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ABSTRACT 

 
We present a novel language identification technique using 

our recently developed deep-structured conditional random fields 
(CRFs). The deep-structured CRF is a multi-layer CRF model in 
which each higher layer’s input observation sequence consists of 
the lower layer’s observation sequence and the resulting lower 
layer’s frame-level marginal probabilities. In this paper we extend 
the original deep-structured CRF by allowing for distinct state 
representations at different layers and demonstrate its benefits. We 
propose an unsupervised algorithm to pre-train the intermediate 
layers by casting it as a multi-objective programming problem that 
is aimed at minimizing the average frame-level conditional entropy 
while maximizing the state occupation entropy. Empirical 
evaluation on a seven-language/dialect voice mail routing task 
showed that our approach can achieve a routing accuracy (RA) of 
86.4% and average equal error rate (EER) of 6.6%. These results 
are significantly better than the 82.5% RA and 7.5% average EER 
obtained using the Gaussian mixture model trained with the 
maximum mutual information criterion but slightly worse than the 
87.7% RA and 6.4% EER achieved using the support vector 
machine with model pushing on the Gaussian super vector  (GSV). 
 

Index Terms — language identification, deep-structure, 
conditional random field, deep learning, unsupervised learning 
 

1. INTRODUCTION 
 
Significant performance improvement has been achieved in 
automatic language recognition in the past several years due to the 
introduction of discriminative classifier methods using shifted-
delta cepstral coefficients (SDCCs) as the features [7]. These 
discriminative methods can be classified into three categories: the 
SVM techniques using polynomial kernels [2], the Gaussian 
mixture models (GMMs) trained with the maximum mutual 
information (MMI) criterion [1], and the SVM techniques using 
GMM super-vectors as features [4] [3]. 

In this paper we introduce a new category of discriminative 
classifier named deep-structured conditional random fields (CRFs) 
for automatic language recognition. The deep-structured CRF is a 
multi-layer discriminative model in which the output of the lower 
layers, together with the original features, is fed into the higher 
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layers as input. The training supervision is provided only at the 
final layer and the intermediate layers are pre-trained with 
unsupervised criteria and then fine-tuned with a supervised back-
propagation step as explained in Sections 2 and 3.  

The deep-structured CRF differs from the GMM-MMI 
approach in that the GMM-MMI is discriminatively trained 
generative model while the deep-structured CRF is a 
discriminative direct model optimized to maximize the conditional 
likelihood. The deep-structured CRF is also different from the 
SVM super-vector based approach in that the deep-structured CRF 
operates on the SDCC features directly. 

We have evaluated our approach on a specific language 
identification task --- a seven-language/dialect voice mail routing 
task, in which the goal is to dispatch each voice mail to the right 
automatic speech recognition (ASR) engine for transcribing. The 
experiments showed that our approach can achieve a routing 
accuracy (RA) of 86.4% or an average equal error rate (EER) of 
6.6%, significantly better than the 82.5% RA and 7.5% average 
EER obtained using the GMM-MMI approach but slightly worse 
than the 87.7% RA and 6.4% average EER achieved using the 
support vector machine (SVM) with model pushing on the 
Gaussian super vector (GSV). 

The rest of the paper is organized as follows. In Section 2, we 
describe the deep-structured CRF with a focus on its architecture 
and core ideas. In Section 3 we present an unsupervised pre-
training algorithm to learn the intermediate layers by casting it as a 
multi-objective programming problem aimed at minimizing the 
average frame-level conditional entropy and maximizing the state 
occupation entropy at the same time. We report the experimental 
results in Section 4 and conclude the paper in Section 5. 

 
2. CRF AND DEEP-STRUCTURED CRF 

 
CRFs are discriminative models that estimate the class label 
sequence conditional probabilities directly. The most popular CRF 
is the linear-chain CRF due to its simplicity and efficiency. If we 
denote by  the -frame observation sequence, 
and by   the corresponding state (label) 
sequence, which may be augmented with a special start ( ) and 
end ( ) state, the conditional probability of a state (label) 
sequence  given the observation sequence  is given by 

 (1)
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where we have used  to represent the observation 
features and  to represent the state transition features. 

 is the partition function to normalize the exponential form 
so that it  becomes a valid probability measure.   are the 
model parameters that are typically optimized to maximize the  
regularized state sequence log-likelihood 

Λ Λ
Λ

 (2) 

over the entire training set , where  is 
a parameter that balances the log-likelihood and the regularization 
term and can be tuned using  a development set.  
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Fig. 1. The graphical representation of the deep-structured CRF. 
The solid and empty nodes denote the observed and unobserved 
variables, respectively. 
 

We call the CRF without using the state transition features a 
zero-th-order CRF, where optimizing the state sequence 
conditional likelihood becomes equivalent to optimizing the frame-
level one.  In this case, the frame-level conditional probability can 
be more efficiently evaluated as 

 (3) 

Note that in the language recognition task typically 
 since most utterances contain only one language. In other 

words, we use the CRF for a classification problem.  However, the 
CRF-based approach can be naturally used for mixed-lingual 
language recognition, which is beyond the scope of this paper. 

The deep-structured CRF developed and evaluated in this 
work is a hierarchical model as shown in Fig. 1, where the final 

layer is a linear-chain CRF and the lower layers are zero-th-order 
CRFs that do not use state transition features. Note that linear-
chain CRFs can also be used in the lower layers. However, we 
have observed [1] that using zero-th-order CRFs in the lower 
layers only slightly degrades the accuracy while gaining the benefit 
of much less computation. In the deep-structured CRF, the 
observation sequence at each layer is constructed in a way similar 
to the tandem structure used in some automatic speech recognition 
systems [5]. Specifically, the observation sequence at layer  
consists of two parts: the previous layer’s observation sequence 

 and the frame-level marginal posterior probabilities 
 from the preceding layer . 

In the deep-structured CRF, both model parameter estimation 
and state sequence inference are carried out layer-by-layer in a 
bottom-up manner so that the computational complexity is limited 
to at most linear to the number of layers used [13][14]. 

Since we use continuous-valued SDCCs as the features in the 
language identification task we can achieve better performance by 
imposing constraints on the distribution of the features, which is 
equivalent to expanding each continuous feature into several 
features as discussed in [10][11][12]. Specifically, each continuous 
feature  in the CRF can be expanded to  features 

 (4) 

where  is a weight function whose definition and calculation 
method can be found in [9][10][11] and the number  needs to be 
determined based on the amount of training data available.  
 

3. LEARNING OF INTERMEDIATE LAYERS 
 
The number of states at the final layer in the deep-structured CRF 
is directly determined by the problem to be solved. For example, 
for a seven-language language recognition task, the final layer 
would have seven different states, one for each language. 
Parameter estimation at the final layer is carried out in a supervised 
manner since the desired output (the true language) is available 
from the training data. This is not the case, however, for the 
intermediate layers, which can be considered as abstract internal 
representations of the original observation with different 
granularities and can be estimated using either unsupervised or 
supervised approaches. For example, in [1] we assumed that the 
number of states at intermediate layers be the same as that in the 
final layer and that the same label used to train the final layer be 
used to train the intermediate layers. Although this approach is 
simple and effective, further performance gain is expected if we 
allow for a more flexible number of states at the intermediate 
layers. In this more general case, an unsupervised approach is 
desired to learning intermediate representations. Development of 
unsupervised learning constitutes one major innovation of this 
work, which we describe in detail in this section.  

The key idea of our approach is to cast the intermediate layer 
learning problem into a multi-objective programming (MOP) 
problem in which we minimize the average frame-level conditional 
entropy and maximize the state occupation entropy at the same 
time. Minimizing the average frame-level conditional entropy 
forces the intermediate layers to be sharp indicators of subclasses 
(or clusters) for each input vector, while maximizing the 
occupation entropy guarantees that the input vectors be represented 
distinctly by different intermediate states. 
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3.1. Maximize the state occupation entropy 

 
Let us denote by , , and  the input, output, and 
parameters of an intermediate layer, respectively. The intermediate 
layer state occupation entropy is defined as 

 (5) 

where  

 (6) 

The derivative of  with respect to  can be calculated as 

 

 

 

(7) 

Since  

 

 

(8) 

we obtain the final gradient 

 

 
(9) 

which is used in a gradient-based optimization procedure to be 
described shortly. 

3.2. Minimize the frame-level conditional entropy 
 

The frame-level conditional entropy at the intermediate layer can 
be written as 

 (10) 

Following the similar procedure we compute the derivative of 
 with respect to  as 

 

 

 

(11) 

The training of this MOP problem is carried out in a similar 
way to [8]. Specifically, we start from maximizing the state 

occupation entropy with the initial parameters set to zero. We then 
update the parameters by alternating between minimizing the 
frame-level conditional entropy and maximizing the average state 
occupation entropy. At each epoch we optimize one objective by 
allowing the other one to become slightly worse within a limited 
range. This range is gradually tightened epoch by epoch. The 
parameter update is carried out by gradient descent using RPROP 
algorithm [6].  

After the intermediate layers are pre-trained layer by layer 
using the unsupervised approach we just described, the model 
parameters are jointly fine-tuned using the back propagation to 
optimize the sequential conditional log-likelihood  [14]. 
 

4. EMPIRICAL EVALUATION 
 
The language identification experiments reported in this section 
have been performed on a Microsoft-internal close-set voice mail 
routing task, in which the goal is to route each voice mail to the 
right ASR engine for transcribing. The dataset contains voice mails 
from seven languages/dialects: Germany German (DE-DE), 
Australia English (EN-AU), British English (EN-GB), Indian 
English (EN-IN), Mexico Spanish (ES-MX), Canadian French 
(FR-CA), and Italian Italian (IT-IT). Each voice mail was recorded 
with different channels. As shown in Table 1, the average length of 
the voice mail utterances is 15 seconds with silence included and 
11 seconds with silence removed. The average number of speakers 
for each language is over 500. The training, development and test 
sets contain 300 voice mails for each language.  The training and 
test sets do not overlap with speakers. 

 
TABLE I 

DATA SETS USED IN THE EXPERIMENTS 

Seconds DE-
DE 

EN-
AU 

EN-
GB 

EN-
IN 

ES-
MX 

FR-
CA 

IT- 
IT Avg 

Mean 13 16 14 19 14 14 16 15 
Std 7 9 7 10 8 7 9 8 

Mean VAD 9 12 10 14 10 11 12 11 
Std VAD 5 7 5 7 5 6 6 6 

#Speakers 447 447 441 629 439 472 744 517 
 

The front end processing steps are summarized in Fig. 2. 
SDCC features are used with the 7-1-3-7 parameterization as 
reported in detail in [7]. This corresponds to seven delta cepstral 
coefficients stacked from seven different time locations. The 
complete feature vector contains 56 coefficients with seven 
cepstral coefficients and 49 SDCCs per frame. These features are 
normalized using the utterance mean subtraction. The silence 
frames are then removed through statistical voice activation 
detection (VAD) module.  

 

 
Fig. 2.  Feature extraction pipeline in the experiments. 

 
To evaluate the deep-structured CRF (DCRF), we have 

conducted a series of experiments using a range of configurations. 
Table II summaries the experimental results, where each 
continuous feature is expanded to four using the approach 
described in [10] when the distribution constraint is used. From 
Table II, we observe that the single-layer linear-chain CRF gives 
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low performance -- a routing accuracy (RA) of 44.6% and 34.3% 
with and without the distribution constraint, respectively. The two-
layer DCRF significantly improves the accuracy. As shown in 
Table II, if a 128-state low layer is learned using the unsupervised 
approach (described in Section 3), 79.5% RA is achieved without 
the distribution constraint and without using the original SDCC 
feature in the second layer. The RA is improved to 83.6% when the 
distribution constraint is used. It is further increased to 85.1% 
when the tandem structure is used and to 86.4% after the back-
propagation fine-tuning. 

To compare our DCRF-based techniques with existing state-
of-the-art techniques, we have conducted experiments using the 
GMM-MMI and GSV with model pushing (GSV-MP) on the same 
dataset. For the GMM-MMI system, the best configuration 
contains 256 Gaussians and was initialized using ten iterations of 
EM algorithm with the maximum likelihood (ML) criterion. For 
the GSV-MP system, we first built a language and gender 
independent GMM universal background model (UBM). The best 
configuration contains 1024 Gaussians in the UBM, and the UBMs 
were trained with ten iterations of EM adapting all parameters -- 
mixture weights, Gaussian means, and diagonal covariances.  

From Table II we can observe that the best GMM-MMI 
system can obtain 82.5% RA which is 3.9% lower than that 
achieved using the best two-layer DCRF model. Since each feature 
is expanded to four in the DCRF, the number of parameters used in 
the two-layer DCRF with a 128-state intermediate layer is the same 
as that used in the GMM-MMI system with 256 Gaussian 
mixtures. Note that our model still underperforms the best GSV-
MP system with the high 87.7% RA on the task at hand.  

The same conclusion can be drawn using the equal error rate 
(EER) metric as shown in Table III. The best two-layer DCRF 
produces a 6.6% average EER, which is 0.9% better than the 7.5% 
EER obtained using the GMM-MMI system, and 0.2% worse than 
that obtained using the GSV-MP system. 
 

TABLE II 
EXPERIMENTAL RESULTS (ROUTING ACCURACY) 

Model # States 
/Mixtures 

Distribution 
Constraint Tandem RA(%) 

CRF - no - 34.3 
CRF - yes - 44.6 

DCRF+pretrain 128 no no 79.5 
DCRF+pretrain 128 yes no 83.6 
DCRF+pretrain 128 yes yes 85.1 

DCRF+back-prop 128 yes yes 86.4 
GMM-MMI 256 - - 82.5 

GSV-MP 1024 - - 87.7 
 

TABLE III 
EXPERIMENTAL RESULTS (EQUAL ERROR RATE) 

Model # States 
/Mixtures 

Distribution 
Constraint Tandem Average 

EER(%) 
DCRF+back-prop 128 yes yes 6.6 

GMM-MMI 256 - - 7.5 
GSV-MP 1024 - - 6.4 

 
5. CONCLUSIONS 

 
We have developed a novel discriminative model and classifier, 
the deep-structured CRF with flexible intermediate layers, for 
language recognition. Experiments on the voice mail routing task 
demonstrate its superiority in performance over the popular GMM-

MMI approach.  
The deep-structured CRF in its current form still 

underperforms the state-of-the-art GSV-MP system. Our approach 
can be improved by adding more layers and using better pre-
training approach. 
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