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Abstract—Two feature extraction and compensation algorithms,
feature-space minimum phone error (fMPE), which contributed
to the recent significant progress in conversational speech recogni-
tion, and stereo-based piecewise linear compensation for environ-
ments (SPLICE), which has been used successfully in noise-robust
speech recognition, are analyzed and compared. These two algo-
rithms have been developed by very different motivations and been
applied to very different speech-recognition tasks as well. While
the mathematical construction of the two algorithms is ostensibly
different, in this report, we establish a direct link between them.
We show that both algorithms in the run-time operation accom-
plish feature extraction/compensation by adding a posterior-based
weighted sum of “correction vectors,” or equivalently the column
vectors in the fMPE projection matrix, to the original, uncompen-
sated features. Although the published fMPE algorithm empiri-
cally motivates such a feature extraction operation as “a reason-
able starting point for training,” our analysis proves that it is a
natural consequence of the rigorous minimum mean square error
(MMSE) optimization rule as developed in SPLICE. Further, we
review and compare related speech-recognition results with the use
of fMPE and SPLICE algorithms. The results demonstrate the ef-
fectiveness of discriminative training on the feature extraction pa-
rameters (i.e., projection matrix in fMPE and equivalently correc-
tion vectors in SPLICE). The analysis and comparison of the two
algorithms provide useful insight into the strong success of fMPE
and point to further algorithm improvement and extension.

Index Terms—Discriminative training, feature compensation,
feature extraction, hidden Markov model, minimum classification
error, minimum phone error, piecewise linear mapping, posterior
probability, speech processing.

1. INTRODUCTION

ECENT significant progress in large vocabulary conver-

sational speech recognition is largely attributed to a novel
feature extraction technique based on the use of posterior prob-
abilities as intermediate “features” in conjunction with discrim-
inative training [8]. The technique, called feature-space min-
imum phone error (fMPE), however, has not been well under-
stood in terms of its inner workings and of its surprisingly good
performance. For example, the new posterior-based features in
fMPE are added to the traditional perceptual linear prediction
(PLP) cepstral-based features, instead of appending to them, as
commonly done with the use of posterior-based features (e.g.,
[16]) and other types of features such as delta/acceleration pa-
rameters (e.g., [9]). On the other hand, a different class of suc-
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cessful speech feature extraction techniques has been designed
for the purpose of compensating for acoustic environment dis-
tortions of the speech signal. This technique, called stereo-based
piecewise linear compensation for environments (SPLICE) [1],
[3], [13] has been motivated by the goal of robust speech recog-
nition against noise, a very different one from fMPE, which is
aimed at conversational speech recognition with minor acoustic
environment distortions. The purpose of this letter is to analyze
fMPE and SPLICE algorithms in the same light of mathemat-
ical construction and to establish their equivalence in the under-
lying algorithmic operation. It is our hope that this analysis and
comparison can not only provide a better understanding of both
algorithms—fMPE in particular—but can also serve to point to
further algorithm improvement and extension.

II. ANALYSIS OF fMPE ALGORITHM

The feature extraction algorithm fMPE recently published in
[8] can be succinctly described by the following computation in
run time:

y: = %Xt + Mh, (H

where x; € RP is the original low-dimensional feature vector
(dimension p x 1) at time frame ¢, y; € R? is the new feature
vector extracted by the algorithm, h; € R? is an intermediate,
high-dimensional feature vector (¢ > p) whose elements con-
sist of posterior probabilities p(k|x;)

hy = (p(1xe), p(2]x1), - - p(alxe))’ @

and M € RP*Y is a transformation matrix that projects the
high-dimensional vector h; into the subspace of dimension p.
In the highly successful implementation of fMPE algorithm re-
ported in [8], the dimensionalities above are set to be p = 39,
q ~ 700 000. Also, matrix M is trained via minimizing the dis-
criminative objective function known as minimum phone error
(MPE) [7] by gradient descent. This training is embedded in it-
eration, where each updated fMPE feature set is used to retrain
hidden Markov model (HMM) parameters via maximum like-
lihood. The calculation of the gradient takes into account the
change of the HMM parameters after such retraining.

We now analyze the above fMPE algorithm by decomposing
the second term in (1) into a large number of individual compo-
nents.

A. Decomposition Scheme 1

The first scheme of decomposition is to block the long, rec-
tangle matrix M € RP*4 into many smaller, square matrices
MO e RPXP_j=1,2,..., n = q/p, and block the long vector

h; into subvectors hgi) eRP, 1 =1,2,..., n. Here, 7 denotes
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Fig. 1. Decomposition of the fMPE’s projection matrix.

the block index, and n is the total number of blocks when ¢ is
an integer number of p. The blocking of these matrix and vector
can be illustrated in Fig. 1.

This then gives the decomposed form of (1)

ye=x+ Y MOh, 3)
=1

Equation (3) offers the following interpretation of fMPE: Com-
pensation of the original feature x; is carried out by adding a
large number of bias vectors, each of which is computed as a
full-rank rotation of a small set of posterior probabilities. This
contrasts the original interpretation of (1) as a projection of a
very high-dimensional posterior-probability vector into a sub-
space with a much smaller dimension. Under this original inter-
pretation, numerical difficulties would prevent maximum-like-
lihood estimation of matrix M € RP*? (due to its nonsquare
nature where ¢ > p). Under the interpretation expressed in (3),
approximations can be easily made to remove the numerical dif-
ficulties in carrying out maximum-likelihood estimation. One
straightforward approximation is

Y =Xt + Z M(i)hgi) ~ Xt + M(ix)hgi*) 4
=1

where ¢+* denotes the term on the right-hand side of (3) that is
greater than all the remaining (n — 1) terms. In fact, the ap-
proximation of (4) and the related maximum-likelihood estima-
tion has been successfully implemented in the study of [12] and
[14], giving noticeable performance improvement in noise-ro-
bust speech recognition.

B. Decomposition Scheme 2

In analyzing the fMPE algorithm in (1), we have developed
a second decomposition scheme for the term Mh, in (1). In
this scheme, matrix M is decomposed into a total of g vectors
column-wise: my, & = 1,2,...,q, (i.e., each column vector

IEEE SIGNAL PROCESSING LETTERS, VOL. 12, NO. 6, JUNE 2005

my, € RP constitutes a “block™). Then, (1) can be rewritten as

vt =x¢ + Mh; = x¢ + [my,my, ..., my][hy,..., hy|
q q
=x;+ Y himy =x+ Y p(klx)my. ®)
k=1 k=1

An interpretation of the decomposed form of (5) is as fol-
lows: The final extracted feature by fMPE is the original (PLP)
cepstral feature compensated by a frame-dependent bias vector.
The compensation vector consists of a linear weighted sum of a
set of frame-independent correction vectors, where the weight
is the posterior probability associated with the corresponding
correction vector. It is worth noting that the bias-compensation
interpretation of fMPE above bears some resemblance to the
feature-space stochastic matching approach developed for en-
vironment-robust speech recognition [10], [11]. The key differ-
ence is, however, that the bias vector for compensation in fMPE
is specific to each time frame ¢, whereas the bias vector in fea-
ture-space stochastic matching is common over all frames in the
utterance. Such frame dependence is due to the posterior weight
p(k|x¢) in (5), which is specific to each frame. Additional differ-
ences are retraining of the HMM parameters after feature com-
pensation and discriminative training of the base bias vectors
instead of maximum-likelihood training.

Importantly, the decomposed form of (5) for the fMPE algo-
rithm in run-time operation also establishes its equivalence to
the SPLICE algorithm, which is constructed by a formal opti-
mization principle and which we review and analyze now.

III. ANALYSIS OF SPLICE ALGORITHM

The original version of SPLICE was developed for solving
the noise robustness problem for speech recognition and was
published in [1] and [2]. SPLICE assumes that the noisy speech
cepstral vector x, € R? is distributed according to a mixture
of ¢ Gaussians. (This is analogous to the assumption in fMPE
that the original cepstral feature set x; € R? are used to create
q Gaussian clusters as the basis for generating g-dimensional
posteriors as intermediate “features” subject to further projec-
tion [8].) These Gaussians, called “codebook’ in the SPLICE
literature, partition the acoustic space in terms of noisy speech
x, and the parameters of the Gaussians are determined by per-
forming VQ followed by training each of the means and vari-
ances in the Gaussians using the training vectors classified into
the corresponding VQ codewords.!

The SPLICE algorithm further assumes that the true, unob-
served clean speech feature vector y, and its corresponding
noisy speech counterpart x; are “piecewise linearly’2 related ac-
cording to

Vi =Xt +r(Xe) & X+ 1i(X4) (6)

where i(x) is an index to the “correction vector” r of the mixture
component to which x; belongs. That is, the index determines

ITn this paper, we use x to represent the noisy speech’s cepstral features (anal-
ogous to the original PLP-cepstral features before applying fMPE) and y to rep-
resent the enhanced speech features (analogous to the final fMPE-compensated
features). In our original SPLICE publications [1], [2], x was used to represent
clean speech features and y noisy speech features.

2The “slope” (or rotation) in the linear relationship is assumed to be unity
(i.e., rotation by identity matrix) in the SPLICE implementation for saving pa-
rameters. Only the “intercept” (or bias) is used here.
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which “piece” of the local linear approximation is used for the
“piecewise” linear approximation to the nonlinear relationship
between the noise and clean speech feature vectors.

Given these assumptions, the SPLICE feature compensation
algorithm can be rigorously derived using the minimum mean
square error (MMSE) rule as follows:

Vi= / yip(yi|xe)dy: ~ / (x¢ + 13)p(ye|xe)dy:

Yt Yt

. . 4
:Xt+/ri(x)p(yt|xt)dyt: Xt+/zrip(yw’|xt)d}’t
Yi =1

Yt

q q
—xi+ 3o [ pvnildye=x+ 3 plixor. (0
1=1 - 1=1
Yt

The posterior probabilities in (7) in the SPLICE algorithm of
[1] and [2] were computed from Bayes rule using the clustered
parameters in the mixture of Gaussians for x, in the same way
as the posterior features are computed in fMPE reported in [8]
(both used identical mixture weights or no prior for Gaussians).
Hence, the run-time operation of the SPLICE algorithm in (7) is
exactly the same as that of the fMPE algorithm in (5). Here, the
correction vectors r; in SPLICE are equivalent to the column
vector m; in the fMPE projection matrix M.

The fMPE algorithm, as presented in [8], is empirical; in par-
ticular, the addition (instead of appending) of the transformed
high-dimensional posterior features to the original cepstral fea-
tures was justified in terms of a way of reasonable initialization
for the fMPE parameter training. In contrast, the above anal-
ysis on the SPLICE algorithm demonstrates that the operation
of the addition is a natural consequence of the rigorous MMSE
optimization rule. Since (7) is derived based on the assumption
that noisy and clean speech features are piecewise linearly re-
lated, the practical success of the fMPE algorithm on conversa-
tional speech, as reported in [8], suggests that the relationship
between the highly effective fMPE features (after compensa-
tion) and the less effective (PLP) cepstral features (before com-
pensation) may also be adequately described by piecewise lin-
earity for conversational speech.

IV. COMPARISONS OF fMPE AND SPLICE ALGORITHMS

A. Algorithm Comparison

The equivalence of fMPE and SPLICE algorithms in run
time was established above, both drawing on the fact that
feature extraction and compensation are accomplished by
adding a posterior-based weighted sum of correction vectors
to the original features.? The main difference between the two
algorithms lies in the ways of training these correction vectors.

31t is noted that the VTS algorithm originally proposed in [6] for environ-
ment-robust speech recognition also uses posterior-based sum of linear correc-
tions. Two main differences from SPLICE/fMPE are as follows: 1) the VTS
algorithm works in the domain of log filter bank energy instead of cepstrum,
and 2) the “codebook” (i.e., mean vectors of Gaussians for posterior computa-
tion) in the VTS algorithm is created from clean speech, and the “codebook” in
SPLICE/AMPE is created from distorted speech. For conversational speech for
which fMPE was developed, it is impossible to create the codebook from ideal-
ized, undistorted speech (analogous to clean speech, as in the VTS algorithm).
Also, in [2], it is shown experimentally that the use of distorted speech to create
the “codebook” (consistent with fMPE) performs much better than the use of
undistorted speech for noise-robust speech recognition.

TABLE 1
WER FOR (LEFT) SPLICE ALGORITHM AND FOR (RIGHT) fMPE
ALGORITHM EVALUATED IN AURORA2 TASK AND IN DARPA-EARS
RICH-TRANSCRIPTION-2004 CONVERSATIONAL TELEPHONE

SPEECH-RECOGNITION TASK, RESPECTIVELY. LATTER WER NUMBERS ARE
EXTRACTED FROM FIG. (1b) IN [8] FOR THE SPEAKER ADAPTED SYSTEM. WER

RESULTS WITH SIMILAR (ANALOGOUS) TECHNIQUES ARE LISTED ON THE
SAME LINES. NOTE WHILE THE EVALUATION TASKS FOR SPLICE AND fMPE
ARE DIFFERENT, SIMILAR RELATIVE WER REDUCTIONS ARE APPARENT WITH

ANALOGOUS TECHNIQUES IN BOTH ALGORITHMS

SPLICE-Related Performance
(WER on Aurora2 task)
13.0%

fMPE-Related Performance
(WER on Conversational Telephone Speech)
22.0%

Baseline (Cepstral features; no
SPLICE; ML-trained HMMs)

Baseline line (Cepstral features, no
fMPE, ML-trained HMMs)

ML training of correction vectors 11.8% - ML training of projector matrix

Discriminative training of 10.9% 20.2% Discriminative training of projector

correction vectors (MCE) matrix (MPE) imbedded in ML training
of HMM parameters

MPE training of HMM

MCE training of HMM 10.0% 20.9%

parameters alone parameters alone

Joint MCE on correction vectors & 9.2% 19.2% | MPE training of projector matrix

HMM parameters followed by MPE training of HMM

parameters

In the early versions of SPLICE [1], [2], the maximum-likeli-
hood estimate was derived and effectively used assuming the
availability of stereo training data (i.e., simultaneous clean
and distorted speech). This requirement was removed in two
extended versions of the SPLICE algorithm—one with new
maximum-likelihood training [12] and another with discrimi-
native training based on the criterion of minimum classification
error (MCE) [13], [15]. The discriminative version of SPLICE
becomes close to the fMPE implementation in [8], where the
objective function in the training is MPE instead of MCE. Both
require no expensive “stereo” data.

Additional differences between the fMPE and SPLICE algo-
rithms are the slightly different ways of using frame context ex-
pansion in determining the posterior weights and of performing
the estimate’s smoothing (see [4], [S], and [12] for details of
SPLICE in these two aspects of implementation). Also, the size
of the Gaussian codebook used in SPLICE is much smaller
than that in fMPE, because the amount of training data avail-
able in the benchmark evaluation task (Aurora) for SPLICE is
much smaller than that in the DARPA/EARS conversation tele-
phone speech-to-text task for fMPE. Finally, scheduling of it-
erative gradient-descent-based feature updates and HMM pa-
rameter updates in fMPE [8] is slightly different from that in
the SPLICE with MCE training (which is also gradient-descent
based [12], [13]).

B. Performance Comparison

Here, we provide some speech-recognition performance
comparison between the fMPE and SPLICE algorithms (which
are formally equivalent in run rime but differ in training, as
analyzed above). The left side of Table I shows WERs for the
various versions of the SPLICE algorithm evaluated on the
Aurora?2 task (noisy connected-digit recognition [4], [13]), and
the right side of Table I shows WERs for the fMPE algorithm
constructed in various ways evaluated on the DARPA-EARS
rich-transcription-2004 evaluation task for conversational
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telephone speech [data extracted from Fig. (1b) in [8] for the
speaker adapted system]. In arranging these WER results, sim-
ilar techniques in training are listed on the same lines. Since the
rich transcription task is much more difficult than the Aurora2
task, the WER is substantially higher. However, relative WER
reduction after applying the fMPE and SPLICE algorithms
in several ways is generally consistent. One exception is that
discriminative training applied to HMM parameters alone gives
lower WER than applied to features (correction vectors) alone
for SPLICE (from 10.9% to 10.0%), but the opposite holds for
fMPE (20.2% versus 20.9%).

Note in Table I that ML training of the correction vectors in
SPLICE gives sizable WER reduction (from 13.0% to 11.8%).
Such training was made possible due to the analogous decompo-
sition Scheme-I in SPLICE and to the related approximation, as
discussed in Section II-A. No ML results are available for fMPE.
Indeed, without decomposition and approximation, the compu-
tation for rigorous ML training would be prohibitive—matrix
inversion of g x ¢ = 700000 x 700 000 in size would be re-
quired.

V. SUMMARY AND CONCLUSION

Two feature extraction and compensation algorithms, fMPE
and SPLICE, are analyzed and compared. While SPLICE is mo-
tivated by noise-robust speech recognition, where the main dif-
ficulty is acoustic environment variations, fMPE is motivated
by conversational speech recognition, where the main difficulty
is speaking style variations. Feature extraction in fMPE is for-
mally formulated as a projection of large-dimensional poste-
rior-based intermediate “features” into a small subspace with
the same dimensionality as the commonly used cepstral fea-
tures (e.g., 39), where the result of projection is treated as a
bias vector. This algorithm construction was justified as “a rea-
sonable starting point for training” [8]. We analyzed such al-
gorithm construction via matrix/vector decomposition and con-
cluded that it is equivalent to the run-time algorithm operation
in SPLICE, where feature compensation is accomplished by
adding a posterior-based weighted sum of “correction vectors”
(equivalent to the column vectors in the fMPE projection ma-
trix) to the uncompensated features. Since SPLICE is developed
using the rigorous MMSE optimization principle, the same prin-
ciple applies to fMPE as well. In addition to the above analysis,
various aspects of training in fMPE and SPLICE, as well as their
performances in two speech-recognition tasks, are compared,
and their differences are noted. It is hoped that this analysis and
comparison can not only provide a better understanding of the
inner workings of fMPE responsible for its apparent success but
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can also serve to point to further algorithm improvement and ex-
tension. One simple example of such extension is to generalize
the bias-only compensation to include rotation compensation as
well. The mathematical underpinning of this more general form
of compensation was briefly discussed in [1] in the context of
SPLICE and noise robustness.
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