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ABSTRACT

Model based feature enhancement techniques are constructed
from acoustic models for speech and noise, together with a model
of how the speech and noise produce the noisy observations.

Most techniques incorporate either Gaussian mixture models
(GMM) or hidden Markov models (HMM). This paper explores
using a switching linear dynamic model (LDM) for the clean speech.
The linear dynamics of the model capture the smooth time evo-
lution of speech. The switching states of the model capture the
piecewise stationary characteristics of speech.

However, incorporating a switching LDM causes the enhance-
ment problem to become intractable. With a GMM or an HMM,
the enhancement running time is proportional to the length of the
utterance. The switching LDM causes the running time to become
exponential in the length of the utterance. To overcome this draw-
back, the standard generalized pseudo-Bayesian technique is used
to provide an approximate solution of the enhancement problem.

We present preliminary results demonstrating that, even with
relatively small model sizes, substantial word error rate improve-
ment can be achieved.

1. INTRODUCTION

Automatic speech recognition systems without explicit provisions
for noise robustness degrade quickly in the presence of additive
noise. As a consequence, how to best add noise robustness to such
systems is an area of active research.

The system presented in this paper is one of a number of model
based feature enhancement systems. Such systems include a model
for speech, and often a model for noise as well, within the enhance-
ment algorithm.

When the clean speech model is a Gaussian mixture model
(GMM), each frame of data is enhanced independently. Without
post-processing, this can result artifacts, such as sharp single frame
transitions, that were not part of the original clean speech signal.

Choosing a hidden Markov model (HMM) for the clean speech
model introduces some time dependencies in the enhancement pro-
cess. Although, for any given state sequence, the enhancement
process is the same as for a GMM, the state transition probabili-
ties of the HMM tend to eliminate single frame errors in the out-
put. State transitions can still produce edge artifacts, so some post-
processing is still necessary.

This paper presents a framework for incorporating a switching
linear dynamic model (LDM) for clean speech. Like the GMM or
HMM that are normally used, the switching LDM maintains the
concept that, as time progresses, the signal passes through several

distinct states. In addition, the switching LDM enforces a contin-
uous state transition in the feature space, conditioned on the state
sequence.

The major obstacle to using the switching LDM for enhance-
ment is the computational burden that it brings. If the clean speech
model is a GMM or HMM, enhancement of a signal with length
T takes O(T ) time. However, the switching LDM produces an
enhancement algorithm that takes O(eT ) time. Even for short ut-
terances, T is on the order of several hundred frames, and the di-
rect approach is infeasible. To overcome this obstacle, we show
how the generalized pseudo-Bayesian technique [1] can be used to
provide an approximate solution.

The work in [2] bears some similarity to the method described
in this paper, with three important differences. First, the current
paper explores using a switching LDM for speech, whereas the
previous work considered it only for noise. Although there may be
some noise types, such as babble, that may benefit from the power
of the LDM, many stationary noise types would not.

Second, the approximate posteriors are quite different. The re-
sampling approximation in [2] approximates the posterior as a set
of discrete points in the feature space. The current paper represents
the posterior as a sum of Gaussian components.

It also common to separate noise tracking and enhancement,
as is done in [2]. We believe that joint noise and speech tracking
should yield a better enhancement result, and that is the method
followed by this paper.

We present preliminary results demonstrating that, even with
relatively small model sizes, substantial word error rate improve-
ment can be achieved. Section 2 describes the switching LDM
used to model the speech and noise. Section 3 briefly describes
the observation model that we use to unify the speech and noise
models. Section 4 presents the method we use to approximate the
posterior distribution of speech and noise, after the noisy obser-
vations are incorporated. Section 5 analyzes the effectiveness of
different combinations of parameters on improving digit accuracy
under the current test.

2. SYSTEM EQUATIONS

The first step in building the noise removal system is to define a
set of system equations that describe the clean speech process.

2.1. Linear Dynamic Model

A standard LDM obeys the system equation,

xt = Axt−1 + b + vt.
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Here, A and b describe how the process evolves over time, and
vt is a zero-mean Gaussian noise source which drives the system.
LDM are time-invariant, and are useful in describing signals such
as colored stationary Gaussian noise.
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Fig. 1. Graphical representation of the LDM used for noise in this
paper.

This type of system is typically presented as either the graphi-
cal model of Figure 1, or as the equations

p(xt|xt−1) = N(xt; Axt−1 + b, C)

p(xT
1 ) = p(x1)

T∏
t=2

p(xt|xt−1)

2.2. Switching LDM

In a switching LDM, the A and b are dependent on a hidden vari-
able at each time t.

xt = Astxt−1 + bst + vt.

Every unique state sequence sT
1 describes a non-stationary

LDM. As a result, it is appropriate for describing a number of
time-varying systems, including the evolution of speech and noise
features over time.
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Fig. 2. Graphical representation of the switching LDM for speech
used in this paper.

The switching LDM used in this paper assumes time depen-
dence among the continuous xt, but not among the discrete st state
variables. This is typically presented as either the graphical model
of Figure 2, or as the equations

p(xt, st|xt−1) = N(xt; Astxt−1 + bst , Cst)p(st)

p(xT
1 , sT

1 ) = p(x1, s1)

T∏
t=2

p(xt, st|xt−1)

If time-dependence among the discrete state variables were in-
cluded, it would be analogous to modifying a GMM to become an
HMM. This is an obvious improvement that is not explored in this
paper.

2.3. Training

Training the parameters {As}, {bs} and {Cs} is accomplished
using standard EM techniques.

First, the parameters are held fixed to compute the expected of
state occupancy,

γm
t = p(st = m|xT

1 ).

Second, a new set of parameters is found that maximizes the
expected log-likelihood of the data given the model. The result of
this maximization step is:

Am =
(〈xtx

′
t−1〉m − 〈xt〉m〈x′

t−1〉m
) ·(〈xt−1x

′
t−1〉m − 〈xt−1〉m〈x′

t−1〉m
)−1

bm = 〈xt〉m − Am〈xt−1〉m
CM =

〈
(xt − Amxt−1 − bm)(xt − Amxt−1 − bm)′

〉
m

In these equations, we have used the shorthand notation 〈·〉m
to indicate expectation over the training data. For example,

〈xtx
′
t−1〉m =

∑T
i=1 γm

i xtx
′
t−1∑T

i=1 γm
i

.

In the limit of one hidden state, the switching LDM becomes
identical to the LDM, and these same equations can be used to
train the A, b, and C in a single pass.

3. OBSERVATION MODEL

The observation model relates the noisy observation to the hidden
speech and noise features. The model used in this paper is the zero
variance model with SNR inference, which was introduced in [3].
It is similar to several related techniques, including [4, 5, 6].
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Fig. 3. Graphical representation of the observation model used in
this paper. The observation is a non-linear function of speech and
noise.

The observation model assumes that x and n mix linearly in
the time domain, which corresponds with a non-linear mixing in
the cepstral feature space.

An SNR variable r = x− n is introduced to simplify calcula-
tion. If the prior distribution for speech and noise are

x ∼ N(x; µx, Σx), and n ∼ N(n; µn, Σn),

then the joint PDF of the noisy observation y and the hidden vari-
able r can be shown to be,

p(y, r) = N(y − C ln(eDr + 1) + r; µx, Σx)

N(y − C ln(eDr + 1); µn, Σn)

Here, C represents the matrix that rotates log mel-frequency
filterbank outputs into cepstra, and D represents its right inverse,
such that CD = I .

The behavior of this joint PDF is intuitive. At high SNR, r �
0, and

p(y, r) ≈ N(y; µx, Σx)N(y − r; µn, Σn).

That is, the observation is assumed to be clean speech, and the
noise is at a level r units below the observation. The converse is
true for low SNR, where r � 0.
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4. POSTERIOR ESTIMATION

The major problem with computing a posterior under the proposed
system is that the switching LDM makes it computationally in-
tractable.

The switching LDM can take any of M hidden states at each
time frame. As a result, for T frames of speech, there are MT

possible state sequences.
If the state sequence were known, the model would reduce

to a time-varying LDM with known parameters, which is trivially
solvable. The true posterior would contain only one mixture com-
ponent.

When, as in our case, the state sequence is unknown, the exact
answer is a mixture of MT components: one fore each possible
state sequence.

4.1. Generalized Pseudo-Bayesian Technique

One approximations available for reducing the size of the search
space is the generalized pseudo-Bayesian (GPB) algorithm[1]. GPB
assumes that it is not important to keep track of distinct state his-
tories whose differences occur more than r frames in the past.

For r = 1, the posterior is collapsed into M Gaussian compo-
nents at each time step. Each of these components corresponds to
a value the current state might take on. For r = 2, there are M2

unique histories, and a corresponding number of reduced Gaussian
components. In general, the GPB algorithm reduces the inference
complexity from MT to Mr , where we choose r � T .

For each frame of data, three steps are performed in order:
collapse, predict, and observe.

4.2. GPB Collapse

Before processing frame t, we have available Mr Gaussian com-
ponents corresponding to an equal number of unique state histo-
ries. Each component incorporates observations up to yt−1 to pro-
duce a posterior for xt−1.

q(xt−1, y
t−1
1 , st−1

t−r)

The posterior is marginalized over states occurring r frames in
the past. Each sum of Gaussians is approximated by a single Gaus-
sian component using moment matching. This collapses together
all Gaussians that share a history of length r − 1.

q(xt−1, y
t−1
1 |st−1

t−r+1)

≈
∑
st−r

p(xt−1, y
t−1
1 |st−1

t−r+1)p(st−r)

4.3. GPB Predict

The second, prediction, step is to branch out each remaining hy-
potheses M times, once for each possible state st.

q(xt, y
t−1
1 |st

t−r+1)

=

∫
q(xt−1, y

t−1
1 |st−1

t−r+1)p(xt|xt−1, st)d xt−1

Because all of the distributions are Gaussian, the marginaliza-
tion is trivial.

4.4. GPB Observe

At this point, we have Mr components that describe xt, but the
current observation yt has not been accounted for. Incorporating
the current observation allows us to produce a posterior distribu-
tion for xt that includes all observations up to and including yt.

Because the observation model is non-linear, we must use the
approximation from Section 3. The prior distribution for the hid-
den variables comes from the output of the prediction step. The
output of the approximate observation model is the posterior dis-
tribution,

q(xt, y
t
1|st

t−r+1)

4.5. Enhancement

In addition to serving as the input for the next frame to process, this
approximate Gaussian posterior can also be used to produce esti-
mates of the moments of xt. It is these moments that we use to per-
form noise robust recognition. The MMSE estimate E[xt|yt

1] can
be fed directly to a traditional recognition system, or augmented
with the second moment for use with uncertainty decoding[7].

q(xt, y
t
1) =

∑
st

t−r+1

q(xt, y
t
1|st

t−r+1)p(st
t−r+1)

E[xt|yt
1] ≈

∫
xtq(xt, y

t
1)d xt∫

q(xt, yt
1)d xt

E[(xt)
2|yt

1] ≈
∫

(xt)
2q(xt, y

t
1)d xt∫

q(xt, yt
1)d xt

5. RESULTS

The experiments presented here were conducted using the data,
code, and training scripts provided within the original Aurora 2
task[8].

The Aurora 2 task consists of recognizing strings of English
digits embedded in a range of artificial noise conditions. Although
the framework provides for evaluation against many noise condi-
tions under different training strategies, we present here results for
test set A with clean acoustic model training only. The objective of
the current experiments is to test the feasibility and behavior of the
approximation method before moving to more complex inference
algorithms.

The acoustic model used for recognition is the standard “com-
plex back-end” trained on uncorrupted, unprocessed data. It con-
tains eleven 16-state whole-word models, in addition to the “sil”
and “sp” models. Each state consists of 20 diagonal Gaussian mix-
ture components.

To conform with our observation models, the feature genera-
tion was modified slightly from the reference implementation. In
particular, we replaced the log energy feature with c0, and changed
from using spectral magnitude to using power spectral density as
the input to the mel-frequency filterbank.

All of the experiments use the same set of global speech mod-
els. Eight models were built using the procedure outlined in Sec-
tion 2. Each model contained between 1 and 128 hidden states.

For each utterance, an utterance-specific noise model is built.
It consists of a single Gaussian mixture component, with parame-
ters trained on the first and last ten frames of the noisy utterance.
The model assumes that the noise frames are independent over
time. Since our algorithms also produce posterior noise estimates,
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M Subway Babble Car Exhibition Ave.
0 65.75 43.17 57.54 67.84 58.58
1 73.10 61.58 80.09 71.57 71.59
2 74.74 64.19 81.81 73.55 73.57
4 80.40 65.11 85.42 76.90 76.96
8 80.47 66.88 86.06 78.11 77.88
16 80.55 67.52 86.19 77.82 78.02
32 83.20 69.63 86.98 79.25 79.76
64 83.57 68.84 87.41 79.24 79.76
128 83.70 69.69 87.36 79.12 79.97

Table 1. Accuracy on Aurora 2, Set A. Results are average across
0 dB to 20 dB conditions. Enhancement is performed in forward
direction only.

it is conceivable that the noise model could be adapted with an
on-line EM algorithm.

The enhancement algorithm was run with the history param-
eter r = 1, which makes it run almost at the same speed as an
equivalent system built with a GMM or HMM.

5.1. Causal Enhancement

The enhancement algorithm, as described in the previous section,
was run on each utterance of the test set. Enhancement of frame t
used knowledge of data up to and including frame t. There was no
lookahead. The results are listed in Table 1.

The “Car” noise type benefits the most from this algorithm. It
is also the noise type that is most stationary, and therefore matches
the modeling assumptions well.

5.2. Non-causal Enhancement

The causal enhancement algorithm tended to suppress the begin-
ning of each word, but not the end. This was usually accompanied
by a high second order central moment in the posterior. This is
consistent with the algorithm being unsure whether it was seeing
the beginning of the utterance, or slightly more energetic noise.

To overcome this problem, we ran the entire utterance through
the algorithm twice. The first time, just as before, produced a
posterior from running the signal through in the forward direc-
tion: q(x|µF , ΣF ). The second pass was run by passing the input
through in reverse time order: q(x|µB , ΣB). The two passes were
combined using the heuristic,

µ = (Σ−1
F + Σ−1

B )−1(Σ−1
F µF + Σ−1

B µB).

This has the desired result of choosing µB when ΣF is large, and
choosing µF when ΣB is large. Results are shown in Table 2. The
improvement is noticeable, especially for very small model sizes.

6. SUMMARY

This paper has presented a unified, nonlinear, non-stationary, stochas-
tic model for estimating and removing the effects of background
noise on speech cepstra. The model is the union of dynamic sys-
tem equations for speech and noise, and a model describing how
speech and noise are mixed.

Preliminary results have indicated that this model can reduce
digit error rate, even with relatively small number of mixture com-
ponents.

M Subway Babble Car Exhibition Ave.
0 65.75 43.17 57.54 67.84 58.58
1 76.52 68.26 83.87 76.18 76.21
2 77.04 70.05 84.46 76.53 77.02
4 80.91 69.35 86.51 77.61 78.60
8 81.40 70.95 87.22 79.39 79.74
16 81.55 71.31 87.52 79.42 79.95
32 83.59 72.36 87.82 80.19 80.99
64 84.06 72.07 88.28 80.33 81.18
128 84.14

Table 2. Accuracy on Aurora 2, Set A. Results are average across
0 dB to 20 dB conditions. Forward and backward enhancement are
combined.

To expand upon this initial result, future work should include:

• Increasing r to more closely approximate the true posterior
distribution.

• Modeling the linear dynamics of noise in addition to speech.

• Augmenting the switching LDM with discrete state transi-
tion probabilities.

• Exploring other approximation strategies for this system.
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