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Abstract
SPLICE is a front-end technique for automatic speech recog-
nition systems. It is a non-linear feature space transformation
meant to increase recognition accuracy. Our previous work
has shown how to train SPLICE to perform speech feature en-
hancement. This paper evaluates a maximum mutual informa-
tion (MMI) based discriminative training method for SPLICE.
Discriminative techniques tend to excel when the training and
testing data are similar, and to degrade performance signifi-
cantly otherwise. This paper explores both cases in detail us-
ing the Aurora 2 corpus. The overall recognition accuracy of
the MMI-SPLICE system is slightly better than the Advanced
Front End standard from ETSI, and much better than previ-
ous SPLICE training algorithms. Most notably, it achieves this
without explicitly resorting to the standard techniques of envi-
ronment modeling, noise modeling or spectral subtraction.

1. Introduction
Automatic speech recognition systems without explicit provi-
sions for noise robustness degrade quickly in the presence of
additive noise. As a consequence, how to best add noise robust-
ness to such systems is an area of active research.

SPLICE (stereo piecewise linear compensation for environ-
ment) [1] is a powerful method for normalizing and enhancing
features. Given enough parameters, it can approximate any fea-
ture transformation with a high degree of precision.

In its original ML-SPLICE formulation, two synchronous
feature streams were needed to train the SPLICE parameters.
By using noisy and clean feature streams, SPLICE learned an
effective speech enhancement function.

There has been recent interest in producing discrimina-
tively trained linear transformations of the feature space, such
as MCMIP[2], MCELR[3] and MPE-HLDA[4]. By tying the
transform parameters to recognition accuracy, these methods
achieve modest improvements over LDA and HDA[5]. But, be-
ing linear transformations, they are quite limited.

A natural extension is to discriminatively train a non-linear
transformation of the feature space. This is the approach taken
by MCE-SPLICE[6], fMPE[7], and the method presented in
this paper, MMI-SPLICE. For a comparison of SPLICE and
fMPE, see [8].

MMI-SPLICE is much like SPLICE, but without the need
for target clean features. Instead of learning a speech enhance-
ment function, MMI-SPLICE learns to increase recognition ac-
curacy directly with a maximum mutual information objective
function. It retains the concept of source and target feature
spaces from ML-SPLICE, but now the target is allowed to take
whatever values increase the MMI objective function.
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he overhead for the SPLICE runtime is small. Most of
fort is in calculating a few hundred Gaussian posteriors.
se MMI-SPLICE and ML-SPLICE only differ in the way

are trained, MMI-SPLICE shares these light runtime re-
ments.
his paper presents a suitable training algorithm for MMI-
CE, with results on the Aurora 2 corpus[9]. This corpus
resting because it lets us see how the algorithm behaves

data that is similar to the training data (Set A), as well as
ts that differ in noise type (Set B) and channel (Set C).
significant consideration in designing any discriminative

ng algorithm is over-training. Two different over-training
tions are examined. First, how well does MMI-SPLICE
alize when the conditions in the training set match those
test set? Experimental results on test set A demonstrate

or this case, word error rate can be improved substantially.
econd case is when the conditions in the training set do not
ly match those in the test set. Experimental results on test
show that, even for mismatched noise conditions, small
are possible.
his paper is organized as follows. Section 2 covers the
CE transformation and demonstrates hot to use a gradient-

technique to do MMI training of the offset parameters.
n 3 describes the experimental setup, as well as how the
eter update equations are approximated. Section 4 dis-

s the behavior of the complete system to both seen and
n noise conditions.

2. The SPLICE Transform
PLICE transform was introduced as a method for over-
g noisy speech [1]. SPLICE takes noisy acoustic obser-
s y, and produces clean estimates x̂.
he relationship between x and y is modeled as a con-
ed Gaussian mixture model (GMM). An auxiliary variable
introduced to index the hidden state of the GMM.

p(x, y, m) = p(x|y, m)p(y|m)p(m)

p(y|m) = N(y; µm, σm)

p(x|y, m) = N(x; Amy + bm, γm)

he SPLICE transform fλ(y) is the MMSE estimate of x,
y and the model parameters λ. In effect, the GMM in-
a piecewise linear mapping from y to x.

x̂ = fλ(y) = E[x|y]

=
∑

s

E[x|y, m]p(m|y)

=
∑
m

(Amy + bm)p(m|y) (1)



In most SPLICE implementations, the conditional mapping
of y to x given s is a simple offset (As = I), although including
the rotation As can provide better recognition accuracy with
fewer mixture components.

In [1], a maximum likelihood training procedure was used
which assumes both x and y are observable during training.
When y is a distorted, noisy version of clean speech x, this
ML-SPLICE (maximum likelihood SPLICE) learns a transfor-
mation for enhancing noisy speech.

In this work, a discriminative training procedure is intro-
duced. This eliminates the necessity of providing observable
clean features x. Where ML-SPLICE learns a transformation to
a fixed oracle feature space, MMI-SPLICE is only concerned
with improving the accuracy of the end-to-end system. Al-
though the training procedure is drastically different, the run-
time code remains unchanged.

2.1. Gaussian Mixture Model Training

All of the results in this paper were obtained from Gaussian
mixture models (GMM) with a tied covariance structure. Mean
parameters were initialized by selecting K vectors uniformly
spaced throughout the noisy training data. The variance pa-
rameters were initialized to unit covariance. Ten iterations of
expectation-maximization training were performed to refine the
model parameters.

2.2. SPLICE Offset Parameter Training

The SPLICE offset parameters were trained to maximize a MMI
criteria over the noisy training data. The initial value chosen
for the offset parameters was zero, corresponding to an identity
transform of the acoustic data.

For R training observation sequences {Y1, . . . ,YR} with
transcriptions {w1, . . . , wR}, the MMI objective function is the
composition of three functions: The global objective function,
the per-utterance objective function, and the feature transforma-
tion.

F =
∑

r

Fr (2)

Fr = ln
p(Xr, wr)∑
w p(Xr, w)

(3)

Xr = fλ(Yr) (4)

The global objective function F is a linear sum of the objective
function for each utterance, Fr .

The per-utterance objective function is the log of the condi-
tional probability of the correct transcription, under the current
acoustic model, given the acoustics. Ideally, the sum in the de-
nominator of Eq. 3 is taken over all permissible transcriptions
for the current utterance.

The features Xr are the SPLICE-transformed input to the
speech recognition system for utterance r.

A direct optimization of Eqs. 2-4 with respect to the model
parameters λ is intractable. Instead, we use a gradient-based
linear method.

To use a gradient-based method, it is necessary to compute
the partial derivative of F with respect to the free model param-
eters. Fortunately, the structure of the objective function allows
a simple application of the chain rule.

Every Fr is a function of many acoustic model state condi-
tional probabilities p(xr

t |sr
t ). Each of these is, in turn, a func-

tion of the SPLICE-transformed features xr
it. And, each trans-
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∂F
∂λ

=
∑

r,t,sr
t ,i

∂Fr

∂ ln p(xr
t |sr

t )

∂ ln p(xr
t |sr

t )

∂xr
it

∂xr
it

∂λ
(5)

he first term in Eq. 5 captures the sensitivity of the objec-
unction to individual acoustic likelihoods in the model. It
e shown to be equal to the difference of the conditional and
ditional posterior, with respect to the correct transcrip-
These are simply the numerator and denominator terms
ccur in standard MMI estimation[10].

∂F
∂ ln p(xr

t |sr
t )

= p(sr
t |Xr, wr) − p(sr

t |Xr)

= γnum
sr

t
− γden

sr
t

(6)

he second term in Eq. 5 captures the sensitivity of in-
al likelihoods in the acoustic model with respect to the

CE-transformed features. Computing this differential is a
e matter.

∂ ln p(xr
t |sr

t )

∂xr
t

= −Σ−1
sr

t
(xr

t − µsr
t
) (7)

he final term in Eq. 5 captures the relationship between the
ormed features and the SPLICE parameters. In this paper,
he SPLICE offset parameters are adapted. The differential
s from the definition of the SPLICE transform, Eq. 1.

∂xr
it

∂bjm
=

∂

∂bjm

(
yr

it +
∑
ḿ

biḿp(ḿ|yr
t )

)

= 1(i = j)p(m|yr
t ) (8)

1() is an indicator function that takes the value 1 when its
ent is true, and zero otherwise.

inally, the complete gradient can be expressed concisely.

=
∑

r,t,sr
t

p(m|yr
t )

(
γnum

sr
t

− γden
sr

t

)
Σ−1

sr
t

(µsr
t
− xr

t ) (9)

he gradient is then used to update the SPLICE parameters
h a way as to increase the objective function. Any gra-
ascent method can be used, such as conjugate gradient or
, but for this paper we chose to mimic the dynamic gradi-
aling detailed in [7].

3. Experimental Setup
The AURORA 2 Task

xperiments presented here were based on the data, code,
aining scripts provided within the Aurora 2 task[9]. The
onsists of recognizing strings of English digits embedded

ange of artificial noise conditions.
he acoustic model (AM) used for recognition was trained
the standard “complex back-end” Aurora 2 scripts on the
-condition training data. This data consists of 8440 utter-
, and includes all of the noise types seen in test set A, at a
t of the SNR levels.
he AM contains eleven whole word models, plus sil and
nd consists of a total of 3628 diagonal Gaussian mixture
onents, each with 39 dimensions.
ll results presented in this paper include whole-utterance

ral mean normalization and automatic gain normalization.
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Figure 1: Performance on test set A, which matches the multi-
style training data. Increasing GMM size improves peak per-
formance, as well as accentuating over-training behavior.

3.2. Approximating the Gradient with Lattices

Eq.6 requires computation of acoustic model state and mixture
component posterior probabilities. Since exact computation can
be somewhat resource intensive, the posteriors were approx-
imated on word lattices generated by the baseline maximum
likelihood multi-condition acoustic model. The time marks in
the lattices were held fixed, and forward-backward was used
within each arc to determine arc conditional posterior probabil-
ities.

Denominator lattices were used to compute the posterior
p(sr

t |Xr). These were generated from unprocessed acoustic
data, the full digit language model, and the multi-condition
acoustic model. The HVite recognizer was used to produce
a lattice equivalent to an N-best recognition with five tokens.

Numerator lattices were used to compute the posterior
p(sr

t |Xr, wr). These were generated from unprocessed acoustic
data, the correct transcription, and the multi-condition acoustic
model. The HVite recognizer was used to generate a forced
alignment of the correct transcription, which was then trans-
formed into a single-path lattice.

4. Results
Recognition experiments were performed on test sets A, B, and
C, with SPLICE models ranging in size from 64 components to
16384 components

4.1. Test Set A

The MMI criterion optimizes the end-to-end recognition system
with respect to the data seen in the training set. The system
should perform best on test data which is similar to the training
set.

Figure 1 shows word error rate (WER) measures for test
set A, which is fairly well matched to the multi-condition train-
ing data. The baseline WER is 7.16%, which is improved upon
by all tested configurations under eight iterations.

The 64-component model is interesting, in that it doesn’t
appear to suffer from over-fitting the training data. It gets under
6.8% WER in just two iterations, and then flattens out. This
shows that if you have similar training and testing data, a small
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e 2: Performance on test set B, which contains unseen
types. The first MMI-SPLICE training iterations decrease

, but subsequent iterations rapidly degrade the system.

CE model can produces reasonable performance gains for
n test data, while being quite robust to over-training.
s the model size is increased, three trends become appar-
irst, peak performance constantly improves. Second, the
er of iterations to achieve peak performance increases. Fi-
the effect of over-training becomes quite dramatic.
he best performing configuration corresponds to the
t model size, 16384 mixture components. At this size, the

CE model has over twice as many parameters as the back-
coustic model. A peak performance of 6.37% occurs after
iterations. This represents a relative error rate reduction
% over the baseline.

Test Set B

dditive noises present in test set B have similar long-term
ra to the noises in the multi-condition training data, but
derived from different sources. Examining system perfor-
e on this test set illustrates the system’s behavior against
n noise conditions.
ne would expect a discriminative technique to fail when

nted with test data that is dissimilar to the training set. This
ot entirely the case for set B. Against expectations, the first
ions were actually slightly better than the baseline.
igure 2 shows the WER measures for test set B. The base-
ER is 7.38%. All tested configurations improve the WER

ly in the first two iterations, and then deteriorate with fur-
raining.
he 64-component model is the most immune to over-
ng. Each of the first four iterations improve upon the base-
Even after ten iterations, the degradation is still reasonable.
eak performance for the 64-component model occurs af-
o iterations, an accuracy of 7.27%, a reduction of 1.5%
e from the baseline.
s the model size is increased, over-training becomes more
ent. The MMI-SPLICE parameters are optimizing against
types that do not occur in this test set. After only four

ions, all of the configurations have lost whatever gain they
chieved, and most are worse than the baseline.
he best performance is achieved by the largest models, af-
ly one iteration. The model with 16384 components has a
of 7.21%, which represents only a 2.3% relative reduction
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Figure 3: Performance averaged over test sets A, B, and C.
Larger models produce better peak accuracies.

over the baseline.
If your training data and testing data contain dissimilar

noise conditions, a small gain can still be achieved with MMI-
SPLICE. The best solution is to use either a small number of
components in the model, or to limit to one iteration to avoid
over-training.

4.3. Average Performance

Figure 3 shows how the global average error rate metric for Au-
rora 2 is affected by model size and number of iterations. This
average error rate is the standard weighted mean of the perfor-
mance in sets A, B, and C. Set C contains a subset of noises
found in sets A and B, with an additional linear filter applied,
and is not presented separately in this paper.

For less than five iterations, the shape graph is dominated by
the performance on Set A. In this region, Set A is experiencing
great performance gains (ranging from 5% to 10% relative), and
set B is either gaining or losing less than 2% relative.

As a result, the dominant trends are quite similar to the dis-
cussion of set A above. There is a broad valley in the error rate
curve that a system designer can target.

The 16384-component model performs best. It has an aver-
age WER of 6.7% after two iterations, which is a 5.9% relative
error rate reduction from the baseline. This also compares fa-
vorably with the advanced front end definition [11], which has
a 6.8% WER.

The best ML-SPLICE result published on this task has a
7.83% WER[1]. The MMI-SPLICE training does much better,
despite the fact that it uses only a single channel of training data,
and has significantly fewer parameters.

An alternative method for training the SPLICE parameters,
based on minimum classification error (MCE), was developed
in [6]. That paper presented results against the Aurora 2 simple
back-end configuration. With that configuration, the baseline
error rate is 10.3%, the MCE-SPLICE error rate is 9.0%, and
the MMI-SPLICE error rate is 8.4%.

5. Summary
We have presented a framework for training a discriminative
front-end for noise robust speech recognition, and evaluated it
on the Aurora 2 task. Our results indicate:

•

•

•
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[11]
If training and testing data are somewhat matched, large
improvements are possible using MMI-SPLICE.

For mismatched data, small improvements are possible,
but over-training quickly becomes a problem.

If you can anticipate some test conditions with your
training data, the large gains in anticipated noises can
swamp small losses in unanticipated noises.
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