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ABSTRACT 
 

It is widely known that the quality of confidence measure is 
critical for speech applications. In this paper, we present our recent 
work on improving word confidence scores by calibrating them 
using a small set of calibration data when only the recognized word 
sequence and associated raw confidence scores are made available. 
The core of our technique is the maximum entropy model with 
distribution constraints which naturally and effectively make use of 
the word distribution, the raw confidence-score distribution, and 
the context information. We demonstrate the effectiveness of our 
approach by showing that it can achieve relative 38% mean square 
error (MSE), 39% negative normalized likelihood (NNLL), and 
23% equal error rate (EER) reduction on a voice mail transcription 
data set and relative 35% MSE, 45% NNLL, and 35% EER 
reduction on a command and control data set. 
 

Index Terms— confidence calibration, confidence measure, 
maximum entropy, distribution constraint, word distribution 
 

1. INTRODUCTION 
 
Despite the significant progress made in improving automatic 
speech recognition (ASR) accuracy over the last three decades, the 
recognition results of spontaneous ASR systems still contain a 
large amount of errors, esp. under the noisy conditions. For speech 
applications (e.g., interactive dialog systems) to make wise 
decisions, it is important for the ASR engines to provide speech 
applications with the word confidence score representing an 
estimate of the likelihood that each word is correctly recognized.  

 Numerous techniques have been developed over the past 
years to improve the quality of the confidence measures [1]. These 
techniques can be classified into three categories. Techniques in 
the first category build a two-class (true or false) classifier based 
on the information (e.g., acoustic and language model scores) 
obtained from the ASR engine. The confidence measure on a 
specific word is then considered as the likelihood that the 
classifier’s output is true. Techniques in the second category 
consider the posterior probability of a word given the acoustic 
signal, which is typically estimated from the ASR lattices, as the 
confidence measure. Techniques in the third category consider the 
confidence estimation problem as an utterance verification problem 
and use the likelihood ratio between the null hypothesis (the word 
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is correct) and the alternative hypothesis (the word is incorrect) as 
the confidence measure. 

No matter which technique is used, the confidence measure is 
typically provided by the ASR engines which use one fixed set of 
model parameters, trained on a generic data set, for all 
applications. This approach has two drawbacks. First, the data used 
to train the confidence measure may differ vastly from the real data 
observed in a specific speech application due to different language 
models used and different environments in which the applications 
are deployed. Second, some information such as distribution of the 
words (see Section 2.2 for detailed discussions) cannot be used in 
the generic confidence model since such information is application 
specific and cannot be reliably estimated from the generic data set. 
As a result, the confidence measure provided by the ASR engines 
can be far from optimal for a specific application. 

In this paper we propose to improve the quality of confidence 
measure by calibrating (post-processing) it for each specific 
application. We assume that we have access to a small amount of 
transcribed calibration data collected under the real usage scenario 
for the specific application. We further assume that the only 
information we can obtain from the ASR engines is the recognized 
word sequence and the associated “raw” confidence scores. Our 
calibration technique described in this paper is especially useful for 
dialog application developers who cannot modify the confidence 
estimation module and/or access to the information inside the ASR 
engine.  

Given a set of  confidence scores and the associated labels 
, where  if the word is 

correct and  otherwise, the quality of confidence measure 
can be evaluated using  four popular criteria. The first criterion is 
mean square error (MSE): 

 (1) 

The second criterion is negative normalized log-likelihood 
(NNLL): 

 (2) 

where  if  is true and 0 otherwise. The third criterion is 
equal error rate (EER).  And the fourth criterion is the detection 
error trade-off (DET) curve [2], the crossing of which with the 

 diagonal line gives the EER.  
The confidence calibration approach proposed in this paper is 

based on our recently developed maximum entropy (MaxEnt) 
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model with distribution constraints [6] and uses both the raw 
confidence score distribution and the word distribution 
information. We demonstrate the effectiveness of our approach in 
this paper by showing that it can achieve relative 38% MSE, 39% 
NNLL, and 23% EER reduction on a voice mail transcription 
(VM) data set and relative 35% MSE, 45% NNLL, and 35% EER 
reduction on a command and control (C&C) data set. 

The rest of the paper is organized as follows. In Section 2 we 
review the MaxEnt model with distribution constraints (MaxEnt-
DC) and the specific treatment needed for continuous features and 
multi-valued nominal features. In Section 3 we first argue that the 
word distribution information differs vastly for different 
applications and hence should be effectively exploited to calibrate 
the confidence scores. We then describe three different approaches 
to exploiting the word distribution information. We evaluate our 
approach empirically on a VM data set and a C&C data set in 
Section 4, and conclude the paper in Section 5. 

 
2. MAXIMUM ENTROPY MODEL WITH DISTRIBUTION 

CONSTRAINTS 
 
The MaxEnt model with moment constraints (MaxEnt-MC) is a 
popular discriminative model that is widely used for classifier 
design. Given an -sample training set  
and a set of  features  defined on the input  
and output , the posterior probability  

 (3) 

is in a log-linear form, where  is a 
normalization constant to fulfill the probability constraint 

, and  is optimized to maximize the log-
conditional-likelihood 

 (4) 

over the whole training set. 
While the MaxEnt-MC model can achieve impressive 

classification accuracy when binary features are used, it was not as 
successful when continuous features are used. We have recently 
developed the MaxEnt model with distribution constraints 
(MaxEnt-DC) [6] and proposed that the information carried in the 
feature distributions be used to improve classification performance. 
Our model is a natural extension to the MaxEnt-MC model by 
observing that the moment constraints are the same as the 
distribution constraints for binary features. 

To use the MaxEnt-DC model, features are first classified into 
three categories: binary, continuous, and multi-valued nominal 
features. For the binary features, the distribution constraint is the 
same as the moment constraint and so no change is needed. For the 
continuous features, each feature  is expanded to  features 

 (5) 

where  is a weight function whose definition and calculation 
method can be found in [5][6][7] and the number  needs to be 
determined based on the amount of training data available. For the 
multi-valued nominal features, the feature values are sorted first in 
the descending order of their number of occurrences. The top  
nominal values are then mapped into token IDs in , and 
all remaining nominal values are mapped into the same token ID  , 
where  is chosen to guarantee the distribution of the nominal 

features can be reliably estimated. Each feature  is 
subsequently expanded to  features 

 (6) 

After the feature expansion for the continuous and the multi-
valued nominal features, the posterior probability in the MaxEnt-
DC model can be evaluated as  

 

(7) 

and parameter estimation can be carried out in the same way as 
that used in the MaxEnt-MC model. In our experiments we have 
used the RPROP [3] training algorithm.  

We have applied the MaxEnt-DC model to several tasks [6] 
[8] and consistently observed improvement over the MaxEnt-MC 
model when sufficient training data is available. In the work 
described in this paper, we use the MaxEnt-DC model to calibrate 
the confidence scores. As the related earlier work, White et al. [4]  
used the MaxEnt-MC model for confidence measurement in 
speech recognition. Our approach performs significantly better 
than the earlier approaches in that we used the MaxEnt-DC model 
with the constraints on both continuous raw confidence scores and 
multi-valued word tokens. 
 

3. INFORMATION SOURCES AND FEATURES 
 
In our confidence calibration setting, it is assumed that we only 
have access to the word and “raw” confidence score sequences of 

 (8) 

from the ASR engine, where  is the -th word in the -th 
utterance and  is the associated confidence score. The goal of 
confidence calibration is to derive a better confidence score 

 for each word  from the raw scores. We 
also assume that we have a training (calibration) set that tells us 
whether each recognized word is correct (true) or not (false), from 
which we train the parameters of the calibration model. 

At first glance, there seems to be little information we can 
exploit to calibrate the raw confidence score from the ASR engine. 
The information at hand is the current word’s confidence score  
and the previous and next words’ confidence scores  and 

, since an error in one place can affect the adjacent words. 
After a careful examination, however, we noticed that the 
recognized word itself also contains information as shown in Table 
I, where the top 10 words and their frequencies in VM and C&C 
data sets are displayed. From the table we observe that the 
distributions are significantly different across words and tasks. 
Hence, constraints on the distribution of the words would supply 
useful information to the MaxEnt model. In addition, the 
distribution of the confidence scores across words is also vastly 
different, and hence, constraints on the joint distribution of words 
and confidence scores can also help.  

The above analysis suggests three ways of using the word and 
confidence distribution information in the MaxEnt-DC model. In 
the first approach, we construct four features 
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 (9) 

 (10) 

 (11) 

 (12) 

for each frame . If context information is used, features 
constructed for the previous and next frames can be exploited. In 
this first approach the weight on the raw confidence score is shared 
across all the words. However, different bias weights are used for 
different words since 

 
(13) 

 
TABLE I 

TOP 10 WORDS AND THEIR FREQUENCIES IN THE VOICE MAIL 
TRANSCRIPTION AND COMMAND AND CONTROL DATA SETS 

VM C&C 
word count percentage word count percentage 

i 463 3.03% three 716 4.81% 
you 451 2.95% two 714 4.80% 
to 446 2.92% five 713 4.79% 
the 376 2.46% one 691 4.64% 
and 369 2.42% seven 651 4.38% 
uh 356 2.33% eight 638 4.29% 
a 302 1.98% six 627 4.21% 

um 287 1.88% four 625 4.20% 
that 215 1.41% nine 616 4.14% 
is 213 1.39% zero 485 3.26% 

 
In the second approach the distribution of the words and 

confidence scores are jointly modeled and two features  

 (14) 

 (15) 

are constructed for each word token  at each frame. This approach 
essentially uses distinct weights on the raw confidence score but 
share the same bias weight for different words. 

In the third approach we add two more features as in (11) and 
(12) for each frame, in addition to the features used in the second 
approach. This approach uses different weights on the confidence 
scores and different bias weights for different words. 
 

4. EMPIRICAL EVALUATION 
 
To evaluate the effectiveness of the confidence calibration 
technique we just described, we have conducted a series of 
experiments on two data sets: VM and C&C. Table II summarizes 
the number of utterances and words in the training (calibration), 
development, and test sets in each data set. The word error rate 
(WER) obtained from a speaker-independent ASR engine on the 
test sets are 28% and 8%, respectively, for the VM and C&C data 

sets. The confidence measure before calibration was obtained 
directly from the same ASR engine which used a Gaussian mixture 
model classifier discriminatively trained using generic training sets 
unrelated to these two data sets. 

Table III compares different approaches using the MSE, 
NNLL, and EER criteria. A setting with continuous features 
expanded to  features, with -th approach used to incorporate the 
word distribution information, and with the adjacent words’ 
information used (  or not used  is denoted as 
KkWwCc.  indicates that the word distribution information 
is not used. In all these settings, we assign a unique token ID for 
words that occur more than 20 times in the training (calibration) set 
and assign a same token ID to all other words. This yields 133 and 
109 word tokens (i.e., J=133 and 109) in the VM and C&C 
calibration models respectively.  Note that with the same threshold 
(20 in this case) J will be automatically reduced when smaller 
calibration set is available. Further improvements can be obtained 
by tuning the threshold but won’t affect the main message. 

TABLE II 
SUMMARY OF DATA SETS 

 VM C&C 
# utterances # words # utterances # words 

train 352 15274 4381 14877 
dev 368 15265 4391 14642 
test 371 15300 4371 15164 

 
TABLE III 

CONFIDENCE QUALITY COMPARISON USING DIFFERENT FEATURES 
AND APPROACHES 

 
VM C&C 

MSE NNLL EER MSE NNLL EER 
No Calibration 0.235 0.749 33.8 0.085 0.362 32.7 

K1W0C0 0.177 0.532 33.7 0.059 0.226 32.7 
K4W0C0 0.177 0.531 33.8 0.059 0.223 32.7 
K1W0C1 0.171 0.515 31.7 0.058 0.219 32.3 
K4W0C1 0.171 0.514 31.9 0.057 0.217 30.2 
K1W1C0 0.149 0.458 27.4 0.055 0.202 23.4 
K4W1C0 0.149 0.458 27.5 0.055 0.202 23.1 
K1W1C1 0.146 0.449 26.3 0.054 0.200 22.4 
K4W1C1 0.145 0.447 26.6 0.054 0.200 21.7 
K1W2C1 0.146 0.455 26.1 0.055 0.198 21.1 
K4W2C1 0.155 0.480 27.6 0.057 0.209 21.5 
K1W3C1 0.145 0.451 26.6 0.055 0.203 21.7 
K4W3C1 0.153 0.474 27.7 0.056 0.204 23.2 

 
From Table III, we make several observations. First, if neither 

the word distribution nor the adjacent words’ information is used 
(settings K1W0C0 and K4W0C0), no EER reduction can be 
obtained. However, we still can reduce MSE and NNLL by 
relatively 25% and 29% on the VM test set and 31% and 38% on 
the C&C test set, respectively. This indicates that even without 
using additional information, our calibration approach can still 
make the confidence scores more closely related to the probability 
that the word is correct. Second, if the adjacent words’ confidence 
scores are used but the word distribution information is not used 
(settings K1W0C1 and K4W0C1), MSE, NNLL, and EER can all 
be improved. However, only 6% and 8% relative EER can be 
achieved and additional MSE and NNLL reduction over the 
settings K1W0C0 and K4W0C0 is very small. This means 
although the adjacent words’ confidence scores carry information, 
the improvement they bring is relatively small. This conclusion is 

4448



corroborated by comparing the results obtained under settings 
K1W1C1 and K4W1C1 with that achieved under settings 
K1W1C0 and K4W1C0. Third, if the word distribution 
information is used (settings K*W1C*, K*W2C*, and K*W3C*), 
significant MSE, NNLL, and EER reduction is achieved no matter 
how the word distribution information is used. For example, the 
K4W1C1 setting outperforms the no-calibration setting with 
relative MSE, NNLL, and EER reductions by 38%, 40%, 21%, 
respectively, on the VM test set, and 36%, 45%, 34% on the C&C 
test set. Similarly, the K1W2C1 setting reduces the MSE, NNLL, 
and EER by 38%, 39%, and 23% on the VM test set and 35%, 
45%, and 35% on the C&C test set over the no-calibration setting.  
Fourth, expanding the continuous features to four features helps 
when the word distribution information is not used or the first 
approach is used.  But it does not help when the second and third 
approaches are used to exploit the word distribution information. 
This is due to the fact that in this case each word has its own set of 
confidence weight and bias, and the training (calibration) set size is 
not large enough especially for the words that occur only about 20 
times in the calibration set. The above observations can also be 
made from Figs. 1 and 2 where the DET curve for the VM and 
C&C test sets are illustrated for the settings of no-calibration, 
K4W0C1, K4W1C1, and K1W2C1.  

 
Fig. 1.  The DET curves for the VM test set. 

 
5. CONCLUSIONS 

 
We have argued that calibrating the confidence scores for different 
speech applications is important and proposed to use the MaxEnt-
DC model [6] to calibrate the word confidence scores by utilizing 
the raw confidence and word distribution information. We have 
shown on two data sets that our approach significantly boosted the 
quality of the confidence scores even though only the recognized 
word sequence and the associated raw confidence scores are 
available, which is the typical situation for most dialog application 
developers. We have also observed that the performance gain is 
mostly from using the word distribution information and the three 
approaches proposed to exploit this information perform equally 
well. 

The quality of the calibrated confidence scores can be further 
improved if the additional information such as the N-best results 
and the acoustic and language model scores are available to the 
MaxEnt-DC model.  In the companion paper [9], we discussed 

how the same technique can be used to significantly improve the 
semantic confidence measure. 
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Fig. 2.  The DET curves for the C&C test set. 
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