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Abstract

In continuation of our previous work on using an air-and-bone-
conductive microphone for speech enhancement, in this paper
we propose a graphical model based approach to estimating
the clean speech signal given the noisy observations in the air
sensor. We also show how the same model can be used as a
speech/non-speech classifier. With the aid of MOS (mean opin-
ion score) tests we show, that the performance of the proposed
model is better in comparison to our previously proposed direct
filtering algorithm.

1. Introduction
Speech Enhancement is one of the oldest disciplines of sig-
nal processing. Though many techniques have been proposed
to enhance speech in the presence of stationary background
noise, enhancement in the presence of non-stationary back-
ground noise is still an open problem. In our previous work,
[1, 2], we have developed a novel hardware solution to com-
bat against highly non stationary acoustic noise such as back-
ground interfering speech. The device makes use of an inex-
pensive bone-conductive microphone in addition to the regular
air-conductive microphone. The signal captured by the latter
is corrupted by environmental conditions, whereas the signal in
the former is relatively noise-free. The bone sensor captures
the sounds uttered by the speaker but transmitted via the bone
and tissues in the speaker’s head. High frequency components
(> 3Khz) are absent in the bone sensor signal.

As explained above, the information from an air-and-bone
conductive microphone (ABCM) consists of two channels, one
which is corrupted by the ambient noise, and another which is
the relatively noise free, but distorted. Thus, the challenge here
is to enhance the signal in the air-channel by fusing the two
streams of information. In [1], we proposed an algorithm based
on the SPLICE technique to learn the mapping between the two
streams and the clean speech signal. One drawback of this ap-
proach is that it requires prior training and therefore can lead to
generalization problems. In the same work, we also proposed a
speech detector based on a histogram of the energy in the bone
channel. In [3], we proposed an algorithm called direct filtering
(DF) that does not require any prior training in order to estimate
the clean speech signal, i.e. the transfer function from the close-
talking channel to the bone-channel is learned from the given
utterance and the clean signal is estimated in a maximum likeli-
hood framework. It was also shown that the performance of the
DF algorithm is better in comparison to the SPLICE technique
for speech enhancement. However, one drawback with the DF
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ithm is the absence of a speech model, which can lead to
tion in the enhanced signal. One problem associated with
one sensor signal in noisy environments is that a small
nt of the environmental noise leaks into the sensor, which
s a significant drop in performance. In [4], we proposed
orithm to remove this leakage by estimating the transfer

ion between the two sensors during non-speech frames. It
lso found that in certain circumstances an artifact known
thclack appears in the bone-sensor signal. Teethclacks are
d when the users’ upper and lower jaws come in contact
each other during the process of articulation. For detailed
ssion of how teeth clacks effect the estimation of clean
h signal and an algorithm for their removal, the reader is
ed to [4].

model-based speech enhancement algorithms, it is im-
nt to have accurate speech and noise models. The speech
l captures the variability in the users speech, whereas the
ility in environmental conditions is captured by the noise

l. Owing to the large variability of speech, the speech
l is usual trained offline whereas the noise model is com-
online. Although algorithms have been proposed to esti-

the noise model when both signal and noise are present [5],
ave been successful only to a limited extent; therefore, in-
ly the noise model is estimated when the signal in absent.

requires accurate speech/voice activity detection. The ap-
h proposed in [1], makes use of a function of the energy
bone sensor. This approach has two problems associated

t: A) some classes of phones (e.g., fricatives) have low en-
n the bone sensor causing false negatives; and B) leakage
bone sensor can lead to false positives. Also, by using

he bone sensor for speech detection, we are not leverag-
e two channels of information provided by the ABCM.
s paper, we propose an algorithm that takes into account
rrelation between the two channels for speech detection.

er, as mentioned previously, one of the drawbacks of the
gorithm is the absence of a speech model. The proposed
ical model based approach incorporates a speech model
n its framework thereby reducing the amount of distortion
enhanced signal.

2. Related Work

arena et al. [6] combined the standard and throat micro-
s in the noisy environment. They trained a mapping from
ncatenated features of both microphone signals in a noisy
nment to the clean speech. Compared to their system,

lgorithm does not need any training, is not environment
dent and produces an audible speech signal so that the
t can be used for perception as well as speech recognition.



Strand et. al. [7] designed an ear plug to capture the vibrations
in the ear canal, and used the signals for speech recognition with
MLLR adaptation. Heracleous et. al. [8] used a stethoscope
device to capture the bone vibrations of the head and use that
for non-audible murmur recognition. Like [7], they only used
the bone signals for speech recognition with MLLR adaptation,
while we use both bone and air signals.
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Figure 1: Proposed Model

3. Model Description
The proposed model is shown in figure 1. S is a discrete ran-
dom variable representing the state (S = {speech, silence}), X

represents the clean speech signal that is to be estimated, Y is
the signal captured by the air microphone, B is the signal cap-
tured by the bone microphone, V is the background noise, U is
the sensor noise in the air microphone channel, W is the sen-
sor noise in the bone microphone channel, H is the optimum
mapping from clean speech signal to bone sensor signal and G

models the background noise that leaks into the bone channel.
The variables X, Y, V, B are all in the complex frequency do-
main. All variables in the model are a function of time. Hence
the figure shows the model for a given time t. For mathematical
tractability, we assume that given St, the variables in the model
are independent across both time and frequency. We assume the
following distributions in the model, i.e.,

p(Xt|St) ∼ N(Xt; 0, σ
2

s), p(Vt) ∼ N(Vt; 0, σ
2

v) (1)

p(Ut) ∼ N(Vt; 0, σ
2

u) & p(Wt) ∼ N(Wt; 0, σ
2

w) (2)

where p(Xt|St) and p(Vt) are the speech and noise models re-
spectively. We also assume that the transfer functions H and G

are known. As it can be seen, except for Yt and Bt all variables
in the model are hidden.

Note that in our current implementation, only two states
(speech and silence) are considered, but the subsequent analysis
is valid if more states (e.g., fricative, voiced, nasal) are used.

4. Estimating the Clean Speech Signal
In this section we provide a detailed description of how the
clean signal may be inferred given the observations and show
how a speech detector is a by-product of this inference engine.
Our goal is to estimate the clean speech signal Xt from the
noisy observations Yt and Bt using

p(Xt|Yt, Bt) =
∑

s∈{S}

p(Xt|Yt, Bt, St = s)p(St = s|Yt, Bt)

(3)
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lihoo
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S = {speech, silence}, p(Xt|Yt, Bt, St = s) is the like-
d of Xt given the current observations and the state s, and
= s|Yt, Bt) is the likelihood of the state s given the ob-
tions. Note that we assume that the state variable St is not
ction of frequency although theoretically St can be fre-
y dependent.

Computing the posteriors

ave

p(Xt|Yt, Bt, St = s) ∝ p(Xt, Yt, Bt, St = s) (4)

er to compute the joint probability p(Xt, Yt, Bt, St) we

p(Xt, Yt, Bt, St) =

∫
V

p(Xt, Vt, St, Yt, Bt)dV (5)

e joint distribution over all the variables in the model fac-
s as

p(Xt, Vt, St, Yt, Bt) = p(Yt|Xt, Vt)p(Bt|Xt, Vt)

p(Xt|St)p(Vt)p(St) (6)

some algebra we obtain,

t, St, Yt, Bt) ∼ N
(
Yt; Xt, σ

2

u + g
2
σ

2

v

)
p(Xt|St)p(St)

G
g2σ2

v(Yt − Xt)

σ2
u + g2σ2

v

; Bt − HXt, σ
2

w + |G|2
g2σ2

vσ2

u

σ2
u + g2σ2

v

)

(7)

according to our assumptions p(Xt|St = s) ∼

t; 0, σ2

s).

Computing the Likelihood of the State

s section we derive the expression to estimate the most
state given the observations. We have

p(St = s|Yt, Bt) =

∫
X

p(Xt, Yt, Bt, St = s)

p(Yt, Bt)
dX

∝

∫
X

p(Xt, Yt, Bt, St = s)dX (8)

btain the likelihood of the state given the observations us-

p(St|Yt, Bt) ∝N

(
Bt;

(σ2

sH + g2σ2

vG)Yt

σ2
s + g2σ2

v + σ2
u

, C

)

N(Yt; 0, σ
2

s + σ
2

u + g
2
σ

2

v) p(St) (9)

σ
2

w + |G|2
g2σ2

vσ2

u

σ2
u + g2σ2

v

+ Hmod

σ2

s(σ2

u + g2σ2

v)

σ2
s + σ2

u + g2σ2
v

(10)

od =
∣∣H − G

g2σ2

v

σ2
u + g2σ2

v

∣∣2 (11)

he expression for p(St|Yt, Bt) is intuitively appealing:
rst distribution models the correlation between the air and
microphone channels whereas the second term makes use
prior (along with variance and sensor noise in the air mi-

one channel) to explain the observation in the air micro-
channel. The second term is important because we can-

ly on the correlation for classes of phones that are weak in
ne sensor (e.g. fricatives).



As it may be recalled, each of the variables in equation (9)
is defined for a particular frequency bin in the complex spec-
tral domain and hence may be used to compute likelihood of
the state for each frequency independently. However, since we
define a single state variable for each frame, we compute the
likelihood of the state for a frame by aggregating the likelihood
across the frequency bins as follows

L(St) =
∏
all f

L(St(f)) (12)

where L(St(f)) = p(St(f)|Yt(f), Bt(f)) is the likelihood for
frequency bin f as defined in equation 9. If the likelihood com-
putation is carried out in the log-likelihood domain, the product
in the above equation is be replaced by a summation.

It can be easily seen that the likelihood computed above
may be used build a speech/non-speech classifier based on a
likelihood ratio test, i.e., if

g = log
L(St = speech|Yt, Bt)

L(St = silence|Yt, Bt)
(13)

then the frame at time t is classified as speech if g > 0, and as
a silence frame otherwise.

4.3. MMSE estimate of the clean speech signal

Coming back to the problem of estimating the clean speech sig-
nal. Recall that

p(Xt|Yt, Bt) =
∑

s∈{S}

p(Xt|Yt, Bt, St = s)p(St = s|Yt, Bt)

(14)

We use minimum mean square error estimator (mean of the pos-
terior distribution) to obtain an estimate of the clean speech sig-
nal Xt, which gives

X̂t = E(Xt|Yt, Bt)

=
∑

s∈{S}

p(St = s|Yt, Bt)E(Xt|Yt, Bt, St = s) (15)

Using results from the last two sections we get

E(Xt|Yt, Bt, St = s) =

σ
2

s

(
σ2

pYt + M∗
(
(σ2

u + g2σ2

v)Bt − g2σ2

vGYt

)
σ2

p

(
σ2

u + g2σ2
v + σ2

s

)
+ |M |2σ2

s

(
σ2

u + g2σ2
v

)
)

(16)

where

σ
2

p = σ
2

w +
g2σ2

vσ2

u

σ2
u + g2σ2

v|G|2
(17)

M = H −
g2σ2

v

σ2
u + g2σ2

v

G (18)

Thus, the MMSE estimate of the clean speech signal X is given
by

X̂t =
∑

s∈{S}

π
∗
sE(Xt|Yt, Bt, St = s) (19)

where π∗
s is the posterior on the state and is given by

π
∗
s =

L(St = s)∑
s∈{S} L(St = s)

(20)

where L(St = s) is given by equation (12).
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5 (Excellent) Imperceptible
4 (Good) (Just) Perceptible but not Annoying
3 (Fair) (Perceptible and) Slightly Annoying
2 (Poor) Annoying (but not Objectionable)
1 (Bad) Very Annoying (Objectionable)

Table 1: MOS Evaluation Criteria

5. Parameter Estimation
ated in section 3, we assume that H and G are known.
ls about the estimation of these transfer functions may
tained in [3, 4]. The parameters σ2

s , σ2

u, and σ2

v are ob-
using the following formulation: we run an energy based

h detector ([1]) to obtain an initial estimate of the vari-
. These estimates are then used as input to the model and
quently used to estimate the state of each frame in an ut-
e. Then

σ
2

v =
∑

t∈Nv

|Yt|
2
, σ

2

w =
∑

t∈Nv

|Bt|
2 (21)

{Nv} is the set of frames classified as non-speech. Also
t σ2

u = 10−4σ2

w. This is based on empirical studies and
bservation that close-talk sensor technology is more ad-
d than bone-sensor technology. In order to estimate σ2

s ,
e

2

s,t = β|Xt−1|
2 + (1 − β) max(|Yt|

2 − σ
2

v, α) (22)

a small value for α results in a large amount of noise re-
n at the cost of more distortion whereas a larger value of α

to lesser noise removal. In our experiments we have found
etting α to 0.1 yields good results. To ensure smoothness
over time we use β|Xt−1|

2 in the above computation. In
urrent implementation we set β = 0.1. Thus, it can be
that we do not use any prior models in this approach. All
eters are estimated from the given utterance.

6. Experimental Setup
easure the quality of the enhanced utterances, we con-
d mean opinion score (MOS) [9] comparative evaluations.
1 shows the score criteria. We selected 16 utterances

ded in real-world environments (such as cafeteria, office
background speakers, car with radio/stereo in operation,
with an equal proportion of male and female speakers. The
nt noise in these recordings varied from 75dbc to 85dbc.
speaker wears a head-set (as depicted in [3]) that consists
lose-talking and a bone-microphone. Each utterance was
ssed using three algorithms, (a) the classical spectral sub-
on, (b) the DF algorithm [4, 3] and (c) the proposed al-
m. In the case of spectral subtraction, the bone signal
nly used to manually segment the utterance into regions
ech and non-speech. The non-speech frames were used to
a noise profile which was input to the spectral subtrac-

lgorithm. The DF algorithm used is detailed in [3]. In the
f the proposed and DF algorithms all processing was done
ut any manual intervention.
or every given noisy utterance, there were 3 processed ut-
es resulting in a set of 4 utterances and 16 such sets (one
ch utterance). There were a total of 17 participants in
test. The evaluators were presented with a random or-

g of the sets of utterances and random ordering within a



Original SS DF GM
2.2650 2.2063 2.9062 3.8313

Table 2: Mean Opinion Score (MOS) Results: SS-Spectral Sub-
traction, DF - Direct Filtering, GM - Proposed Graphical Model

set. The participants were blind to the relationship between the
utterances and the processing algorithm.

7. Results
The results of the MOS tests are shown in table 2. It can be seen
the proposed algorithm out performs the other enhancement al-
gorithms. It is interesting to note that the utterances processed
by spectral subtraction were less favorable to the listeners when
compared to the original utterance. One reason for this could be
the non-stationary nature of the corrupting noise in most of the
utterances leading to distortion. Figure 2 shows the signal cap-
tured by the bone sensor, spectrograms of the signal in the air
microphone, results of the DF and the proposed algorithms for
a noisy utterance. The utterance was recorded when a user was
speaking in the presence of a group of people acting as back-
ground speakers with an ambient noise level of 75 dbc. The first
figure also shows the actual probability of speech (dotted-line)
obtained by manual segmentation. Note that signal and noise
both overlap in the utterance in question, hence in the case of
manual segmentation, a frame was classified as speech if sig-
nal from the user was present. A comparison of the results of
the DF and proposed algorithms shows that: a) the proposed al-
gorithm results in improved speech detection, for example, the
initial non-speech frames are eliminated by the proposed algo-
rithm but the DF algorithm only attenuates them, and b) signal
is enhanced with lesser amount of distortion.

8. Conclusions & Future Work
In this paper we have proposed a graphical model based ap-
proach to enhancing the corrupted signal in a ABCM that does
not require any prior-trained models. The proposed model is
different and better than our previously proposed algorithms be-
cause it uses a better (two state) model for speech and a better
speech detector based on the correlation between the two chan-
nels resulting in a better estimate of the noise model. The MOS
tests show that the proposed algorithm is able to remove signif-
icant amounts of noise in the utterance while maintaining the
distortion levels at a minimum.

We are currently working on a system where the noise can
be estimated recursively in an EM framework. Another possible
area is the expansion of the state space. One short-coming of
the proposed algorithm (and [3]) is the frequency independence
assumption. Therefore, yet another possible area of future work
would be towards relaxing the independence assumption while
keeping the models mathematically tractable.

9. References
[1] Y. Zheng, Z. Liu, Z. Zhang, M. Sinclair, J. Droppo, L.

Deng, A. Acero, and X Huang. ”Air- and bone-conductive
integrated microphones for robust speech detection and
enhancement,” Proc. IEEE ASRU Workshop, Dec. 2003,
St. Thomas, US Virgin Islands.

[2] Z. Zhang, Z. Liu, M. Sinclair, A. Acero, L. Deng, J.
Droppo. X. Huang, Y. Zheng. ”Multisensory microphones

−0.05

0

0.05

0.1

F
re

q
u

e
n

c
y

0

2000

4000

6000

8000

F
re

q
u

e
n

c
y

0

2000

4000

6000

8000

F
re

q
u

e
n

c
y

0

2000

4000

6000

8000

Figur
tom):
uttera
posed

[3]

[4]

[5]

[6]

[7]

[8]

[9]
2 4 6 8 10 12 14

x 10
4

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Time
0 1 2 3 4 5 6 7 8

e 2: Enhancement Results (sequentially from top to bot-
a) the original bone sensor data; b) spectrogram of noisy
nce; c) result of the DF algorithm; c) result of the pro-
model.

for robust speech detection, enhancement, and recogni-
tion,” Proc. ICASSP, Montreal, Canada, May 2004.

Z. Liu, Z. Zhang, A. Acero, J. Droppo, and X. Huang. ”Di-
rect filtering for air- and bone-conductive microphones.”
Proc. MMSP, Siena, Italy, Sept. 2004.

Z. Liu, A. Subramanya, Z. Zhang, J Droppo, and A.
Acero, ”Leakage Model and Teeth Clack removal for
Air-and-Bone conductive microphones”, Proc. of ICASSP,
Philadelphia, 2005.

Chen J., Huang Y., and Benesty J. ”Filtering techniques
for noise reduction and speech enhancement” Adaptive
Signal Processing: Applications to Real-World Problems,
J. Benesty and Y. Huang, Eds., pp. 129154, Berlin, Ger-
many: Springer, 2003.

M. Graciarena, H. Franco, K. Sonmez, and H. Bratt,
”Combining standard and throat microphones for ro-
bust speech recognition,” IEEE Signal Processing Letters,
2003, vol. 10, pp. 7274.

O. M. Strand, T. Holter, A. Egeberg, and S. Stensby,
”On the feasibility of ASR in extreme noise using the
parat earplug communication terminal,” ASRU 2003, St.
Thomas, U.S. Virgin Islands, 2003.

P. Heracleous, Y. Nakajima, A. Lee, H. Saruwatari, and
K. Shikano, ”Accurate hidden markov models for non-
audible murmur (nam) recognition based on iterative su-
pervised adaptation,” in ASRU, St. Thomas, U.S. Virgin
Islands, 2003.

X. Huang,A. Acero, and X-H. Hon, ”Spoken Language
Processing: A Guide to Theory, Algorithm, and System
Development”, Prentice Hall PTR, 2001.


	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Amarnag Subramanya
	Also by Jasha Droppo
	Also by Alex Acero
	------------------------------

	lh2361: 
	rh2361: 
	pg2361: 
	rf2361: 
	lh2362: 
	rh2362: 
	pg2362: 
	lh2363: 
	rh2363: 
	pg2363: 
	lh2364: 
	rh2364: 
	pg2364: 


