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Abstract. Recently, many image-based modeling and rendering techniques have been successfully designed to
render photo-realistic images without the need for explicit 3D geometry. However, these techniques (e.g., light field
rendering (Levoy, M. and Hanrahan, P., 1996. In SIGGRAPH 1996 Conference Proceedings, Annual Conference
Series, Aug. 1996, pp. 31–42) and Lumigraph (Gortler, S.J., Grzeszczuk, R., Szeliski, R., and Cohen, M.F., 1996. In
SIGGRAPH 1996 Conference Proceedings, Annual Conference Series, Aug. 1996, pp. 43–54)) may require a sub-
stantial number of images. In this paper, we adopt a geometric approach to investigate the minimum sampling problem
for light field rendering, with and without geometry information of the scene. Our key observation is that anti-aliased
light field rendering is equivalent to eliminating the “double image” artifacts caused by view interpolation.

Specifically, we present a closed-form solution of the minimum sampling rate for light field rendering. The
minimum sampling rate is determined by the resolution of the camera and the depth variation of the scene. This rate
is ensured if the optimal constant depth for rendering is chosen as the harmonic mean of the maximum and minimum
depths of the scene. Moreover, we construct the minimum sampling curve in the joint geometry and image space,
with the consideration of depth discontinuity. The minimum sampling curve quantitatively indicates how reduced
geometry information can be compensated by increasing the number of images, and vice versa. Experimental results
demonstrate the effectiveness of our theoretical analysis.

Keywords: light field, lumigraph, image-based modeling and rendering, view interpolation, sampling, double
image

1. Introduction

Image-based modeling and rendering (IBMR) has be-
come an active research area in computer vision and
computer graphics. Many IBMR techniques have been
proposed to produce realistic-looking images from pre-
recorded images, often at low rendering costs. Unlike
traditional geometry-based rendering, they do not nec-
essarily rely on exact geometry. For instance, light
field rendering (Levoy and Hanrahan, 1996) requires
no geometry information, yet generates novel view im-
ages by simply interpolating the captured samples of
the light field or the plenoptic function (Adelson and
Bergen, 1991).

However, light field and Lumigraph rendering tech-
niques require a substantial number of sample images
(typically thousands or more). As a result, data re-

duction is important. Many techniques, such as vec-
tor quantization (Levoy and Hanrahan, 1996), multiple
reference frame (Zhang and Li, 2000), eigen-texture
(Nishino et al., 2001), and light field mapping (Chen
et al., 2002), have been proposed to achieve high com-
pression ratio while enabling random access of sam-
ples for real-time rendering. Despite so much work on
light field data compression, a more important issue that
needs to be addressed is the minimum sampling prob-
lem for anti-aliased light field rendering. It is obvious
that the fewer images we need to capture, the less stor-
age and acquisition time required. Ideally, we should
only acquire the minimum number of images needed.

In this paper, we adopt a geometric approach to ana-
lyze the light field rendering, and in particular its sam-
pling issues. We first derive the minimum sampling rate
of light field when there is no geometry information
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available. We show that the minimum sampling rate for
anti-aliased light field rendering is equivalent to elimi-
nating the “double image” artifact, which is caused by
interpolation with inaccurate geometry. The minimum
sampling analysis can provide guidance as to how the
acquisition and rendering systems should be set up,
e.g., how closely cameras should be spaced and how
much pre-filtering (Levoy and Hanrahan, 1996; Halle,
1994) need to be applied to the images.

Furthermore, we derive the minimum sampling
curve of the light field in the joint image and geometry
space when geometry information becomes available.
This curve quantitatively shows how the same render-
ing quality can be achieved by trading off the amount
of geometry information and the number of images.

The remainder of this paper is organized as follows.
In Section 2, we review related work. In Section 3, we
present our criterion of acceptable rendering quality.
The minimum sampling rate and minimum sampling
curve of the light field are then studied in Sections 4 and
5, respectively. The issue of sampling with occlusion is
discussed in Section 6. Finally, we present concluding
remarks in Section 7.

2. Background and Previous Work

Both light field (Levoy and Hanrahan, 1996) and
Lumigraph (Gortler et al., 1996) use a two-plane pa-
rameterization of the 4D plenoptic function (Adelson
and Bergen, 1991). As shown in Fig. 1, an oriented line
is defined by connecting a point on the uv plane (or the
camera plane) to a point on the st plane (or the focal
plane). Therefore, each ray in the free space is uniquely

Figure 1. The representation, sampling and reconstruction of a light field. (a) The light slab after sampling and resampling. The uv and st
planes are the camera plane and the focal plane, respectively. (b) A novel ray can be interpolated from nearby sample rays (for clarity, only
partial nearby sample rays are shown here) by computing its intersection points with the uv and st planes.

determined by a quadruple (u, v, s, t). Both the camera
and focal planes are uniformly discretized (Fig. 1(a))
for simplicity.

The light field could be captured by placing a camera
on the uv plane facing the st plane. Images are taken at
each grid on the uv plane. To ensure that the captured
light rays pass through the grids on the st plane, sheared
perspective projection and resampling are performed.
To render a novel ray, its intersection points with the
uv and st planes are first computed. Subsequently, the
nearest 16 (or part of the 16) sampling rays in the light
slab around the novel ray are selected to interpolate the
novel ray. Figure 1(b) shows four of these sample rays
used in interpolation.

Other sampling techniques have also been proposed
to capture the light field. Two-sphere and sphere-plane
parameterizations (Camahort et al., 1998) can be used
for more uniform sampling. To minimize redundancy,
Schirmacher et al. (1999) proposed to adaptively add
a new view by determining if its addition improves the
rendering quality. Alternatively, Hlaváč et al. (1996)
and Sloan et al. (1997) discarded an input view if it
can be predicted by nearby frames. Concentric Mosaics
(Shum and He, 1999) sampled the light field along a
circle rather than on a plane. The dynamically repa-
rameterized light field (Isaksen et al., 2000) used a
variable focal plane/surface, and the surface light field
(Wood et al., 2000; Nishino et al., 2001; Chen et al.,
2002) indexed rays by points on the object surface for
high-quality rendering. While all the above techniques
relied on regular parameterization, the unstructured
Lumigraph (Buehler et al., 2001) handled the prob-
lem of rendering with irregularly sampled im-
ages. However, none of these methods provide a
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quantitative analysis on the number of samples needed
and how the sampling rate is related to geometry.

On the theoretical front, Halle (1994) pointed out
the relationship between pixel disparity and aliasing in
the context of holographic stereograms. He suggested,
yet without justification, that a sampling rate be chosen
such that the images of a point from all the contributing
views should abut each other without gaps. No explicit
formulae were given for the sampling rate and the size
of prefiltering in Halle (1994).

The first-ever analysis on minimum sampling rates
for light fields (and Concentric Mosaics) was proposed
in Lin and Shum (2000). Through a geometric analy-
sis, it was shown in Lin and Shum (2000) that the sam-
pling rate is dependent on scene disparity variation and
camera resolution. Soon after, the same results were
obtained in Chai et al. (2000) where a spectral analy-
sis was adopted to take scene texture into account as
well. The trade-off between the number of images and
the amount of geometry information was also studied
in Chai et al. (2000) and the minimum sampling curve
in the joint space of image and geometry was derived
without the consideration of occlusion.

This paper is an extension of our previous work (Lin
and Shum, 2000). From the geometric perspective, we
study the artifact of “double image” (a geometric coun-
terpart of spectral aliasing), optimal constant depth, and
depth layers. Our geometric analysis is an alternative to
the spectral analysis in Chai et al. (2000). Yet it is more
intuitive and flexible, and is applicable to irregular cap-
turing and rendering configurations. For example, the
results on Concentric Mosaics (Lin and Shum, 2000),
which are difficult to obtain using spectral analysis, can
be easily obtained. Moreover, by taking the discontinu-
ity factor into account, our sampling analysis is more
accurate than that in Chai et al. (2000).

3. Problem Formulation

Before introducing our geometric approach, we need to
make some assumptions about the camera, scene, and
interpolation methods used in light field rendering.

3.1. Assumptions

The list of assumptions we make in our analysis is as
follows:

• Camera: pin-hole with a finite resolution.
• Scene: occlusion-free and Lambertian.
• Interpolation method: bilinear.

3.1.1. Camera. In our analysis we adopt a pin-hole
camera model with a finite resolution. Thus, the camera
records a blurred version of the plenoptic function or
the light field. A pixel value is a weighted integral of the
illumination of the light arriving at the camera plane.
Alternatively, a pixel value is the convolution of the
plenoptic function at the optical center with a low-pass
filter. The shape of the filter is compactly supported,
with the width of support being the angular resolution
of camera. Equivalently, the camera simply samples
the convoluted plenoptic function at the camera center.
The value of a pixel is exactly the value of the blurred
plenoptic function at the direction linking the pixel and
the optical center.

Throughout this paper, we use uniform angular
resolution, in both vertical and horizontal directions.
Both capturing and rendering cameras have the same
resolution.

3.1.2. Scene. To simplify our analysis, we study the
characteristics of the scene element and bound its
depth. The angular extent of a point is sufficiently small
compared to the camera resolution, but not zero. Since
a scene is composed of points, if every point can be
correctly rendered, so can the scene. The scene points
are first dealt with independently (i.e., ignoring occlu-
sion) and the discussion on sampling problem with oc-
clusion is postponed until Section 6. Our microscopic
analysis methodology is inspired by common practices
in physics where theories are often built on the anal-
ysis of independent particles and the interaction be-
tween particles. Moreover, by assuming that the scene
is Lambertian, we focus our analysis on the scene ge-
ometry and ignore the illumination effects.

3.1.3. Interpolation. The rendering process involves
choosing “nearby” rays for each viewing ray and in-
terpolating using them. Therefore, an estimate on the
depth along the viewing ray is required for ray query. In
fact, any approach to find “nearby” rays inherently in-
volves an assumption of some scene depth. It is around
where the rays intersect. For example, infinite depth
is assumed in rendering with Concentric Mosaics, be-
cause interpolation using parallel rays is equivalent
to infinite depth. In rendering with the light field, the
depth is always implicitly assumed to be at the focal
plane.

Usually, the nearest samples are the most impor-
tant to reconstruct a signal. Bilinear interpolation has
been commonly used in existing light field rendering
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Figure 2. Rendering with bilinear interpolation: the scene point
along a ray VP is estimated at P and the ray is interpolated using the
four nearest rays from cameras at C1 and C2.

systems (e.g., Chen and Williams, 1993; Levoy and
Hanrahan, 1996; Shum and He, 1999) because it is
simple and can produce good rendering quality. In the
presence of more accurate depth information, better
rendering results can be obtained by interpolating more
light rays.

Figure 2 illustrates the rendering process. Suppose
that we want to render a view at V , and the viewing ray
intersects the approximate geometry at P . C1 and C2

are two nearby positions of the camera that are closest
to VP, and Ci Di j (i = 1, 2; j = 0, 1) are nearby rays
in camera Ci that are closest to the ray Ci P . Then the
pixel value of VP can be bilinearly interpolated from
rays Ci Di j (e.g., Wu and Shum, 2000), by assigning
weights wi j to rays Ci Di j in the following manner:

w10 =
� VPC2 · � PC1 D11

( � VPC1 + � VPC2) · � D10C1 D11
,

w11 =
� VPC2 · � PC1 D10

( � VPC1 + � VPC2) · � D10C1 D11
,

w20 =
� VPC1 · � PC2 D21

( � VPC1 + � VPC2) · � D20C2 D21
,

w21 =
� VPC1 · � PC2 D20

( � VPC1 + � VPC2) · � D20C2 D21
.

Figure 3. The change of intensity contribution. (a) The camera C1 is imaging a scene point L . (b) The intensity contribution of L changes
from parabola-like to wedge-shape due to finite camera resolution and linear interpolation.

3.2. Anti-Aliasing Condition

In this section, we investigate the visual artifacts caused
by rendering with interpolation and inaccurate depth.
We show that the anti-aliased light field rendering is
equivalent to eliminating “double images” for each
scene point.

3.2.1. Widening of Intensity Contribution after
Interpolation. We first consider within-view (intra-
view) interpolation. As shown in Fig. 3(a), camera C1

is taking a snapshot of a point L . C1 D10 is the nearest
sampling ray to C1L while C1 D11 and C1 D12 are two
nearby rays. Figure 3(b) maps the intensity contribution
of L as a function of camera angular position, where

• the vertical line at 0 represents the ray C1L ,
• δ is the angular resolution of the camera,
• the parabola-like curve is the intensity contribution

of L in the continuous case (or the shape of low-pass
filter for the blurred plenoptic function),

• and C1 D10 is displaced by angle ε (− δ
2 ≤ ε < δ

2 )
from C1L .

As a result, the contribution of L to the pixel that
corresponds to the ray C1 D10 is just the value of the
continuous contribution at ε. Since the angles of C1 D11

and C1 D12, corresponding to ε−δ and ε+δ in Fig. 3(b),
respectively, are outside the interval of [− δ

2 , δ
2 ), neither

intensities of the two corresponding pixels are affected
by the point L . Subsequent to linear interpolation, the
intensity contribution of the point L becomes a wedge
of width 2δ. As will be seen, it is the width, not the
shape of the intensity contribution, that matters.

Suppose C1 is one of the nearby cameras to the novel
view V (Fig. 4(a)), C1L intersects the approximate
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Figure 4. Using the rays in camera C1 generates a wedge of intensity contribution around L1 in the novel view.

geometry at P1, and VP1 intersects the focal plane at L1.
Then the part of the contribution of L to the novel view,
transferred by camera C1, centers around L1 (Fig. 4(b)).

3.2.2. Rendering Quality vs. Geometry Information.
Now we consider the between-view (inter-view) in-
terpolation. As shown in Fig. 5(a), C1 and C2 are two
nearby cameras, V is the novel view, and L is the scene
point of interest. Suppose Ci L intersects the approxi-
mate geometry at Pi and VPi intersects the focal plane
at Li (i = 1, 2). Then around Li lie two intensity con-
tributions of the point L (Fig. 5(b)) on the plane.

The contribution of L to the viewing rays is interpo-
lated between these two intensity contributions. Obvi-
ously, the rendering quality depends on the distance be-
tween them. In Fig. 6, the relative positions between the
two intensity contributions are shown, where the hori-
zontal axis represents the angular position of the rays
in view V and the vertical axis represents the amount
of contribution. The thick vertical dash-lines represent
the viewing rays. When they nearly overlap (Fig. 6(a)),
there is only one pixel strongly influenced by L . So L
will appear sharp on the rendered image. When they
partially overlap (Fig. 6(b)), then L contributes to two
consecutive pixels and L will become blurred. When
they no longer touch (Fig. 6(d)), some viewing rays can

Figure 5. Bilinear interpolation generates two wedges of intensity contribution around L1 and L2. Double images of L may appear on the
rendered image if the two wedges do not overlap.

fall in the gap between them. If the contrast between
L and its neighborhood is large, the intensities of in-
between viewing rays are different from the intensity
of L . As a result, there will be two separate images
of L on the rendered image. This phenomenon is the
“double image” artifact.

The distance between the two intensity contributions
is dependent on the sample spacing and the geometry,
so is the rendering quality. When the sample spacing be-
comes larger and larger, or when the geometry informa-
tion becomes less and less accurate, the rendered point
gradually changes from being sharp to being blurry and
further to becoming a double image artifact. The double
image artifact is a result of an inadequate sampling rate.

Strictly speaking, the change from being sharp to
having double images is continuous. Nevertheless, the
condition of two intensity contributions touching each
other (Fig. 6(c)) is a critical one.

3.2.3. When is Rendering Quality Acceptable? We
now consider the circumstances under which a ren-
dered image is considered acceptable. A rendered scene
point may either be sharp, be blurry, or have double
images. Sharpness is certainly what we desire. Thus it
is important that we make a distinction between blur-
ring and double images.
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Figure 6. The rendering quality depends on the distance between the two intensity contributions. The viewing rays are indicated by the thick
vertical dash-lines. (a) When the intensity contributions are very close, the rendered point appears sharp. (b) When the intensity contributions
partially overlap, it looks blurred. (c) That the two intensity contributions meet their ends is the critical condition that double images may occur.
(d) Double images may occur when the two intensity contributions do not overlap.

The phenomenon of double images has also been
observed by Levoy and Hanrahan (1996) and Halle
(1994). Double images are the most salient and visually
disturbing artifact, particularly when the sampling rate
is low. Human perception is more tolerant to blurring
than to double images. People are accustomed to see-
ing blurred objects in photos, which correspond to off-
focus locations. It stands to reason that an object should
only appear blurred with no double images should the
geometry be inaccurate.

The above human perception has been summa-
rized by the causality principle in scale-space theory
(Romeny, 1994), i.e., no “spurious detail” should be
generated when smoothing an image. The light field
rendering should obey this principle because both the
intra- and inter-view interpolations are smoothing pro-
cesses on a single image. The intra-view case is ob-
vious. For the inter-view case, under the Lambertian
premise and ignoring the visibility problem, the value
of every pixel on the interpolated image can be com-
puted by weighting several pixels on only one of the
images chosen for interpolation. The weighting tem-
plate is pixel-dependent, but it is still a smoothing op-
eration because all the weights are non-negative. As a
result, blurring is harmless but double images should
be eliminated.

From the viewpoint of signal processing, light field
rendering is a reconstruction process of a 4D signal.
When the sampling rate is inadequate, aliasing shows

up as double images on the rendered image. Indeed,
we can prove that the overlap between two successive
intensity contributions on the focal plane is equivalent
to the anti-aliasing condition. The details of the proof
are presented in Appendix A.

In conclusion, rendering quality is acceptable when
all objects in the rendered image appear either sharp or
blurred. No double images are allowed.

4. Minimum Sampling Rate

We now study the minimum sampling rate for light
field rendering without any geometric information.
Specifically, we apply the criterion in Section 3.2.3
to analyze the maximum allowable distance between
successive camera locations. However, interpolation is
impossible if no depth along a viewing ray is assumed.
Therefore, the minimum geometric information, de-
scribed by a globally constant depth, is still neces-
sary. In fact, the interpolation method of the original
light field rendering (Levoy and Hanrahan, 1996) im-
plicitly assumes a globally constant depth at the focal
plane.

4.1. Maximum Camera Spacing

Without loss of generality, we set up a coordinate sys-
tem as in Fig. 7, where
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Figure 7. Rendering a point L with a light field.

1. L = (x0, z0) is a point in the scene,
2. C1 and C2 are two adjacent cameras, and
3. C1 D10 and C2 D20 are two rays in the light slab that

are nearest to C1L1 and C2L2, respectively.

The global constant-depth plane, at a depth Z , is par-
allel to but might not be identical to the focal plane.
This resembles a dynamically reparameterized light
field (Isaksen et al., 2000). We omit the projection from
the constant-depth plane to the focal plane of the novel
views as they are parallel.

We now examine the intensity contribution of L
on the constant-depth plane in Fig. 7. The details are
shown in Fig. 8, where

1. xi is the coordinate of Li (i = 1, 2) on the constant-
depth plane,

2. xi + ei is the coordinate of Di0, where Ci Di0 is the
nearest sampling ray to Ci L viewed from Ci , and

3. xi + ei ± � are the coordinates of Di1 and Di2,
respectively,

in which ei is the offset between Li and Di0, and � =
δZ is the sample spacing on the constant-depth plane.

Figure 8. The details of the intensity contributions of L on the constant-depth plane. The horizontal axis indicates the ray position and the
vertical axis represents the intensity value of the rays.

To avoid double images, the two wedge-shape inten-
sity contributions of the point L must overlap. Hence,
D11 must be on the left of D22, or

x1 + e1 − � ≤ x2 + e2 + �, (1)

It is easy to compute that the coordinates of L1 and L2

are:

x1 = −a + Z (x0 + a)/z0, and

x2 = a + Z (x0 − a)/z0,

respectively. Therefore, (1) becomes

2a(Z − z0)

z0
≤ 2� + (e2 − e1). (2)

Since the position of L is arbitrary, e2 − e1 can vary
between −� and �. Therefore the following condition
must be satisfied:

2a(Z − z0)

z0
≤ �. (3)

The above condition is deduced when z0 ≤ Z . If z0 >

Z , the corresponding condition is

2a(z0 − Z )

z0
≤ �.

Summing up, the sample spacing d must satisfy:

d = 2a ≤ � · z0

|z0 − Z | = δ · z0 Z

|z0 − Z | . (4)

If z0 is bounded between zmin(≤Z ) and zmax(≥Z ),
then the minimum value of the right hand side of
(4) is the maximum allowable distance between two
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locations of the camera, namely

dmax = δ min
zmin≤z0≤zmax

{
z0 Z

|z0 − Z |
}

= δZ · min

{
zmin

Z − zmin
,

zmax

zmax − Z

}
. (5)

We may rewrite (4) as:

∣∣∣∣ 1

z0
− 1

Z

∣∣∣∣d ≤ δ.

This means that when Z is the estimate of exact depth,
the disparity (Xu and Zhang, 1996)1 error viewed from
nearby cameras must not exceed one pixel. Since (5) is
the minimization of (4) over all scene points, it means
that if the globally constant depth Z is chosen for the
scene, then the sample spacing should ensure that the
disparity errors of all scene points between successive
views must not exceed one pixel.

4.2. The Optimal Constant Depth

Equation (5) indicates that dmax is maximized when
Z = Zopt satisfies:

zmin

Zopt − zmin
= zmax

zmax − Zopt
,

or

Zopt = 2zminzmax

zmin + zmax
. (6)

One can easily check that zmin ≤ Zopt ≤ 1
2 (zmin +

zmax), and the equalities hold only for zmin = zmax.
This choice of Zopt is reasonable because closer objects
require more accurate depth information.

One should be cautious to provide relatively accurate
minimum and maximum depths so that the computed
optimal constant depth can really take effect. Fortu-
nately, it is possible to estimate or measure them in
practice. Moreover, Zopt is less sensitive to zmax than to
zmin.

4.3. Interpretation of the Optimal Constant Depth

It is interesting to note that (6) can be rewritten as:

1

Zopt
= 1

2

(
1

zmin
+ 1

zmax

)
.

Figure 9. Graphical determination of the optimal constant depth.

In this formulation, the optimal constant depth is ex-
actly the harmonic mean of the minimum and maxi-
mum depths. Equation (6) can also be written as:

1

zmin
− 1

Zopt
= 1

Zopt
− 1

zmax
.

This implies that the nearest and farthest objects can
be rendered with equal sharpness.

The optimal constant depth can be determined graph-
ically. Referring to Fig. 9, where

1. Ci (i = 1, 2) are on the camera plane,
2. F is the mid-point of C1C2,
3. L and L ′ are the farthest and the nearest points in

the scene, and
4. C2L ′ intersects C1L at L1 and C1L ′ intersects C2L

at L2.

Then it is guaranteed that L1L2 is parallel to C1C2.
From projective geometry (Ayres, 1967), one can prove
that {L , E, L ′, F} is a harmonic set of points,
where E is the intersection point of L L ′ and L1L2.
Therefore

|EL| · |FL′|
|FL| · |EL′| = 1,

which gives

(zmax − Z )zmin

zmax(Z − zmin)
= 1.

Thus this is a convenient way of finding the optimal
constant depth Zopt.
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With the optimal constant depth, the sample spacing
in (5) becomes:

dmax = 2δ

z−1
min − z−1

max

. (7)

It is totally determined by the disparity variation of the
scene and the camera resolution. The above equality
can also be written as:

(
1

zmin
− 1

zmax

)
dmax = 2δ.

This means the maximum allowed sample spacing
should make the disparity variation of the scene be-
tween successive cameras be 2 pixels.

4.4. Prefiltering the Light Field

Let the sample spacing be d . If this sampling rate is
inadequate, i.e. d > dmax, where dmax is given by (5),
then it is necessary to prefilter the light field in order to
eliminate the artifact of double images. As mentioned
by Levoy and Hanrahan (1996), the prefiltering can be
done on the camera or focal plane, or both. Filtering on
the focal plane reduces the image resolution, whereas
filtering on the camera plane reduces the depth of fo-
cus (Isaksen et al., 2000). It is easy to see that the
size for focal-plane prefiltering should be d/dmax pix-
els, and the focal-plane prefiltering can be done more
conveniently by postfiltering on the rendered images.
However, in theory the camera-plane prefiltering can-
not be effective because the samples are not taken after
low-pass filtering the camera plane.

4.5. Disparity-Based Analysis

In fact, the minimum sampling rate can be found by
simply observing the maximum and minimum dispari-
ties in pixels in two captured images, without any mea-
surement over the scene or any camera calibration. So
do rendering and prefiltering.

Suppose the maximum and minimum disparities
found in two images are N D

max and N D
min pixels, respec-

tively. From Section 4.3, we know that the sampling
rate must make the maximum disparity difference in
the scene be 2 pixels. Because the disparity variation
is proportional to the sample spacing, the sampling
interval should be shrunk by (N D

max − N D
min)/2 times

so that the disparity variation is 2 pixels. Therefore

N = ceil((N D
max − N D

min)/2) + 1 sample images are
required for the interval between the two cameras.

The rendering can also be done conveniently with
epi-polar images (Chai et al., 2000), where a global mo-
tion compensation vector is needed for picking out ap-
propriate pixels in different sample images and blend-
ing among them. The optimal constant depth now cor-
responds to the optimal motion compensation vector,
which is (N D

min + N D
max)/(2(M − 1)) pixels between

successive sample images, where M is the number of
sample images uniformly taken in the interval.

Finally, the size of prefiltering is (N D
max − N D

min)/
(2(M − 1)) pixels.

4.6. Experiments

We now verify our analysis in previous sections. In our
“Toy” light field, we capture two images with a large
distance between them, and find that the minimum and
maximum disparities are 27 and 59 pixels, respectively.
Then we know that (59 − 27)/2 + 1 = 17 images are
required for the interval. The relevant data are listed in
Table 1. Figure 10(a) is one of the sample images. In
order to detect the existence of double images, sharp
features, which appear as thin vertical lines, are added
to the scene. The upper and lower boxes are at the
maximum and minimum depths, respectively.

First, we test the effectiveness of the optimal con-
stant depth. With the optimal constant depth chosen
at 1.3721zmin,2 the light field can be correctly rendered
with equal sharpness at zmin and zmax (Fig. 11(b)). If the
optimal constant depth is not chosen, e.g., if the mean
depth at 1.5926zmin is used instead, the scene points at
zmin appear to be very blurry (Fig. 11(c)), though those
at zmax look sharper.

Second, we test the sufficiency of the minimum sam-
pling rate. When the sampling rate doubles, the visual
improvement is nearly unnoticeable (Fig. 11(b) and
(d)). However, when the sampling rate is reduced by
half, double images are clearly visible at both zmin and
zmax (Fig. 11(e)).

Third, we test the effectiveness of the prefiltering
size. The double images in Fig. 10(e) become invisible
when a prefiltering size of 2 pixels on the focal plane

Table 1. The data for the light field “Toy”.

st sampling Minimum Optimal
rate N D

min N D
max sampling rate const. depth

610 × 455 27 59 17 × 17 1.3721zmin
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Figure 10. The sample and rendered images of the light field “Toy”. (a) A sample image of the light field “Toy”. The vertical lines in the white
boxes are for the detection of double images. (b) The rendered image from 17 × 17 images. (c) The same as (b) with the mean constant depth
chosen. (d) Rendered from 30 × 30 images. (e) Rendered from 9 × 9 images. (f) Image (e) prefiltered with size of 2 pixels. (b), (d)–(f) all use
the optimal constant depth.

is chosen (Fig. 11(f)). However, the rendered image
becomes blurred.

5. Minimum Sampling Curve of the Light Field

Now we study how geometry information can help re-
duce the sampling rate. The theory is based on the anal-
ysis on the minimum sampling rate. We find that the
sampling rate is inversely proportional to both geom-
etry information and camera resolution. We differen-
tiate whether the approximate geometry is smooth or
not. When the approximate geometry contains steep
jumps, our results are different from those in Chai et al.
(2000) because we consider the artifact caused by the
depth discontinuity.

5.1. Sample Spacing and Depth Uncertainty

From Section 4.1, we know that in order to properly
render a scene point with depth estimated between znear

and zfar, the sample spacing must satisfy

1

znear
− 1

z0
≤ δ

d
, and

1

z0
− 1

zfar
≤ δ

d
,

where z0 is the exact depth of the point. Therefore,

2δ

d
≥ 1

znear
− 1

zfar
. (8)

On the other hand, if (8) is satisfied, then the scene point
can be properly rendered by choosing the optimal depth
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Figure 11. Blow-up of the sampling and rendered images of the
light field “Toy”.

zopt at

2

zopt
= 1

znear
+ 1

zfar
.

Summing up, the maximum allowable sample spacing
should satisfy:

2δ

d
= 1

znear
− 1

zfar
,

or the disparity difference between znear and zfar is 2
pixels. In this case, the disparity differences between
znear and zopt as well as zopt and zfar are both 1 pixel.

We may define z−1
near − z−1

far as the geometric uncer-
tainty of a scene point and the geometric uncertainty of
a scene is the maximum uncertainty of all scene points.
Then it is clear that the sample spacing is inversely pro-
portional to both the uncertainty of geometry informa-
tion and the camera resolution, as shown in Fig. 12.

This analysis is valid only under the premise that the
approximate geometry is smooth, or having no steep
depth jumps, so that the depth along the novel viewing
ray is well defined. If the jumps exist, another alias-
ing, which we call the texture discontinuity, may occur.
Here we explain how this happens. In Fig. 13, the ob-
ject surface is approximated by a local geometry with
a steep jump, indicated by a dashed line segment, and
Ci (i = 1, 2) are two nearby cameras. P0 is a point on

Figure 12. The curve of sample spacing as a function of geometric
uncertainty when the approximate geometry is smooth.

Figure 13. The discontinuity in approximate geometry may cause
the discontinuity in texture.
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the jump and P is the surface point on the ray C1 P0. P1

and P2 are the intersection points of C1 P0 with the ap-
proximate geometry. Then P might also appear twice
in a novel view V , at the rays VP1 and VP2, respec-
tively. If double images of P appear, the texture of ob-
ject surface will become discontinuous. To eliminate
such discontinuity, the distance between the two rays
on the focal plane should be less than one pixel. As V is
free between C1 and C2, this implies that the disparity
difference between P1 and P2, viewed between C1 and
C2, must not exceed one pixel.

Taking the texture discontinuity into account, when
the approximate geometry is not smooth, the sampling
rate also has to make all the disparity differences of
depth jumps within one pixel.

5.2. Minimum Sampling Curve

To date, the exact depth is still hard to compute with
computer vision techniques, even from a sequence of
images. Fortunately, for rendering purpose, only ap-
proximate depth is necessary. As shown in the last sub-
section, every depth has a certain degree of tolerance
on the error. If the sampling rate is already fixed, a
globally constant depth may not be sufficient for all
objects in the environment. We have to choose several
constant depths so that all objects can be properly ren-
dered using an appropriate depth. The concept of depth
layers has appeared in other papers, such as Shade et al.
(1998) and Isaksen et al. (2000). Depth layers serve
for depth quantization. They are very useful in depth
recovery. Often, the number of depth layers is small,
which makes sweeping on the depth efficient. In this
subsection we derive the minimum sampling curve that
describes the relationship between the number of im-
ages and the number of depth layers.

Suppose the minimum and maximum depths of the
scene are zmin and zmax, respectively. Then between
two nearby cameras the total disparity variation is
(d/δ)(z−1

min−z−1
max) pixels, where d is the sample spacing.

As the representative depths are discontinuous, from
the conclusion in last subsection, the disparity differ-
ence between successive representative depths should
be 1 pixel. Each representative depth should be best
chosen as the harmonic mean of the nearest and the
farthest depths of each depth layer. Therefore, the dis-
parity difference between each representative depth and
the nearest or farthest depth of the depth layer should
be a half pixel. However, the nearest and the farthest
representative depths are the exception because there

are no depth layers before or after them. Hence the
disparity difference between the nearest depth and the
first representative depth can be 1 pixel. Same for the
farthest layer. Therefore, if we want to divide the scene
into N layers, then it allows N + 1 pixels of disparity
variation in total. Hence the optimal sample spacing
should satisfy:

δ

dopt
= 1

N + 1

(
1

zmin
− 1

zmax

)
. (9)

This gives the minimum sampling curve, which depicts
the relation among the number of sample images, the
number of depth layers and the camera resolution. This
curve resembles that in Fig. 12.

Equation (9) is different from the result of Chai et al.
(2000), which gives:

δ

dopt
= 1

2N

(
1

zmin
− 1

zmax

)
. (10)

According to our analysis, the sampling rate given
by the latter can only eliminate double images inside
the constant-depth planes. This sampling rate is inad-
equate for eliminating the texture discontinuity across
the depth planes. Note that Eqs. (9) and (10) are the
same when N = 1.

5.3. Decomposition of Depth Layers

In this subsection, we study how the depth layers should
be decomposed. Suppose the representative depths are
Zr

i (i = 0, 1, . . . , N −1). Each Zr
i is the representative

depth of objects whose depth is between zi and zi+1.
Obviously, z0 = zmin.

We now choose Zr
i and zi+1 recursively. The dispar-

ity difference between z0 and Zr
0 is one pixel. So

1

Zr
0

= 1

z0
− δ

dopt
.

For intermediate depth layers, the disparity difference
between zi and Zr

i and zi+1 and Zr
i are both a half pixel.

So

1

Zr
i

= 1

zi
− δ

2dopt
, (i = 1, 2, . . . , N − 1)

1

zk+1
= 1

Zr
k

− δ

2dopt
, (k = 0, 1, . . . , N − 2)
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Therefore,

1

zi+1
= 1

zi
− δ

dopt
= 1

z1
− iδ

dopt
,

(i = 0, 1, · · · , N − 2)

1

Zr
k

= 1

zk+1
+ δ

2dopt
= 1

z1
− (k − 0.5)δ

dopt
,

(k = 0, 1, . . . , N − 1)

1

z1
= 1

Zr
0

− δ

2dopt
.

Finally,

1

zi
= 1

zmin
− (i + 0.5)δ

dopt
, (i = 1, . . . , N − 1)

1

Zr
k

= 1

zmin
− (k + 1)δ

dopt
, (k = 0, 1, . . . , N − 1).

(11)

5.4. Experiments

Since ground truth of the depth information is needed to
verify our analysis, we perform some synthetic exper-
iments. The relevant data of the light field “Outdoor”
are listed in Table 2. As the depth variation is large,
the minimum sampling rate is quite high (364 × 364).
However, adding geometry information can help re-
duce the sampling rate. According to our analysis, us-
ing 45, 90, and 181 depth layers requires only 17 × 17,
9 × 9 and 5 × 5 images, respectively. Note that the
analysis in Chai et al. (2000) claims that only 23, 46
and 91 depth layers are sufficient for 17×17, 9×9 and
5 × 5 samples, respectively. The solid line in Fig. 14
shows our minimum sampling curve for this light field,
whereas the dashed line is the one predicted by Chai
et al. (2000). Our experiments can show that our anal-
ysis is more accurate. In Fig. 15, the rendering results
are shown, where from left to right the sampling rate
increases from 5×5 to 17×17, and from top to bottom
the depth layers decrease from infinity to 24. Due to the
occlusion in the scene, bilinear interpolation is not used
if the depth difference of two interpolation rays is too

Table 2. The data for the light field “Outdoor”.

Depth layers needed
given sampling rate

st sampling
rate st size uv size

uv-st
dist. zmin zmax

Minimum
sampling rate 5 × 5 9 × 9 17 × 17

480 × 480 100 × 100 50 × 50 100 31.27 573.77 364 × 364 181 90 45

Figure 14. The minimum sampling curves of the light field “Out-
door”. The upper solid curve is our minimum sampling curve, while
the lower dashed one is that from Chai et al. (2000). The rendering
results with different numbers of depth layers and sample images, in-
dicated by the dots, are shown in Fig. 15 at the same relative positions.

large, and the holes are preserved if the corresponding
areas are not visible to both nearby views.

It can be seen that:

1. Below our minimum sampling curve (Fig. 15(g),
(j), (k), and (m)–(o)), texture discontinuity is
discernible in these images even though some
(Fig. 15(g), (k) and (o)) meet the minimum sam-
pling curve in Chai et al. (2000), e.g., the horizontal
streaks on the water or the soil (Fig. 16(g), (j), (k),
and (m)–(o)).

2. On or above our minimum sampling curve (Fig. 15
(d)–(f), (h), (i), and (l) and Fig. 16(d)–(f), (h), (i),
and (l)), the artifacts that are not caused by occlusion
are undetectable and the rendering quality is nearly
identical to that using exact depth (Figs. 15(a)–(c)
and 16(a)–(c)).

3. Along the curve, the rendering quality is nearly un-
changed (Figs. 15(d), (h), (l) and 16(d), (h), (l)), if
the artifacts caused by occlusion are ignored. This
fully demonstrates the tradeoff between sampling
rate and geometric accuracy.

Another important observation is that for eliminating
occlusion artifacts the sampling rate is more important
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Figure 15. The rendered images of the light field “Outdoor”. The first, second and third columns are rendered from 5 × 5, 9 × 9 and 17 × 17
images, respectively. The first row uses exact depth. The second to fifth rows use 192, 96, 48, and 24 depth layers, respectively.

than the geometric information. If the sampling rate is
inadequate, the occlusion artifacts cannot be eliminated
by adding the geometric information, not even with
exact geometry (Fig. 15(a) and (b)).

6. Dealing with Occlusion

In previous sections, the scene is always assum-
ed to be occlusion-free. In a real scene, occlusion
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Figure 16. Blown-up views of corresponding rendered images in Fig. 15.

always exists and sampling with occlusion must be
analyzed.

Occlusion destroys the desirable scene property that
all scene points are visible from all views. It is easy
to see that in general the spectrum of a light field with
occlusion is not bandlimited, thus demanding the re-
construction of completely artifact-free (in the sense
of signal reconstruction) light field from discrete sam-
ples is impossible for a complex scene. Therefore, the
minimum sampling rate of a scene with occlusion can
only be found according to how much aliasing is tolera-
ble. In our experiments, we find that there is no visually
unacceptable artifacts when scenes with occlusion are
rendered at the minimum sampling rate for occlusion-
free scenes. Thus we recommend that all scenes with

the same disparity variation share the same minimum
sampling rate.

Unfortunately, the minimum sampling curve no
longer exists for scenes with occlusion. As shown
in Fig. 17, under the Lambertian premise, if there is
no occlusion in the scene, interpolating C1 P1 with
C2 P2 is equivalent to interpolating C1 P1 and C3 P2,
or C4 P2, etc., because the pixel values of rays C2 P2,
C3 P2, etc., are identical. This is the basis for differ-
ent combinations of sampling rate and geometry in-
formation producing the same rendering result. On
the other hand, if occlusion exists, the pixel values of
rays C2 P2, C3 P2, etc., may not be identical. There-
fore interpolating C1 P1 with C2 P2 is not equivalent
to interpolating C1 P1 and C3 P2, or C4 P2, etc. As a
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Figure 17. Only in an occlusion-free scene can the sampling rate
be traded for geometry information. (a) When the scene is occlusion-
free and Lambertian, the interpolation between C1 P1 and C2 P2 is
equivalent to those between C1 P1 and C3 P2, and between C1 P1 and
C4 P2, etc. Therefore different combinations of sampling rate and
geometry information can give the same rendering result. (b) When
occlusion exists, interpolating C1 P1 with C2 P2 is not equivalent to
interpolating C1 P1 and C3 P2, or C4 P2, etc. Therefore different com-
binations of sampling rate and geometry information cannot produce
the same rendering result.

result, the sampling rate cannot be traded for geometry
information.

7. Conclusion

In this paper, we have presented a geometry-based anal-
ysis of the minimum sampling rate and minimum sam-
pling curve for light field/Lumigraph rendering. Our
analysis provides guidance on how to capture and pre-
filter the light field effectively. We equate acceptable
rendering quality with the absence of any double image
artifacts. This criterion is equivalent to the anti-aliasing
condition in spectral analysis and can also be based on
human perception and the causality principle in scale-
space theory. By examining each individual point in a
scene, we infer that the two intensity contributions of a
point on the focal plane of the novel view must at least

Figure 18. Equivalence between types of overlap. (a) The overlap of parabola-like intensity contributions ensures the overlap of wedge-shape
ones. (b) The overlap of wedge-shape intensity contributions at an extreme case implies the overlap of parabola-like ones.

touch each other. We conclude that the minimum sam-
pling rate is determined by the camera resolution and
the scene disparity variation. In addition, an optimal
globally constant depth for the best rendering quality
is found to be the harmonic mean of the maximum and
minimum depths.

The minimum sampling curve quantitatively shows
how reducing the geometry information can be com-
pensated for by increasing the number of images. We
define the geometric uncertainty of a scene as the max-
imum disparity uncertainty of each scene point. The
sample spacing is found to be inversely proportional
to both the camera resolution and the scene geometric
uncertainty. Our results are more accurate than those
in plenoptic sampling (Chai et al., 2000) because the
depth discontinuity in the approximate geometry is
considered.

While the experimental results are encouraging, the
sampling rate would be further reduced if the charac-
teristics of human vision are considered. For example,
manifold hopping (Shum et al., 2001) can greatly re-
duce the size of the input database. Finally, studying
more thoroughly the sampling problem of a scene with
occlusion is another challenging task.

Appendix A: Anti-Aliasing Condition
in Terms of Geometry

In this appendix, we prove that eliminating double im-
ages in the geometric viewpoint is the anti-aliasing con-
dition in the viewpoint of signal processing.

First, we show the equivalence between the constant
overlap of the wedge-shape intensity contributions in
discrete images and the constant overlap of those in
continuous ones (the parabola-like curve in Fig. 3(b)).
On one hand, it is apparent that the overlap of con-
tinuous intensity contributions guarantees the overlap
of discrete intensity contributions (Fig. 18(a)). On the
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Figure 19. The anti-aliasing conditions in the spatial-temporal domain and spectral domain. (a) In the spatial-temporal domain, the condition
is the overlap of parabola-like intensity contributions. (b) In the frequency domain, the condition is that the motion-compensated reconstruction
filter contain the entire spectrum of the video.

other hand, as shown in Fig. 3(b), if the offset ε of one
of the intensity contributions is close to −δ/2 and the
other offset is close to δ/2, then the overlap of these
two wedge-shape intensity contributions requires that
the two parabola-like ones at least touch each other
(Fig. 18(b)). In fact, the transfer from (2) to (3) in
Section 4.1 has demonstrated such equivalence.

Next, we prove that the constant overlap of parabola-
like intensity contributions is equivalent to the anti-
aliasing condition in the frequency domain. To show
this, we borrow the framework of video processing
because the relevant results are already well known
in video processing and we will not repeat their
deductions.

For a point at depth z0, its perceived velocity in the
video is f/z0 (Xu and Zhang, 1996), where f is the
focal length. Using a constant depth Z is equivalent to
estimating its velocity at f/Z . The parabola-like in-
tensity contributions from other frames backprojected
from the constant-depth plane to the current frame are
the predicted positions of the point, using the estimated
velocity f/Z . So the actual intensity contribution and
the predicted one must overlap. From Fig. 19(a), in
spatial-temporal domain, the “time” duration d must
satisfy

d | f/z0 − f/Z | ≤ �, (12)

in order to ensure the overlap, where � = δ f is the
sample spacing on the focal plane.

Now let’s consider the anti-aliasing condition in the
frequency domain. The 2D light field is parameterized

by v and t , where v is the “virtual time”. Since the
actual velocity is constant, the spectrum of the point is
simply a slant line segment, with the highest frequency
in t being 1/(2�) (Tekalp, 1995). Using the estimated
velocity is equivalent to using a motion-compensated
reconstruction filter to reconstruct the video. The filter
is a parallelogram shown in Fig. 19(b). Then the anti-
aliasing condition is that the spectrum of the video must
completely lay inside the parallelogram, or

1/(2d) ≥ 1/(2�) | f/z0 − f/Z |.

We see that the above inequality is identical to (12).
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Notes

1. We also use “disparity” for the abbreviation of “the reciprocal of
depth” if no unit of “pixel” follows.

2. The optimal motion compensation vector is (59+27)/(2× (17−
1)) = 2.6875 pixels between successive sample images. The real
value of zmin is insignificant.
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