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ABSTRACT
There are not enough programmers to support all end user 
goals by building websites,  mashups, and browser exten-
sions.  This paper presents reform, a system that envisions 
roles for both programmers and end-users in creating en-
hancements of existing websites that support new goals. 
Programmers author a traditional mashup or browser exten-
sion, but instead of writing a web scraper by hand, the re-
form system enables novice end users to attach the mashup 
to their websites of interest.  reform both makes scraping 
easier for the programmer and carries the benefit that end-
users can retarget the enhancements towards completely 
different web sites,  using a new programming by example 
interface and machine learning algorithm for web data ex-
traction.  This work presents reform’s architecture, algo-
rithms,  user interface, evaluation, and five example reform 
enabled enhancements that provide a step towards our goal 
of write-once apply-anywhere user interface enhancements.

INTRODUCTION
Webmasters cannot afford to support all end-user goals. 
Every site design prioritizes some features and uses over 
others, and every site’s implementation is limited by the 
webmaster’s time, incentives, and knowledge. For example, 
many sites present lists of addresses without a map, forcing 
users to perform tedious copying and pasting to a map web-
site. Few sites implement a mobile-optimized version for a 
user’s favorite phone. Online phone bill designs do not in-
clude visualizations to help users switch to cheaper plans 
and spend less money.  Online shopping carts do not offer 
coupons or better deals at other stores. Although there are 
many website features that would enhance important end-
user tasks, the webmasters in charge lack the time, incen-
tives, or knowledge to implement them.

Instead, third-parties develop mashups, browser extensions 
and scripts [2,9], and web proxies [19] to enhance the web 
post-hoc. Unfortunately, there are not enough developers to 
reform all websites: there are 175 million websites on the 
Internet, yet in comparison the United States employs 
fewer than 2 million programmers [18,24]. Scripts and 
mashups must be updated when a website’s layout changes, 

and each site can be enhanced in multiple ways. This 
website-by-website strategy cannot scale to the entire web 
without tasking every programmer on earth with the devel-
opment and maintenance of multiple site enhancements.

We propose instead leveraging the Internet’s 1.4 billion end 
users,  allowing a single programmer to enhance many web-
sites at once. A programmer authors a single site-
independent web enhancement, and end users attach it to all 
the sites they use in the context of their existing tasks. This 
architecture of write-once apply-anywhere web enhance-
ments divides web enhancement into two roles: program-
ming and attaching. This allows end-users to do the attach-
ing, and bring enhancements to many more sites.

The key is enabling end users to teach an enhancement how 
to attach to a new website and understand its data represen-
tation, a difficult problem traditionally studied as web in-
formation extraction or web scraping [11,16]. We present a 
new interactive machine learning technique designed for 
novice end users, allowing them to scrape a variety of data 
layouts by example, without seeing the underlying webpage 
representation.

Our prototype is a library for Firefox extensions called 
reform.  Rather than hard-code HTML or DOM patterns to 
access parts of a webpage, web enhancements (Firefox ex-
tensions) query the reform library with a schema express-
ing the general type of data they expect a webpage to con-
tain. reform then prompts the user to click on parts of the 
page that match the schema, interactively training its 
scraper by example. For instance, a map enhancement will 
use reform to prompt the end user to click on example 
addresses. The reform library then generates and applies an 
extraction pattern, provides the enhancement with its re-
quested integration points, and stores the pattern in a cen-
tral database for future use. A programmer can invent a new 
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Figure 1: reform divides web enhancement into roles of
authoring, for programmers, and attaching, for end users.
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AJAX photo viewing widget that works on multiple photo 
sites, even ones he has not seen. He can write a shopping 
aggregator that plugs into web retailers that did not exist 
when he wrote it. He can script a new feature into his fa-
vorite webmail system, and end users can repurpose it to 
work with their own webmail systems.

Using the reform  library, we built five web interface en-
hancements in Firefox. We built two data visualizations: a 
universal Google map, and a timeline graph that can visual-
ize patterns in time series data, such as a phone bill or bank 
account, on any scrape-able page. We built a multi-site ag-
gregator as a shopping assistant that learns layouts of cou-
pon rebates and merchant deals,  and notifies them when 
viewing a product for which there is a coupon or better deal 
elsewhere. We implemented an interface facade that makes 
an iPhone-optimized version of a website after an end user 
shows it example article titles and summaries.  We imple-
mented an interactive AJAX widget that replaces the stan-
dard “click next page and wait for a page refresh” idiom on 
multi-page sites with a single automatically-fetching 
infinitely-scrolling page. These illustrate a space of en-
hancements that one can build with the reform library.

This work contributes an architecture for web enhancement 
that allows end users to integrate existing enhancements 
with new websites.  We introduce an interaction technique 
and learning algorithm that allows end users to train a web 
scraper. We evaluated reform in three ways: we built a few 
example enhancements to validate the system architecture; 
we measured the machine learning generality by testing it 
on a sample of websites from the Internet; and we ran a 
small usability study to see if novice end users could suc-
cessfully enhance a subsample of those sites.

In the rest of this paper we first situate reform within re-
lated systems. Then, we describe the user interface in de-
tail, and explain the machine learning algorithm and its 
limitations. We then explain the five interface enhance-
ments we implemented, our user study, and how we evalu-
ated the algorithm’s cross-site generalizability.

Related Work
reform contributes both an architecture and interactive at-
tachment algorithm. Here we describe the alternative archi-
tectures for attaching enhancements to websites. 

Programmer Hard-Codes Attachment to a Single Site
Whereas reform allows end users to attach an enhancement 
to new sites,  traditional mashups and scripts are hard-coded 
to specific websites by the original programmer. Tools like 
Chickenfoot [2], CoScriptor [17], Greasemonkey [9], 
Marmite [25] and Highlight [19] make the task of develop-
ing such enhancements easier, but do not separate the tasks 
of development and attachment.  Thus, the original devel-
oper must adapt each enhancement to each new website.

Programmer Leverages Structural Heuristics
Some web enhancements tune extractors to the structural 
patterns of particular data layouts. For instance, Web Sum-
maries [6] implements an XPath extractor with support for 
the list & detail layouts common on shopping pages, and 
Sifter [10] has a mostly automatic algorithm tuned to find, 

filter, and sort common search result layouts.  These ex-
tractors are difficult to implement and generalize to support 
many websites. Furthermore, many extraction problems  
are by nature ambiguous and require user input,  yet mostly-
automatic systems like Sifter [10] offer the user little help 
when the extractors fail. Karma [4] and Mashmaker [7] can 
learn from positive but not negative examples. Mashmaker 
users must drop into a lower level pattern editor to make a 
pattern more selective. reform is a step towards generaliz-
ing such extraction techniques.

Programmer Leverages Predefined Webpage Semantics
Many systems allow enhancement of any site that includes 
predefined semantic markup in formats such as RSS feeds, 
Semantic Web RDF, microformats, or web APIs. For in-
stance, Vispedia [4] allows visualization of Wikipedia arti-
cles by leveraging the RDF predefined for each topic as 
part of the DBpedia project. d.mix [12] allows experts to 
define a library of patterns that end users employ. Visual 
programming mashup makers like Yahoo Pipes [26] require 
web data to be prepared with special wrappers. Since se-
mantic markup is not yet pervasive on the web, this re-
quirement limits the websites that can be enhanced.

End User Combines Separate Extraction & Use Systems
Systems often combine extraction tools with enhancements 
in separate modular steps. Traditional extraction systems 
are not directly connected to a user goal; they instead ex-
tract data to an intermediate representation, which can indi-
rectly be fed to enhancements. Dapper [5] has a robust by-
example interface, but extracts data to intermediate formats 
like XML, HTML, and RSS. Mashmaker [7] and Karma 
[22] also support some by-example extraction, but Mash-
maker requires a separate up-front data extraction step 
where users specify a hierarchical schema before connect-
ing data patterns to widgets, and Karma decomposes the 
mashup process into the abstract steps of extraction, data 
cleaning, source modeling, and data integration. Irmak [14] 
presents a by-example extraction algorithm that uses simi-

Figure 2: Before and after an end user made a map for a page 
of U.S. nuclear reactor locations. The process took five clicks.

Popup menu 
follows cursor 
for selection

Examples selected
(fourth is off screen)



lar features as our own, but was not designed for end users 
or placed within an end-to-end system. Our formative stud-
ies described later found intermediate representations to be 
obstacles to end-user extraction.

End User Must Understand HTML/DOM.
Many commercial scrapers and extractors,  such as Lixto 
[8], require the user to understand how web pages are rep-
resented, and specify pattern-matching expressions in terms 
of HTML or a DOM. These are difficult to learn and use.

End User Manually Selects, Copies, Pastes Data
Some web enhancements, such as Ubiquity [23], require 
each website datum to be manually selected or copied and 
pasted.  This manual approach can quickly become un-
wieldy for larger data sets.

Attaching enhancements to arbitrary websites is a difficult 
problem. reform is a step towards a generalized solution 
that these existing systems could use to simplify develop-
ment and generalize to more websites.

END USER UI ATTACHMENT WITH REFORM
reform’s purpose is to enable the 1.4 billion Internet end 
users to attach enhancements with a web extractor. Tradi-
tional extraction approaches pose two major challenges to 
end users. First there is the pattern expression problem: 
how can an end user, without learning a special language or 
understanding HTML or DOM representations, specify an 
extraction pattern that is expressive enough to represent the 
wide variety of DOM structures that can appear on different 
websites, and navigate the many inconsistencies and special 
cases that occur in layouts? Second, there is the data map-
ping problem: how can an end user plan and design a data 
schema that is compatible with the desired enhancements, 
extract the data to that schema, and connect the schema to 
the enhancements? Both tasks can require up-front plan-
ning, abstract reasoning and can be difficult to debug. 
These challenges are obstacles to widespread end user web 
enhancement. We now outline reform’s approach.

Pattern expression: reform users specify patterns by exam-
ple, and a machine learning system infers an expressive 
matching pattern behind the scenes. User interaction in-
volves nothing more than highlighting elements of the 
webpage that should be connected with the enhancement 
and removing highlights from incorrectly inferred ele-
ments. Our machine learning algorithm synthesizes hun-
dreds of features that explain the examples provided and 
computes weights to choose the best amongst them.

Data mapping: Traditionally, extraction systems output to 
an intermediate data representation with a general data 
schema, which allows extracted data to be reused towards 
multiple purposes. This is sensible if extraction is a difficult 
and costly task. reform, in contrast, eliminates intermediate 
steps and ties extraction directly to a specific, constrained 
enhancement goal. The enhancement programmer defines  
a single schema, and the end user only needs to highlight 
webpage elements that correspond to the schema’s fields; a 
simpler task. In our formative design process,  we tested end 
users on hypothetical schema debugging tasks with differ-
ent designs for textual and visual diagrammatic schema 

representations,  but users uniformly found them abstract 
and had difficulty identifying errors in schema definitions, 
especially with the more complicated schemata of nested 
lists of lists. Schema definition appears to be a burden to 
end users. Furthermore, directing extraction towards a spe-
cific enhancement goal has additional advantages:

• We can guide and prompt the user through extraction, 
using the concrete terminology defined by the enhance-
ment. If the enhancement needs a “purchase price” from 
the webpage, the extractor will ask the user to click “pur-
chase prices”. After each click, the system is able to up-
date the enhancement’s display with the new extracted 
data, providing the user with incremental feedback to-
wards the enhancement goal.

• Predefining the schema can also guide and constrain the 
machine learning. For instance, if it knows the user is 
selecting a time, it can consider only DOM nodes that 
parse as a time.  This allows accurate inference with 
fewer examples.

We will explain reform’s interface and extraction algorithm 
with the following running example.

Visualizing Financial Patterns with a Bank Timeline
Most bank websites provide users with a multi-page list of 
purchases and transactions: an online “bank statement.” 
Although this presentation may fulfill contractual obliga-
tions, it is a difficult format for understanding spending 
trends and spotting fraud or errors. Here we illustrate re-
form by describing how an end user applies a reform-
powered timeline to their banking site, shown in Figure 4. 
In the next section, we will give more details about re-
form’s algorithm.

This timeline is a Firefox extension using the reform li-
brary. The extension is a general purpose timeline, is not 
customized to the particular banking site, and only interacts 
with reform. To be used, it needs tuples containing a “time” 
and an “amount”.  reform includes a number of such da-
tatypes, such as numbers, prices, names, and location ad-
dresses.

When the user is at an online banking page, she opens the 
timeline widget by clicking a button at the bottom of her 
browser window. reform checks its database of sites to see 
if the bank has a timeline extraction pattern already. If it 
does not, reform starts the interactive selection by-example 
mode.

Prompting User for Datatypes
As the user moves the cursor around the screen, the DOM 
node under the current cursor location is outlined, and a 
floating menu appears next to it, prompting the user to 
specify if it is a “time” or “amount” (Figure 3).  This menu 
is always present, following the mouse and the node under-
neath the cursor.

Learning Extraction Pattern by Example
Since the user is plotting transaction dates and balances, 
she first moves the cursor to a transaction date and clicks 
“time”. This marks the DOM node as a positive example 
for time,  and gives it a dark yellow border. reform proc-



esses this example, highlights what it thinks are other times 
on the page, and forwards them to the timeline widget, 
which graphs them. The user now moves the cursor to a 
transaction balance amount and clicks “amount”, giving it a 
dark blue border. reform processes the example “amount”, 
highlights the other amounts, and passes the result to the 
timeline, which graphs the completed result (Figure 4). 
With two clicks, the user has taught the timeline to graph 
her financial history.

Negative Examples Disambiguate Layouts
This bank task requires only one example per data type. 
However, some pages with more ambiguity require addi-
tional learning. In fact,  this banking page contains an in-
consistency: for some transactions, the actual purchase date 
(e.g. “09/18/08”) is recorded in a comment field at the bot-
tom of the transaction,  because the date column instead 
contains an internal posting date (e.g. “09/19/08”).

reform can be taught this idiosyncratic information layout. 
When the user hovers over the undesired date “09/19/08”,  a 
red X appears (Figure 3C). The user clicks the X to mark 
the date as a negative example, and instead marks the cor-
rect comment date “09/18/08” as a time. Negative exam-
ples receive a red border. reform now correctly selects the 
date from all transactions with comments, but it ignores 
transactions without comments,  because it no longer sees a 
usable “time” in them. To finish the task, the user moves 
the cursor to a missing date in a transaction without com-
ments and marks it “time.” These three additional examples 
successfully teach reform a rule that prefers the comment 
dates to the posted dates for transactions with comments, 
but uses the posted date when there is not a date in the 
comment (Figure 5). 

MACHINE LEARNING EXTRACTION ALGORITHM
Given a set of user-specified positive and negative exam-
ples and a schema specified by the enhancement, the goal 
of reform’s algorithm is to return a set of tuples that both 
match the pattern implied by the positive and negative ex-
amples and conform to the schema.

Let us clarify some terms before continuing. Each schema 
consists of a set of fields, such as {time, amount}. Each 
field has a data type, such as “date” or “number,” and a 
user-visible name such as “flight start time” or “account 

balance.” A tuple consists of a set of concrete DOM nodes, 
one for each field in the schema.

The algorithm includes two phases, which are analogous to 
the phases of lexing and parsing in compilers.

Phase 1: Lexing. The positive and negative examples pro-
vided by the user for each field are used to train a support 
vector machine [15].  This trained SVM then labels every 
node in the DOM with the degree that it “matches” the 
field, given the user’s examples. Like compiler lexing, this 
phase analyzes the type of each node in isolation, without 
considering its relationship to the nodes around it.

Phase 2: Parsing. Given these isolated match strengths on 
each node, the second phase extracts a coherent table of 
tuples. It segments the webpage into tuple boundaries, as-
sociating nodes with high SVM scores together so that, for 
instance, a timeline can graph a pair of time and amount 
nodes as a single datapoint. Like compiler parsing, this 
phase infers a structural relationship amongst individual 
nodes.

Phase 1: Lexing a Match Strength for Every Node
Traditional end user extractors commonly use DOM path 
templates, such as XPaths, to identify extractable nodes. 
Our machine learning approach generalizes DOM path 

A B C

Figure 3: Interaction with reform. (A) When extraction is in-
voked, the page darkens. A menu for specifying fields is always 
visible and follows the cursor, jumping to the node under the 
mouse. (B) After the user clicks on “Time”, the system marks 

the node as a positive example. Positive examples are bordered 
with the color of the field. Inferred nodes are highlighted but 
have no border. (C) When the user moves the cursor over a 

selected node, an X is displayed. The user can click on the X to 
provide a negative example, turning the border red.

Figure 5:  Adapting to heterogeneous layouts. The system was 
trained to prefer dates in "comments" fields over dates in the 

left hand column for transactions with dates in comments.

Figure 4: Making a timeline of a bank account balance.
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templates. Rather than derive one path per field, we store 
many paths for every node, along with attributes and values 
of the nodes at the ends of those paths. Our SVM then de-
termines which paths are important by examining the posi-
tive and negative examples,  and assigning each path a vari-
able weight. Thus, when there is only one example, all the 
paths have equal weights,  and our extractor behaves simi-
larly to an XPath, readily extracting regular structure. 
However, when the page has complex varying structure, 
inconsistencies,  or noise, an XPath can fail, whereas our 
system takes additional examples from the user and adapts 
to the inconsistencies by variably weighting the plurality of 
alternative paths.

Compute Feature Vocabulary
To train a SVM we must first represent each node as a fea-
ture vector. We synthesize a new format for feature vectors, 
called a feature vocabulary, after every new example, to 
capture the features that characterize the new set of exam-
ples. Each feature represents a triplet (path, attribute, 
value), representing a concept such as “this node’s parent’s 
second child has an x coordinate of 33px”, or ([parent, 
second-child], x coordinate,  33px). A node’s feature vector 
will then be computed as an array of booleans, each true if 
and only if the node at the end of path from the original 
node has an attribute with the specified value.

We capture the following attributes at the end of each path:

• Spatial: x and y coordinates, width and height
• Matched datatypes: whether the node contains a date, 

time, number, price, or address, as recognized by reform
• The first and last 3 words of text contained in the node
• The DOM attributes id and class
• The node’s index in its parent’s list of children

We experimented with a few ways of generating and repre-
senting paths, and settled on simply counting hops in a 
post-order depth-first-search from the starting node, up to a 
distance of 10 nodes with left-first ordering and 10 with 
right, creating a total of 21 paths, including the empty path 
representing the node itself. We store paths according to the 
number of hops left or right, such as “4 left” or “2 right.”

We create a feature vocabulary for each field with the fol-
lowing algorithm. For each example node, traverse each of 
the 21 paths and record each attribute’s value at the end of 
that path. Then union all (path,  attribute, value) combina-
tions together, assigning an index to each. This becomes the 
feature vocabulary. Computing a feature vector for a node 
is then a matter of repeatedly traversing a DFS path to a 
neighboring node, and comparing the value of neighbor’s 
property to the value in the vocabulary. If they match, the 
vector’s value is true at that feature’s index.

Training a SVM from the Examples
We compute feature vectors for each positive and negative 
example, and use them to train the SVM. There is, how-
ever, one trick. Since each task begins with only positive 
examples, and the user may in fact never provide a negative 
one, we fabricate a fake negative example with every fea-
ture set to false. Since our feature vocabulary was created 
from positive examples in such a situation, and every fea-

ture was generated to be “like” an example,  a vector with 
every feature set to false effectively represents “not like” 
the positive examples. This works well in practice.

Predict Match Strength of Every DOM Node
We then create feature vectors for each node in the web 
page, and predict their match score by measuring their dis-
tance from the SVM margin. At this stage, we also incorpo-
rate knowledge of the enhancement’s schema, by automati-
cally setting any node’s score to zero that does not contain 
the correct datatype. For instance, if we are training a SVM 
to recognize “purchase price” on a webpage, we ignore all 
nodes that cannot be parsed as a price. We then normalize 
all scores to sit between zero and one. At the end of this 
process, every node in the tree has been labeled with its 
distance to the margin for every field in the schema. In the 
timeline scenario, every node would be labeled with its 
similarity to both “time” and “amount” (Figure 6).

Phase 2: Parsing an Optimal Table of Tuples
Now that we know how similar each individual node is to 
each field in isolation, we need to extract a coherent set of 
tuples, containing nodes with large match strengths.  This is 
straightforward if the system only needs to find a single 
tuple per page, as XPath templates (e.g. Web Summaries 
[6]) and geometric coordinates naturally match a single 
node per page. Systems that instead compute a variable 
match strength for each node from features (e.g. Chicken-
foot [2], CoScriptor [17],  reform) can return the single 
node with the largest match strength.

However, reform also supports finding all matching tuples 
on a page, which requires segmenting the page and relating 
nodes into a table of values—a more difficult problem. Ex-
isting end user extractors with support for multiple tuples 
per page, such as Solvent [21], Sifter [10] and Karma [22] 
use an XPath approach to segment the page into tuples, by 
replacing part of a node’s XPath with a wildcard. For in-
stance, they might substitute “third child of the second 
DIV” with “each child of the second DIV”. Unfortunately, 
this only works if the tree is structured such that a set of 
children precisely aligns to tuple boundaries. Some pages 
do not, such as the online bank statement as visualized in 
Figure 7. Furthermore, XPath wildcards do not provide a 
straightforward approach for incorporating negative exam-
ples from the user to focus on different features and disam-
biguate extraction. The XPath approach is limited by rely-
ing on a particular tree structure to identify tuple bounda-

Figure 6:  In the first phase of extraction, reform assigns each 
node in the webpage an individual match strength. In the 
second, it finds a coherent set of tuples in horizontal strips.
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ries, instead of examining the breadth of features available 
and allowing both positive and negative examples to be 
input by the user.

reform parses tuple boundaries independently of the under-
lying webpage structure and can work from any lexing 
phase that labels tree nodes with match strengths. We com-
pute the segmentation with an optimization routine that 
looks at the way a page is displayed, rather than repre-
sented,  and tries to slice the page into horizontal display 
strips that maximize a utility function over the best-
matching fields in each strip. These best-matching fields 
within strips become tuples (Figure 6).

This algorithm makes the assumption that each tuple lies 
completely within non-overlapping vertical (e.g. y-start to 
y-end) regions. The next section describes layouts in which 
this assumption does not hold. Its goal, then, is to choose a 
sequence of y-coordinate segmenting locations at which to 
slice the page into tuples of maximum score. We calculate 
the score of a slice by finding the best-matching node for 
each field within the slice and summing their values. We 
then add the scores of all chosen slices to calculate the net 
utility of a page segmentation.

However, this flat sum over maximums encourages the 
creation of small tuples with low-scoring fields,  since it is 
of higher value to sum two tuples with match scores e.g. 
(0.9, .01) and  (.01, .0.9) = 0.91 + 0.91 = 1.82 rather than a 
single tuple covering both,  with scores (.9, .9) = 1.8. To 
encourage clustering high-valued fields together into a sin-
gle tuple, we additionally run each segment score through a 
gentle convex function. We find that cubing each segment 
score works well.

Now our task is to search over all possible segmentations to 
choose the one with the largest utility.  Since the brute-force 
approach explores an exponential search space, we employ 
a dynamic programming approach to make it efficient. We 
also do not consider segments taller than 700 pixels.  Fi-
nally, we filter out segments with scores below one half.

Extracting Typed Data from Free Text
Recognizing entities, such as times, dates, numbers, and 
addresses in text is a known problem with many existing 
solutions. We use hand-coded regular expressions.

Enhancement Programmer API
Enhancements use reform by defining a schema and calling 
reform.start_selection(schema, callback, interactive). A 
schema consists of an enhancement’s name, such as ‘Time-
line,’ an array of data types for each field of the tuples, such 
as ‘number,’ ‘timedate,’ ‘address,’ ‘link,’ or ‘*,’ and a 
matching array of user-visible names for each field. Each 
time the user provides an example, the system infers new 
tuples and passes them to the callback. If interactive is set 
to true, reform will force a new interactive selection ses-
sion. Otherwise, it will first try to find an existing pattern 
for the website in its database.

Implementation & Performance Details
reform is implemented with a Javascript and XUL user 
interface in Firefox, which serializes the DOM to a Python 
web server to perform the feature generation, string recog-

nition, and tuple fitting. This web server delegates the raw 
machine learning task to a native binary, communicating 
over files. Extraction patterns are automatically stored on 
the web server, storing one pattern per enhancement per 
website domain name. reform does not yet share patterns 
across users. The enhancements use Prefuse Flare [13], 
Google Maps, and the iPhone iUI library.

The prototype is almost fast enough for production use. 
Processing the first example generally takes a second or 
two. Since each example has a new set of (path, property, 
value) tuples, and thus features, the size of feature vectors 
grows proportionally to the number of examples provided 
by the user. After 5 or 6 examples, updates can take 3-10 
seconds to process. The bulk of this time is spent in inter-
process communication, writing feature vectors to disk for 
the SVM; wasted time that would be eliminated if reform 
were rewritten to run in a single process.

Limitations in the Algorithms & Future Work
reform cannot yet work on all website layouts. However, 
by architecting the extraction process into separate lexing 
and a parsing phases,  we can extend the algorithm piece-
by-piece to overcome its limitations. For instance, we can 
solve problems in parsing without affecting lexing. In this 
section we describe the current algorithmic limitations.

Figure 7: The bank account internals as displayed in Firebug. 
Notice that each tuple spans multiple <tr> nodes of varying 
background color, without a single enclosing parent. XPaths 

segment each element of a list along an enclosing parent, which 
fails when a tuple is composed of multiple children. They also 
have trouble when there are extraneous children or when tu-

ples are at different depths in the tree.

A

B

A

B



Limitations in Phase 1: Lexing Individual Fields
We assume each field is separated by a node boundary. 
Sometimes fields are separated by text patterns,  such as 
with "$100 - Microwave".  Bigham describes one approach 
we could adopt, in which additional node boundaries are 
inferred before learning [3]. Regions could also be interac-
tively selected, and learned, as a phase that occurs before 
phase 1. Finally, sometimes a user wants a single field to be 
composed of multiple disconnected regions, such as when 
selecting nodes that should be included in a mobile sum-
mary.

Limitations in Phase 2: Fitting a Layout of Tuples
Our algorithm can find a best single tuple for a page, or 
find a list of tuples. However, we only support vertical lists, 
since the parser uses horizontal strips to segment tuples. 
Web data can also be laid out in a horizontal list, a two-
dimensional grid (e.g., some product pages on Amazon and 
some photo pages on Flickr), or a more complicated nested 
combination of horizontal lists of vertical lists and grids, 
which we call newspaper layout because it is common on 
the front pages of newspapers. reform cannot learn these 
layouts. However, it would be straightforward to extend our 
existing algorithm to horizontal layouts by running it hori-
zontally instead of vertically, and grid layouts by recursing.

We also fail to support nested schemas, e.g., containing lists 
of tuples of lists. For instance one might want to scrape a 
list of photos on Flickr, where each photo has a list of tags. 
One could represent such a schema as (photo, (tag)).

A dual problem is extracting lists with headers. For exam-
ple, a list of calendar events might have the schema (date, 
time, description), but display the list in sections with the 
date as a header, which could be represented with the 
nested schema (date, (time, description)), even though it 
contains the same data. By shifting between schema repre-
sentations, the same layout algorithm could capture both 
cases.

Extracting Information from Unstructured Text
We consider natural language extraction from unstructured 
text, such as learning facts from a chapter of Shakespeare 
or a forum post, to be a much different problem than semi-
structured data extraction, and do not support it. Other solu-
tions could be integrated with our system in the future.

EVALUATION
We built five enhancements and ran two small studies to 
evaluate reform’s architecture, algorithms,  and user inter-
face. The enhancements exercised the space of possibilities 
with our architecture and API, and uncovered areas for im-
provement. Our algorithm study elicited the algorithm’s 
generalizability: on how many sites does it work, and how 
frequent is each failure mode? Our user study tested our 
interaction goal: can novice end users successfully attach 
enhancements to websites?

Five UI Enhancements
To validate our architecture we built five demonstration 
interface enhancements. They exercise a space of en-
hancements one can implement with reform. We chose the 
suite to cover the following breadth of web UI enhance-

ment categories: (1) mashups; (2) static->dynamic AJAX 
upgrades; (3) visualizations; (4) additional UI features; (5) 
mobile web facades; and (6) aggregations. The enhance-
ments in this section that cover these categories, in turn, 
are: (1) remap,  rebate; (2) resume; (3) revisit, remap; (4) 
rebate; (5) reduce; (6) rebate.

Remap: A Universal Map
Maps are consistently the most popular, well-known, and 
frequently-created mashups. Of all the mashups on 
programmableweb.com, 38% are tagged “map.” In Zang’s 
survey of mashup developers, he found that 77% had built 
mapping mashups and 96% had used the Google Maps API 
[27]. We created a single mapping enhancement that end 
users can apply to any website.

Suppose, for instance, that an end user is browsing 
nucleartourist.com and finds a list of nuclear reactor loca-
tions in the United States. The page lists the precise address 
of the reactors, but the user would reach a much richer un-
derstanding of the bulk of data if the website provided a 
map. The user can click on the remap button at the bottom 
of his browser,  the page fades to grey and the blue and yel-
low selector menu prompts him for “Address” and “De-
tails”, as can be seen in Figure 2. He selects the address, 
and the system plots it on a map along with any other ad-
dresses it finds on the page and highlights those addresses 
in the web page. He then highlights one of the reactor 
names,  and selects “Details”. This teaches remap that the 
name should appear in a caption bubble when clicking on 
the reactor's icon. After two more examples, the system has 
learned a pattern for extracting every plant name and ad-
dress from this page and can plot them on the map.

In another example, Figure 9 shows how we can modify a 
government website of sex offenders in Buda,  TX to in-
clude an easily accessible map. 

Rebate: Aggregating Websites
rebate is a two-phase application.  First, end users extract 
feeds of coupon & rebate offers and other special deals. 
rebate can then display these deals whenever the user is 

Figure 8: (A) Nine months of bank account history from 
comfirstcu.org. (b) US population growth from npg.org (c) 

The sales of Michael Jackson released singles from Wikipedia.
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buying something matching the deal. There are many web-
sites that aggregate different types of coupons and deals. 
rebate users can aggregate deals from retail and deal sites 
into a single database and stay informed while shopping.

Reduce: Mobile Website Generator
We increasingly browse the web on cell phones, yet only a 
small proportion of websites offer cellphone versions. The 
reduce enhancement makes an iPhone-specific version of 
any website. It prompts the user to teach it a sequence of 
(title, summary, link) tuples, and uses this content to fill in 
a template with the iPhone look and feel.

Resume: Improving the Ubiquitous “Next Page” Link
Our resume enhancement is an example of using reform to 
change a fundamental web interaction widget. resume re-
places “next page” links, ubiquitous on the web, with 
AJAX that automatically fetches the next page and stitches 
it into the current one. Users scroll from one page to the 
next, with a “Page 2” header in the middle,  rather than 
clicking and waiting for a page refresh (see Figure 10).

Revisit: A General Timeline Visualization Enhancement
We described the revisit enhancement in a previous section. 
It allows end-users to attach a timeline to any data that ac-
cumulates quantities over time such as bank statements or 
sales statements.

These enhancements demonstrate how reform can enable 
visualizations, facades, mashups,  aggregators,  and new 
interactive widgets to be written once and applied to many 
websites via end user web extraction.

Algorithm Generalizability
To evaluate how well our algorithms generalize across dif-
ferent websites, we tested reform on a set of thirty web-
sites. To avoid bias in selecting test pages, we used Me-
chanical Turk [1] to recruit anonymous Internet users and 
paid them 20-50 cents to collect pages from the Internet for 
us. These users had not used reform previously. They were 
told only that we were testing timeline visualization soft-
ware and needed webpages containing dates and amounts. 
We displayed the bank account as an example page, along 
with a screenshot of a reform timeline for the page, to make 
the task more concrete.  We applied the timeline enhance-
ment to all of the pages and counted the number of exam-
ples necessary to visualize the data.  If reform failed to ex-
tract the proper pattern,  we noted the reason that it failed. 
We classified each failure as whether it was caused by an 
unsupported layout format (nested, horizontal, grid, news-
paper),  by an unsupported node boundary format, or by 
other unexpected problems.

Figure 10: The auto-paging resume enhancement. (A) The user 
specifies a page region and a “next page” link. (B) The system 
then provides an infinite scrolling page with yellow headers, 
inspired by the iPhone’s infinite scroll pane. When a header 

scrolls to the top of the pane it sticks.

Figure 9: Plotting Buda, TX sex offenders on remap. By pro-
gressively changing the positive and negative examples, this 
user can view different data from the table in the detail bub-

ble of each pin on the map.
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Generalization Results
Of the thirty sites, reform successfully 
extracted timeline data for twenty, or 
67% of them. Of the failures, two had 
horizontal data layouts, four had grid 
layouts, four had datums separated by 
whitespace instead of node boundaries, 
and one had data displayed images in-
stead of parseable text. The successful 
pages required an average of 2.5 exam-
ples, or 1.3 per field, since the timeline 
schema has two fields. These results 
show that if we extend reform’s second 
phase parser to handle new layouts and 
the first phase lexer to support non-
node whitespace datum boundaries, we 
could extract timelines for most pages on the web. We have 
not run generalization studies for the other enhancements.

User Study
Making expressive extraction algorithms accessible to nov-
ice users is a difficult problem. To evaluate our approach, 
we recruited novice end users and asked them to attach our 
enhancements to a variety of websites with reform. By the 
time of the study, we had built the remap, revisit, and re-
duce enhancements. For each enhancement, we asked an 
assistant unfamiliar with the extraction algorithm to select 
two test websites to use in our tasks. We then selected an 
additional website to create a test set of 9 websites for the 3 
enhancements.  We ensured that for each enhancement the 
pages ranged in difficulty, so that we could observe correc-
tive behavior from users. We only used pages with layouts 
that could be processed with reform. We canceled the last 
of the three iPhone tasks, because a bug made it impossible 
to complete, resulting in a total of 8 enhancement tasks.

We recruited seven end users to attempt our enhancement 
tasks and offered them five dollars to complete a five to ten 
minute study. Three subjects were female and four were 
male. We screened subjects to ensure that they were Inter-
net users, but did not understand HTML.

The study began with the facilitator demonstrating the use 
of remap on a Washington State website with addresses for 
driving license office locations. This introduction lasted 
approximately one minute. Then the subject was tasked 
with using remap, revisit, and reduce on each of the web-
sites for a total of 8 tasks.  The subjects could not ask ques-
tions during the tasks until they gave up, at which point the 
facilitator recorded the task as a failure. If a subject simply 
did not notice an errant missed or extra inference, the facili-
tator helped the subject and tallied the oversight but did not 
mark the task as a failure. The study was conducted on a 
2Ghz 13” Macbook laptop computer using a trackpad.

User Study Results
Most of the tasks (86%) were completed successfully, and 
the failures were isolated to only two subjects who had 
much more difficulty than the others.  The average number 
of examples needed to successfully complete a task was 4.4 
clicks, with a standard deviation of 2.6 clicks. More de-
tailed results are shown in Figure 11.

There was large variance between users, most of whom had 
never seen a programming by example interface prior to 
this study. Two users understood the reform concepts im-
mediately and completed the tasks readily,  skipping instruc-
tions. Three completed the tasks at a moderate pace. Two 
had difficulties that appeared to stem from basic misunder-
standings. User #6 did not realize that the system learned 
from his examples and inferred selections for him, and in-
stead assumed he needed to manually select every datum 
on the page as one would do for a normal Google map. 
When he tried to select an inferred node, it displayed a red 
X to allow a negative example, which confused him, and he 
sometimes clicked the X and sometimes selected a nearby 
node instead.  He mentioned he did not understand what the 
X meant. However, he seemed to understand how the sys-
tem worked by the time he completed the final task. User 
#4 also did not understand what the red X meant during her 
first tasks, thinking it was trying to tell her that something 
was wrong, instead of affording the ability to correct mis-
takes.  Her understanding also appeared to improve slowly 
over time. In addition to the X, both users also sometimes 
seemed not to understand what the blue and yellow high-
lights meant. We suspect these graphics could be clarified. 
Nonetheless, we found it encouraging that users had few 
other problems when they understood these basic concepts.

The number of examples required varied across enhance-
ments and websites. Digg and Google News,  for instance, 
required additional learning to overcome internal variations 
when different stories have different imagery and layouts. 
reduce required more examples than other enhancements 
partially because the summarization schema does not con-
tain data type constraints such as “date.” Training also re-
quires more examples if users provide slightly different 
examples: for instance, every date might be enclosed within 
two nodes, with one slightly larger than the other, and a 
user might click on these nodes differently in different tu-
ples. We were surprised to observe, however, that even if 
users gave unknowingly erroneous training, such as mark-
ing a date as amount, the SVM was flexible enough to re-
cover the correct pattern after additional examples: a single 
bad data point would eventually be overruled. We also no-
ticed that users would sometimes restart extraction to get a 
clean slate if they accidentally gave multiple incorrect ex-
amples and subsequently saw strange inferences from re-
form.  The data in Figure 11 aggregates the number of ex-

Task URL User #User #User #User #User #User #User #

MapMapMap

TimelineTimelineTimeline

iPhoneiPhone

1 2 3 4 5 6 7
http://www.yellowpages.com/?search=record+store 4 4 4 10 5 3 5
http://www.nucleartourist.com/us/address.htm 2 3 5 5 4 6 8
USPS branches (site no longer available) 2 2 4 14 2 10 2
Community First Credit Union 2 2 2 6 2 8 2
http://digg.com/ 5 6 4 5 11 12 2
http://www.npg.org/facts/us_historical_pops.htm 2 2 2 2 9 6 2
http://news.google.com/?ned=us&topic=el 7 11 4 2 4 18 3
http://digg.com/ 6 6 4 5 3 6 3

Figure 11: Number of examples (clicks) for users to complete each task. Shaded box 
means the user failed to complete the task. All others were completed successfully.



amples given before and after restarts.  We did not record 
task times, but estimate tasks took anywhere between 20 
seconds and two minutes once users understood and were 
comfortable with the interface.

Many users asked if they could download the program. 
Multiple users said they would like to use the visualizations 
in education, for use by their students, children, or selves. 
This study verifies that reform’s expressive by-example 
extraction is accessible to novice end users, and their com-
ments suggest that some may have the motivation to use it.

CONCLUSION
We present reform,  a prototype tool with which novice end 
users can attach web user interface enhancements to new 
websites. reform presents a new architecture for enhance-
ment and interactive technology for web extraction. End 
users in a small study were able to successfully use the sys-
tem. We believe reform can be extended to support a much 
broader class of web pages with straightforward modifica-
tions to its extraction algorithms.

ACKNOWLEDGEMENTS
We thank Nathan Morris for help running the user studies, 
Ravin Balakrishnan for early feedback, and the anonymous 
reviewers for their comments that improved this paper. This 
work was supported under a National Science Foundation 
fellowship and a Microsoft Live Labs internship.

REFERENCES
1. Amazon Mechanical Turk. (http://www.mturk.com)
2. Michael Bolin, Matthew Webber, Philip Rha, Tom Wil-

son, and Robert C. Miller. Automation and customiz-
tion of rendered web pages. In Proc UIST 2005, ACM 
Press(2005), 163–172.

3. Jeffrey P. Bigham, Anna C. Cavender, Ryan S. Kamin-
sky, Craig M. Prince and Tyler S. Robison. Transcen-
dence: enabling a personal view of the deep web. In 
Proc IUI 2008. ACM Press (2008), 169–178.

4. Bryan Chan, Leslie Wu, Justin Talbot, Mike Camma-
rano, Pat Hanrahan, Jeff Klingner, Alon Halevy and 
Luna Dong. Vispedia: interactive visual exploration of 
wikipedia data via search-based integration. In IEEE 
Transactions on Visualizations and Computer Graph-
ics 14, 6. (2008), 1213–1220.

5. Dapper. (http://dapper.net)
6. Mira Dontcheva, Steven M. Drucker, Geraldine Wade, 

David Salesin, Michael F. Cohen.  Summarizing per-
sonal web browsing sessions. In Proc UIST 2006. 
ACM Press (2006), 115–124.

7. Robert J. Ennals and David Gay. User-friendly func-
tional programming for web mashups. In Proc ICFP 
2007. ACM Press (2007), 223–234.

8. Georg Gottlob, Christoph Koch, Robert Baumgartner, 
Marcus Herzog and Sergio Flesca. The Lixto data ex-
traction project: back and forth between theory and 
practice. In Proc PODS 2004. ACM Press (2004), 1–12.

9. Greasemonkey  
(https://addons.mozilla.org/en-US/firefox/addon/748)

10. David Huynh, Robert Miller, and David Karger. Ena-
bling web browsers to augment web sites' filtering and 
sorting functionality. In Proc UIST 2006. ACM Press 
(2006), 125–134.

11. Björn Hartmann, Scott Doorley and Scott R. Klemmer. 
Hacking, mashing, gluing: understanding opportunistic 
design. In IEEE Pervasive Computing 7, 3 (2008), 46–54.

12. Björn Hartmann, Leslie Wu, Kevin Collins and Scott 
R. Klemmer. Programming by a sample: rapidly creat-
ing web applications with d.mix. In Proc UIST 2007. 
ACM Press (2007), 241–250.

13. Jeffrey Heer, Stuart K. Card and James A. Landay. 
prefuse: a toolkit for interactive information visualiza-
tion. In Proc CHI 2008. ACM Press (2008), 421–430.

14. Utku Irmak. Interactive wrapper generation with 
minimal user effort. In Proc WWW 2006. ACM Press 
(2006), 553–563.

15. Thorston Joachims, Making large-scale SVM learning 
practical. Advances in Kernel Methods - Support Vec-
tor Learning, B. Schölkopf and C. Burges and A. 
Smola (ed.), MIT-Press (1999). 

16. Alberto H.F. Laender, Berthier A. Ribeiro-Neto, Alti-
gran S. da Silva and Juliana S. Teixeira. A brief survey 
of web data extraction tools. In ACM SIGMOD Record 
31, 2 (2002), 84–93.

17. Greg Little, Tessa A. Lau, Allen Cypher, James Lin, 
Eben M. Haber and Eser Kandogan, Koala: capture, 
share, automate, personalize business processes on the 
web. In Proc CHI 2007. ACM Press (2007), 943-946.

18. Netcraft Web Server Survey. 
(http://news.netcraft.com/archives/web_server_survey.
html) 

19. Jeffrey Nichols, Zhigang Hua, John Barton. Highlight: 
a system for creating and deploying mobile web appli-
cations. In Proc UIST 2008. ACM Press (2008), 249–
258.

20. Solvent. (http://simile.mit.edu/wiki/Solvent)
21. Rattapoom Tuchinda, Pedro Szekely and Craig A. 

Knoblock. Bulding mashups by example. In Proc IUI 
2008. ACM Press (2008), 139–148. 

22. Ubiquity (http://labs.mozilla.com/projects/ubiquity/)
23. United States Bureau of Labor Statistics. 

(http://www.bls.gov/oco/)
24. Jeffrey Wong and Jason I. Hong. Making mashups 

with Marmite: towards end-user programming for the 
web. In Proc CHI 2007. ACM Press (2007), 1435–
1444.

25. Yahoo! Pipes. (http://pipes.yahoo.com)
26. Nan Zang, Mary Beth Rosson and Vincent Nasser. 

Mashups: Who? What? Why? Ext Abstracts CHI 2008. 
ACM Press (2008), 3171–3176.


