification.

The WHNM-based feature extraction process is as follows.
For each utterance, pitch and voicing state estimation is per-
formed. Frames labeled as non-voiced are assigned a pitch of
150 Hz. For each frame, the harmonic and random components
of the signal are then computed using equations (2), (3), and
(4). The Mel spectra of both the harmonic and random signals
are computed and then the final Mel spectrum of the frame is
computed as the weighted sum of the two, according to (9). Fi-
nally, the MFCC feature vector is computed by taking the DCT
of the logarithm of the Mel spectrum.

As described in Section 3, the algorithm requires the use of
a cross-validation set to determine the optimal value of «.., the
scaling parameter for the random component of the observed
noisy Mel spectra. We employed the Aurora Test Set A for this
purpose. The data set consists of utterances corrupted with one
of four noises (babble, subway, car, exhibition hall) to SNRs
between -5 and 20 dB.

For the cross-validation set, pitch estimates were made di-
rectly on the noise-corrupted speech data using the MAP pitch
estimation method described in [8]. For each utterance, a, was
computed for each frame using (8). «, was held constant over
all utterances and a range of values were tested. Figure 3 shows
the absolute improvement in word accuracy over baseline per-
formance for the cross-validation test set for various values of
a,. For comparison, the performance achieved with the best-
performing «, value when using pitch estimates from clean
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Figure 3: Absolute improvement over baseline vs. SNR using
various constant values of «,- on the cross-validation set when
pitch estimates are made from noisy speech data. The perfor-
mance using pitch estimates from clean speech is shown for
comparison.

speech is also shown.

As the figure indicates, setting «,» to 0.10 produced the best
overall recognition accuracy. However, the figure also indicates
that performance is not that sensitive to the value of «,. It is
interesting to note the extremely poor performance when «, is
set to 0 and the random component is completely removed from
the signal. When this occurs, strict harmonicity is imposed on
all segments of speech, including partially voiced and unvoiced
frames. Because unvoiced and partially voiced speech contain
discriminative information at the non-harmonic frequencies, re-
moving this information results in poor performance.

Using the value of . = 0.10 determined from cross-
validation, recognition experiments were run on Aurora Test Set
B. This test set consists of connected digit strings corrupted by
four different noises (restaurant, street, airport, train station) to
SNRs between -5 and 20 dB. There is no overlap between the
corrupting noise types in the cross-validation set and the test set.
Figure 4 shows the recognition accuracy as a function of SNR
when the proposed algorithm is applied to the Test Set B with
o, = 0.10. The rightmost data point on the plot indicates the
recognition accuracy on clean speech. For comparison, base-
line performance without compensation is also shown. As the
plot indicates, significant improvements over baseline recogni-
tion accuracy were achieved using the proposed method. A com-
parison of Figures 3 and 4 shows that the actual performance
obtained on the test set was quite close to that obtained on the
cross-validation set. From this we can conclude that the optimal
choice of «, is not sensitive to noise type, as the cross-validation
and test sets had no overlap in corrupting noise types.

5. Summary

The harmonic+noise model decomposes a speech signal into its
harmonic and random components. This decomposition pro-
vides a framework in which these signal components can be
processing independently, allowing us to exploit the properties
inherent in each one. In this paper, we have used this frame-
work to improve the robustness of speech recognition systems
to additive noise. We introduced the weighted harmonic+noise
model in the Mel-spectral domain in which the features are
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Figure 4: % Word Accuracy vs. SNR for Aurora Test Set B
using o = 0.10 and pitch estimates from noisy speech.

derived from the harmonic and random components indepen-
dently, denoised, and then recombined to generate an enhanced
final feature vector. By processing the noise-corrupted speech
in this manner, we are able to achieve significant improvements
in recognition accuracy without making any assumptions about
the corrupting noise.
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