
Computer-Aided Security Proofs for the Working

Cryptographer⋆

Gilles Barthe1, Benjamin Grégoire2, Sylvain Heraud2, and
Santiago Zanella Béguelin1

1 IMDEA Software Institute
2 INRIA Sophia Antipolis-Méditerranée

Abstract. We present an automated tool for elaborating security proofs of cryptographic sys-
tems from proof sketches—compact, formal representations of the essence of a proof as a sequence
of games and hints. Proof sketches are checked automatically using off-the-shelf SMT solvers and
automated theorem provers, and then compiled into verifiable proofs in the CertiCrypt frame-
work. The tool supports most commonly used reasoning patterns, is significantly easier to use
than its predecessors, and is a plausible candidate for adoption by working cryptographers. We
illustrate its application to proofs of the Cramer-Shoup cryptosystem and Hashed ElGamal en-
cryption.

Keywords: Provable security, verifiable security, game-based proofs, Cramer-Shoup, ElGamal.

1 Introduction

The game-playing technique [8, 17,20] is an established methodology for structuring crypto-
graphic proofs. Its essence lies in giving precise mathematical descriptions of the interaction
between an adversary and an oracle system—such descriptions are referred to as games—and
to organize proofs as sequences of games, starting from a game that represents a security goal
(e.g. IND-CCA), and proceeding to games that represent security assumptions (e.g. DDH) by
successive transformations that can be shown to preserve, or only alter slightly the overall
security. A typical transition considers two games G and G′ and a claim that relates the
probability of an event A in game G to the probability of an event A′ in game G′. For in-
stance, the claim may be an inequality of the form Pr [G : A] ≤ Pr [G′ : A′]+∆, where ∆ is an
arithmetic expression that depends on the number of adversary calls to oracles. The prevail-
ing practice for proving the validity of such claims is to use standard mathematical tools; in
general, proofs interleave reasoning about the semantics of games with information-theoretic
or mathematical arguments.

The code-based approach [8, 17] is an instance of the game-playing technique in which
games are cast as probabilistic algorithms. The adoption of programming idioms allows giving
precise definitions of games, and paves the way for applying programming language methods
to justify proof steps rigorously. As anticipated by their proponents, code-based game-playing
proofs are amenable to formal verification, and a number of tools provide support for building
them. CryptoVerif [11] is a prominent tool for conducting security proofs in a game-based set-
ting. Technically, games in CryptoVerif are modelled as processes, and transitions are justified
by means of process-algebraic concepts such as bisimulations. One strength of CryptoVerif,

⋆ This article reports on a tool not yet made publicly available. A copy of the tool and the code of the
applications described here may be obtained from the authors upon request.

apart from being the first tool to have supported game-based proofs, is to apply both to
protocols and primitives; for instance, it has been successfully applied to verify Kerberos [10]
and the FDH signature scheme [12]. CertiCrypt [4] is another framework that allows for the in-
teractive construction of game-based proofs in the Coq proof assistant [24]. One specificity of
CertiCrypt is that proofs can be verified independently and automatically by a small trustwor-
thy checker; it has been successfully applied to verify prominent cryptographic constructions,
including OAEP [6], FDH [25], and zero-knowledge protocols [7].

While the developments based on CryptoVerif and CertiCrypt make a convincing case that
computer-aided cryptographic proofs are indeed plausible, neither tool has reached a wide
cryptographic audience. In [6], the authors of CertiCrypt contrast the high guarantees given
by their tool with the effort and expertise required to build machine-checked proofs, and
conclude that cryptographers are unlikely to adopt verifiable security in its current form.
In this sense, it can be considered that CryptoVerif and CertiCrypt only provide a partial
realization of Halevi’s programme of systematically building computer-aided cryptographic
proofs [17].

The thesis of this article is that verifiable security can dramatically benefit from automa-
tion using state-of-the-art verification technology, and that verifiable game-based proofs can
be constructed with only a moderate effort. The thesis is realized with the presentation of
EasyCrypt, an automated tool that builds machine-checked proofs from proof sketches, which
offer a machine-processable representation of the essence of a security proof. More fundamen-
tally, we argue that EasyCrypt is significantly easier to use than previous tools, making an
important step towards the adoption of computer-aided security proofs by working cryptogra-
phers and hence towards fulfilling Halevi’s programme. To substantiate our claim, we present
computer-aided proofs of security of Hashed ElGamal and the Cramer-Shoup cryptosystem.

EasyCrypt adopts the principled approach mandated by CertiCrypt to conduct game-based
proofs and imposes a clear separation between program verification and information-theoretic
reasoning. Hence, game transitions are justified in two steps: first, one proves logical relations
between the games using probabilistic Relational Hoare Logic (pRHL); second, one applies
information-theoretic reasoning to derive the claim from pRHL judgments. We provide for
each step highly effective mechanisms that build upon a combination of off-the-shelf and
purpose-specific tools. Specifically, EasyCrypt implements an automated procedure that com-
putes for any pRHL judgment, a set of sufficient conditions, known as verification conditions,
for its validity. The outstanding feature of this procedure, and the key to the effectiveness
of EasyCrypt, is that verification conditions are expressed in the language of first-order logic,
without any mention of probability, and can be discharged automatically by state-of-the-
art tools such as SMT solvers and theorem provers. The verification condition generator is
proof-producing, in the sense that it generates Coq files that can be machine-checked using
the CertiCrypt framework. Moreover, the connection to CertiCrypt makes it possible to ben-
efit from the expressivity and flexibility of a general-purpose proof assistant for advanced
verification goals that fall out of the scope of automated techniques. Additionally, EasyCrypt
implements an automated mechanism for proving claims. The mechanism combines some
elementary rules to compute (bounds on) probabilities of events—e.g. the probability of a
uniformly sampled element to belong to a list—with rules to derive (in)equalities between
probabilities of events in games from judgments in pRHL. The combination of these tools
with other more mundane features such as some limited form of specification inference pro-

vides substantial leverage towards making verifiable security practical and makes EasyCrypt

a plausible candidate for adoption by the working cryptographer.

2 Introductory Example: Hashed ElGamal Encryption

This section illustrates the application of EasyCrypt to the IND-CPA security of the Hashed
ElGamal encryption scheme in the Random Oracle Model. The example serves to introduce
the notion of proof sketch and to give the reader an idea of the input that the tool expects.
It also allows for a preliminary comparison between EasyCrypt and CertiCrypt. We refer the
reader to [5] for a proof of the same result in CertiCrypt.

Hashed ElGamal is a variant of ElGamal encryption that does not require plaintexts to
be elements of a group G. Instead, plaintexts are bitstrings of a certain length k and group
elements are mapped into bitstrings using a hash function H : G → {0, 1}k . Formally, the
scheme is defined by the following triple of algorithms:

KG(η) def
= hk $← K; x $← Zq; return ((hk, gx), (hk, x))

E((hk, α),m) def
= y $← Zq; h← H(hk, αy); return (gy , h⊕m)

D((hk, x), (β, ζ)) def
= h← H(hk, βx); return (ζ ⊕ h)

The IND-CPA security of Hashed ElGamal can be reduced to the Computational Diffie-
Hellman (CDH) assumption on the underlying group family {Gη}; to match the existing
proof in CertiCrypt, we exhibit a reduction to the LCDH assumption, the set version of the
CDH assumption—the reduction from LCDH to CDH is immediate.

Figure 1 provides the sequence of games used to justify the reduction. This is an essential
part of the proof sketch that is input to EasyCrypt, and which is composed of five ingredients:3

1. Type, constant and operator declarations, which introduce the objects manipulated by
the scheme. Here, they include a cyclic group, the group law and exponentiation, and
exclusive or on bitstrings;

2. Axioms, which capture mathematical properties of these objects, and are used by auto-
mated tools to check the validity of the proof sketch. Here, the axioms state properties of
cyclic groups and of exclusive or on bitstrings;

3. Game definitions, where adversaries are specified as abstract procedures with access to
oracles. In all the games in the figure the hash function H is modeled as a random oracle
(we omit hash keys since they play no role in the proof):

H(x) def
= if x /∈ dom(L) then h $← {0, 1}k ;L[x]← h fi; return L[x]

The adversary is given access to a wrapper HA of this oracle that just stores queries in a
list LA before forwarding them to H.

4. Judgments in pRHL. The general form of judgments is |= G1 ∼ G2 : Ψ ⇒ Φ, where G1 and
G2 are games, and the pre-condition Ψ and the post-condition Φ are relations on states.
The pre- and post-conditions are first-order formulae built from relational expressions, in
which language expressions are tagged with 〈1〉 or 〈2〉 to denote their interpretation in the
first or second game. Pre- and post-conditions often consider the equivalence of memories
on a set X of variables; we use =X as a shorthand for the conjunction

∧

x∈X x〈1〉 = x〈2〉;

3 The first two are omitted from the figure. We include an extract of the actual input file for reference in
Appendix A.

5. Relations between probabilities, built from probability quantities (the probability of an
event in a game), arithmetic operators, and mathematical relations (e.g. =, <,≤). The
final statement that expresses the overall security guarantee brought by the proof sketch
is usually a claim that upper bounds the probability of adversary success in an initial
attack game in terms of the probabilities of one or more adversaries breaking security
assumptions.

We briefly comment on the sequence of games: the first and last games encode the IND-

CPA and LCDH experiments, respectively. The first transition from IND-CPA to G1 inlines
the key generation and encryption procedures and rearranges the resulting code so that
random choices are made upfront. The pRHL judgment states that both games yield identical
distributions on res and L

A. The keyword res denotes the result of a game. In all games in
the figure it is defined as the result of the comparison (b = b′), except in the last one where
the result is (gxy ∈ L). The transition to G2 substitutes the call H(ŷ) by a random sampling.
This only makes a difference if A1 made this call, and this happens with the same probability
in either game. Thus, the difference in the probability of Success in the games is bounded by
the probability of Bad in G2 (these two events are defined on the top of the figure). This can
be seen as a semantic variant of the Fundamental Lemma; the logic allows to dispense with
the code instrumentation needed in the syntactic counterpart. The transition from G2 to G3

uses a code transformation known as optimistic sampling : instead of sampling h and defining
a value γ as h⊕mb, one can sample γ and define h = γ ⊕mb. This transformation is proven
admissible within the logic and removes the dependency of the adversary’s output from b. The
final transition performs the reduction to LCDH by exhibiting an adversary B that uses A as a
sub-procedure and for which the semantics of the LCDH game and G3 coincide. Finally, from
the preceding claims, the advantage of A can be bounded by the probability of B in solving
LCDH. The resulting proof sketch is about 250 lines long, about 6 times shorter than the
proof in CertiCrypt reported in [5]—and arguably much simpler and close to a pen-and-paper
proof.

3 An Overview of EasyCrypt

Programming Language Games are modelled as programs in a typed, probabilistic, procedu-
ral, imperative language. Adversaries are modelled as abstract procedures, for which one can
provide an interface that specifies the variables it can read and write, and the procedures it
may call. Games can be given a semantics as distribution transformers, in the style of [4].
Formally, the semantics of a game G is a map, denoted JGK, that returns for an initial mem-
ory m the (sub-)distribution on final memories resulting from executing G in m. Given an
initial memory m and an event A, we let Pr [G,m : A] denote the probability of A w.r.t. the
distribution JGK m; we simply write Pr [G : A] when the initial memory is not relevant.

A Mechanized Probabilistic Relational Hoare Logic We start by reviewing the essentials of
pRHL. The validity of a judgment |= G1 ∼ G2 : Ψ ⇒ Φ is formally cast as a max-flow min-cut
problem. For our purposes, it will be sufficient to know that, if |= G1 ∼ G2 : Ψ ⇒ Φ, then
Pr [G1,m1 : A] = Pr [G2,m2 : B] for all memories m1 and m2 such that m1 Ψ m2, and events
A and B such that Φ→ (A〈1〉 ↔ B〈2〉).

Success
def
= b = b′ ∧ |LA| ≤ qH Bad

def
= ŷ ∈ LA

Game IND-CPA :
(α, x)← KG();
(m0,m1)← A1(α);
b $← {0, 1};
(β, γ)← E(α,mb);
b′ ← A2(β, γ)

Game G1 :
x $← Zq; α← gx;
y $← Zq; ŷ ← αy ;
(m0,m1)← A1(α);
b $← {0, 1};
h← H(ŷ);
b′ ← A2(g

y, h⊕mb)

|= IND-CPA ∼ G1 : true⇒ ={res,LA}

Pr [IND-CPA : Success] = Pr [G1 : Success]

Game G1 :
x $← Zq; α← gx;
y $← Zq; ŷ ← αy ;
(m0,m1)← A1(α);
b $← {0, 1};
h← H(ŷ);
b′ ← A2(g

y, h⊕mb)

Game G2 :
x $← Zq; α← gx;
y $← Zq; ŷ ← αy ;
(m0,m1)← A1(α);
b $← {0, 1};

h $← {0, 1}
k;

b′ ← A2(g
y, h⊕mb)

|= G1∼ G2 : true⇒Bad〈1〉↔Bad〈2〉∧
(

¬Bad〈1〉→ ={res,LA}

)

|Pr [G1 : Success]− Pr [G2 : Success] | ≤ Pr [G2 : Bad]

Game G2 :
x $← Zq; α← gx;
y $← Zq; ŷ ← αy ;
(m0,m1)← A1(α);
b $← {0, 1};

h $← {0, 1}
k;

b′ ← A2(g
y, h⊕mb)

Game G3 :
x $← Zq; α← gx;
y $← Zq; ŷ ← αy ;
(m0,m1)← A1(α);
γ $← {0, 1}k;
b′ ← A2(g

y, γ);
b $← {0, 1}

|= G2 ∼ G3 : true⇒ ={res,LA,ŷ}

Pr [G2 : Success] = Pr [G3 : Success] = 1/2
Pr [G2 : Bad] = Pr [G3 : Bad]

Game G3 :
x $← Zq; α← gx;
y $← Zq; ŷ ← αy ;
(m0,m1)← A1(α);

γ $← {0, 1}
k;

b′ ← A2(g
y, γ);

b $← {0, 1}

Game LCDH :
x $← Zq; y $← Zq;
L← B(gx, gy)

Adversary B(α, β) :
(m0,m1)← A1(α);

γ $← {0, 1}
k;

b′ ← A2(β, γ);
return LA

|= G3 ∼ LCDH : true⇒ LA〈1〉 = L〈2〉 ∧ Bad〈1〉 ↔ res〈2〉
Pr

[

G3 : ŷ∈L
A ∧ |LA|≤qH

]

= Pr [LCDH : gxy ∈L ∧ |L| ≤ qH]
∣

∣Pr [IND-CPA :Success]− 1

2

∣

∣≤ Pr [LCDH :gxy ∈ L ∧ |L| ≤ qH]

Fig. 1. Proof sketch of Hashed ElGamal security

The rules of pRHL are either one-sided, or two-sided. One-sided rules operate on a sin-
gle command, and do not impose any restriction on the other command of the conclud-
ing judgment. In contrast, two-sided rules require that the two commands of the conclud-
ing judgment are of the same shape. For instance, the respective forms of the conclusions
for the one-sided and two-sided rules for assignments are |= x← e1 ∼ c2 : Ψ ⇒ Φ and
|= x← e1 ∼ x← e2 : Ψ ⇒ Φ where c2 is an arbitrary command. Thus, one-sided rules are
more flexible, and allow to reason about programs that do not have the same shape. All lan-
guage constructs admit both one-sided and two-sided rules, except for random assignments
and adversary calls, for which only two-sided rules exist.

The lack of one-sided rules for random assignments and adversary calls limits the applica-
bility of the logic: e.g., it cannot relate the programs x $← X; y ← A(z) and y ← A(z);x $← X,
because instructions are executed in a different order. To mitigate this limitation, EasyCrypt
implements program transformations for code motion. For instance, the judgment

|= x $← X; y ← A(z) ∼ y ← A(z);x $← X : true⇒ x〈1〉 = x〈2〉

can be shown valid by first applying code motion to swap the statements in one of the
programs, and then the two-sided rules of the logic for random assignments and adversary
calls.

EasyCrypt implements a tactic language to prove the validity of a pRHL judgment using
rules of pRHL and program transformations. The language includes: i. basic tactics for each
rule of pRHL; ii. tactics for inlining, code movement, and eager/lazy sampling; iii. tacticals
to build more powerful tactics by composition of basic ones. The tactic language provides
the necessary infrastructure for making most components of EasyCrypt proof-producing, as
discussed below.

Generating Verification Conditions Most practical verification tools adopt a similar method-
ology: first, one computes from a program and its specification a set of sufficient conditions,
known as verification conditions. Second, the conditions are discharged by automated tools.
Extending the methodology to pRHL is a significant challenge, for two reasons: i. generating
verification conditions for a relational program logic is an open topic of research; ii. there is
no prior application of the methodology to probabilistic programs.

There are at least two possible strategies for generating verification conditions in a re-
lational setting. One can either define a relational weakest precondition (wp) calculus that
operates on both games in lockstep, in the style of two-sided rules, or else one can apply a
weakest precondition calculus on each game separately, in the style of one-sided rules and
self-composition [3]. Both strategies are incomplete: the relational wp calculus inherits the re-
strictions of pRHL, whereas self-composition simply fails to handle random assignments and
adversary calls. In order to circumvent these limitations, EasyCrypt implements an alternative
strategy to prove pRHL judgments:

1. Calls to non-adversary procedures are eliminated from the games by successive appli-
cations of inlining. Whenever the transformation terminates successfully, only adversary
calls remain;

2. Random assignments are moved upfront, i.e. to the beginning of the code of the main
procedure, or of oracles. If the transformation succeeds, the resulting code consists of a

sequence of random assignments followed by deterministic code, possibly with adversary
calls;

3. A relational wp calculus is applied to the deterministic code in the game, using relational
specifications of adversaries to deal with calls. Each adversary specification induces a
proof obligation, expressed as a pRHL judgment, on the oracles it calls. Self-composition
is applied to verify the deterministic code of the oracles with respect to these pRHL
judgments.

This approach is clearly incomplete, and would fail on programs with recursive procedures
or random assignments in loops, or where calls to adversaries appear in a different order.
Pleasingly, the strategy is extremely effective in practice—so that we have found no need to
implement alternatives for dealing with programs not handled by our approach.

At this point, all judgments are of the form |= S1 ∼ S2 : Ψ ⇒ Φ, where S1 and S2 are
sequences of random assignments. The final step for generating proof obligations is turning
these judgments into logical formulae. Take

S1
def
= x1 $← T1; . . . xl $← Tl

S2
def
= y1 $← U1; . . . yn $← Un

Then, |= S1 ∼ S2 : Ψ ⇒ Φ, provided there exists a 1-1 mapping

f : T1 × · · · × Tl → U1 × · · · × Un

such that the verification condition Φ⇒f Ψ , defined as

∀m1 m2 ~t . m1 Ψ m2 =⇒ m1

{

~t/~x
}

Φ m2

{

f(~t)/~y
}

is valid.4 In practice, reordering the sequences of statements S1 and S2 lexicographically
according to the names of the variables and taking f as the identity often works. However,
other mappings must sometimes be used, for instance to justify transitions based on one-time
paddings or that use different variable names. Hence, EasyCrypt offers a tactic to provide the
mapping f that justifies the equivalence of a sequence of random assignments. Note that, for
any f explicitly given, Φ⇒f Ψ is a first-order formula whose validity can be established by off-
the-shelf tools. In order to target multiple tools, EasyCrypt generates its verification conditions
in the intermediate format of the Why tool [16]. We then use the Simplify prover [15], the
alt-ergo SMT solver [13], and the Coq proof assistant to discharge the conditions (although
many others provers are supported).

Reasoning about Failure Events Game-based proofs often include transitions in which it is
argued that two games G1 and G2 behave identicaly unless a designated failure event F occurs.
Such transitions are justified using the so-called Fundamental Lemma [8, 20], which allows
to bound the difference between the probability of an event A in game G1 and a possibly
different event B in game G2 by the probability of F in either game. Although a syntactical
characterization of this lemma is often used, in which the failure event is represented by a
Boolean flag in the code of the games, we can pleasingly state a more general version of the
lemma using relational logic.

4 There exist more general conditions not requiring T1 × · · · × Tl and U1 × · · · × Un to be isomorphic. See
Appendix B for a justification of the method.

Lemma 1 (Fundamental Lemma). Let G1, G2 be two games and A,B, and F be events

such that

|= G1 ∼ G2 : Ψ ⇒ (F 〈1〉 ↔ F 〈2〉) ∧ (¬F 〈1〉 → (A〈1〉 ↔ B〈2〉))

Then, if m1 Ψ m2,

1. Pr [G1,m1 : A ∧ ¬F] = Pr [G2,m2 : B ∧ ¬F],
2. |Pr [G1,m1 : A]− Pr [G2,m2 : B] | ≤ Pr [G1,m1 : F] = Pr [G2,m2 : F]

The hypotheses of the lemma can be checked using the pRHL prover. The key to proving
the validity of the judgment is finding an appropriate specification for adversaries. EasyCrypt
infers for each adversary call x← A(~t) a relation Θ and checks the validity of the judgment

|= A ∼ A : (¬F 〈1〉 ∧ ¬F 〈2〉 ∧ =args(A) ∧ Θ)⇒

(F 〈1〉 ↔ F 〈2〉) ∧
(

¬F 〈1〉 → ={res} ∧ Θ
)

where args(A) denotes the set of parameters of A. This in turn, requires inferring and checking
similar specifications for oracles. Although these heuristically inferred specifications suffice in
most cases, the user can choose to provide their own specifications for one or more oracles or
adversaries when needed, leaving the tool to infer the rest.

Computing Probabilities The tool can prove claims about the probability of events in games
from previously proved relational judgments, arithmetic laws, and properties of probability
(e.g. inclusion-exclusion principle) by exploiting the following rules:

m1 Ψ m2 |= G1 ∼ G2 : Ψ ⇒ Φ Φ→ (A〈1〉 ↔ B〈2〉)

Pr [G1,m1 : A] = Pr [G2,m2 : B]

m1 Ψ m2 |= G1 ∼ G2 : Ψ ⇒ Φ Φ→ (A〈1〉 → B〈2〉)

Pr [G1,m1 : A] ≤ Pr [G2,m2 : B]

EasyCrypt also implements a simple mechanism for computing probability bounds. For in-
stance, it can establish that the probability that a value uniformly chosen from a set T is
equal to an arbitrary expression is 1/|T |, or the probability it belongs to a list of n values is
at most n/|T |.

Generating Verifiable Evidence EasyCrypt implements a compiler that turns proof sketches
into Coq files that are compatible with the CertiCrypt framework and can be verified using
the type checker of Coq. The compiler serves two purposes: first, it increases confidence in
proof sketches significantly, by producing independently verifiable proofs, and by providing
means of checking the consistency of the set of axioms used in a proof sketch. Second, it
opens the possibility to conduct in a general-purpose proof assistant proof steps that fall out
of the scope of automated methods.

We briefly describe the workings of the compiler. The declarations, definitions of games,
and axioms of a proof sketch admit an immediate translation into CertiCrypt. The recom-
mended practice is to prove the axioms used by EasyCrypt in CertiCrypt. In most cases, the
axioms already exist in CertiCrypt, or are simple consequences of proven facts. Then, using the
proof-producing option of the pRHL prover, all pRHL judgments of a proof sketch are com-
piled into pRHL derivations in CertiCrypt. In order to make the output derivations checkable

by the Coq proof assistant, the compiler also generates a prelude which declares as axioms the
verification conditions computed by the prover. Although these verification conditions have
been proved using SMT solvers, they must be treated as axioms because there is currently
no mechanism that generates Coq proofs from successful runs of SMT solvers—making SMT
solvers proof-producing is an active subject of research [23], and advances towards this goal
shall benefit immediately to EasyCrypt. As for axioms, there is the possibility of proving the
verification conditions in Coq.

Finally, the compiler generates for each claim in a proof sketch a Coq lemma that must be
completed manually with justifications of the probability reasoning performed by EasyCrypt.
The generated file is a proof skeleton rather than a machine-checked proof: not all reason-
ings are justified—for instance, the computation of Pr [G3 : Success] in the proof of Hashed
ElGamal in Section 2 is not proof-producing. Extending the compiler to certify such steps is
entirely feasible and we plan to do so in the near future.

4 Advanced Application: Cramer-Shoup Cryptosystem

The Cramer-Shoup cryptosystem is a public-key encryption scheme based on ElGamal en-
cryption that gained fame for being the first efficient asymmetric encryption scheme to be
proven secure against adaptive chosen-ciphertext attacks under standard assumptions—the
length of ciphertexts is just twice the length of ElGamal ciphertexts. Given a cyclic group
(family) G of order q and a keyed hash function H : G3 → Zq mapping triples of group ele-
ments into integers in Zq, key generation, encryption, and decryption are defined as follows:

KG(η) :
g, ĝ $← G \ {1};
x1, x2, y1, y2, z1, z2 $← Zq; hk $← K;
e← gx1 ĝx2 ; f ← gy1 ĝy2 ; h← gz1 ĝz2 ;
pk ← (hk, g, ĝ, e, f, h);
sk ← (hk, g, ĝ, x1, x2, y1, y2, z1, z2);
return (pk, sk)

E((hk, g, ĝ, e, f, h), m) :
u $← Zq; a← gu; â← ĝu; c← hu ·m;
v ← H(hk, a, â, c); d← eu · fuv;
return (a, â, c, d)

D((hk, g, ĝ, x1, x2, y1, y2, z1, z2), (a, â, c, d)) :
v ← H(hk, a, â, c);
if d = ax1+vy1 · âx2+vy2 then

return c/(az1 · âz2)
else return ⊥

Cramer-Shoup can be proven secure against adaptive chosen-ciphertext attacks (IND-CCA
secure) in the standard model assuming the DDH problem is hard in the group family {Gη}
and the hash function H is target-collision-resistant (TCR).

Definition 1 (CCA-advantage). Let (KG, E ,D) be an asymmetric encryption scheme. The

CCA-advantage of an adversary A limited to qD decryption queries against the adaptive

chosen-ciphertext security of the scheme is defined as

AdvA
CCA(qD)

def
=

∣

∣Pr
[

IND-CCA : b = b′
]

− 1/2
∣

∣

where the experiment IND-CCA is formally defined by means of the following game:

Game INDCCA :
(pk,sk)← KG();
(m0,m1)← A1(pk);
b $← {0, 1};
γ∗ ← E(pk,mb); γ∗

def ← true;
b′ ← A2(γ

∗)

Oracle DA(γ) :
if |LD| < qD ∧ ¬(γ

∗

def ∧ γ = γ∗)
then LD ← γ :: LD; return D(sk, γ)
else return ⊥

Theorem 1 (Adaptive Security of Cramer-Shoup). Let A be an adversary against the

IND-CCA security of Cramer-Shoup limited to qD decryption queries. Then, there exists an

algorithm B for solving the DDH problem in G and an adversary C against the TCR of the

hash function H s.t.

AdvA
CCA(qD) ≤ AdvB

DDH + SuccCTCR +
q4D
q4

+
qD + 2

q

Proof. Figure 2 shows a proof sketch of the above theorem in EasyCrypt. The proof follows
closely the one presented in [17]; we give only a high-level description here. Game G1 in the
figure is obtained directly from the IND-CCA game instantiated for Cramer-Shoup by inlining
the definitions of the key generation and encryption procedures, propagating assignments, and
replacing expressions by equivalent ones. It is worth noticing that all verification conditions
that ensure the validity of this transformation can be discharged automatically using an
SMT—this surpasses Halevi’s expectations [17], who suggested this transformation be split
in three steps so that it could be handled by an automated tool. We then build a DDH

distinguisher B such that the output distribution on the value of (b = b′) is identical in
games DDH0 (where B receives valid DDH triples) and G1, on the one hand, and in games
DDH1 (where B receives random triples) and G2, on the other. In addition, we instrument
the decryption oracle in G2 to raise a flag bad whenever A queries for the decryption of a
valid ciphertext with loga â 6= logg ĝ. We then show using our semantic characterization of
the Fundamental Lemma that the difference in the probability of (b = b′) in this game and
in game G3, where D rejects such ciphertexts, is bounded by the probability of bad in the
latter game—we also change the way e, f and h are computed in a semantics-preserving way.
Up to this point, by the triangular inequality we have

∣

∣Pr
[

IND-CCA : b = b′
]

−Pr
[

G3 : b = b′
]∣

∣ ≤ AdvB
DDH + Pr [G3 : bad]

The next game in the sequence, G4, removes the dependency of the adversary’s output from
bit b by choosing a random r and setting c = gr. This requires to be able to compute z2 from
logg(c) = uz + (u− u′)wz2 + logg(mb), which is not possible if u = u′, but this happens only
with probability 1/q. We use again the semantic formulation of the Fundamental Lemma
to bound the difference in the probability of (b = b′) between G3 and G4 by 1/q. After
straightforward information-theoretic reasoning we get

|Pr
[

IND-CPA : b = b′
]

− 1/2| ≤ AdvB
DDH + 2/q + Pr

[

G4 : bad ∧ u 6= u′
]

We can now move most of the code of the game before the call to A1. This in turn allows to
make d random by uniformly choosing r′ = logg(d) and defining x2 in terms of it, rather than
the other way around. Since now the game computes the challenge ciphertext in advance, we
can instrument D to raise a flag bad1 when the challenge is queried during the first phase of
the game. Note that at this point the challenge ciphertext is a 4-tuple of uniformly random
elements, therefore, this probability is bounded by (qD/q)

4—this is achieved by means of an
intermediate game, not shown in the figure, that stores the 4 components of queried cipher-
texts in different lists, and by independently bounding the probability of each component of
the challenge appearing in the corresponding list. Hence, we have

Pr
[

G4 : bad ∧ u 6= u′
]

≤ Pr
[

G5 : bad ∧ u 6= u′
]

+ (qD/q)
4

Game G1 :
g, ĝ $← G \ {1}; x1, x2, y1, y2, z1, z2 $← Zq ;
hk $← K;
e← gx1 ĝx2 ; f ← gy1 ĝy2 ; h← gz1 ĝz2 ;
(m0,m1)← A1(hk, g, ĝ, e, f, h); b $← {0, 1};
u $← Zq; a← gu; â← ĝu; c← az1 · âz2 ·mb;
v ← H(hk, a, â, c); d← ax1+vy1 · âx2+vy2 ;
γ∗ ← (a, â, c, d); γ∗

def ← true; b′ ← A2(γ
∗)

Oracle D(a, â, c, d) :
if |LD| < qD ∧ ¬(γ

∗

def ∧ (a, â, c, d) = γ∗) then
LD ← γ :: LD;
v ← H(hk, a, â, c);
if d = ax1+vy1 · âx2+vy2 then

return c/(az1 · âz2)
else return ⊥

else return ⊥

|= G1 ∼ DDH0 : true⇒ ={res} Pr [G1 : b = b′] = Pr [DDH0 : b = b′]

Game DDH0 DDH1 :
g $← G \ {1}; x $← Z

∗
q ; y $← Zq;

z ← xy z $← Zq ;

return B(g, gx, gy, gz)

Adversary B(g, ĝ, a, â) :
x1, x2, y1, y2, z1, z2 $← Zq; hk $← K;
e← gx1 ĝx2 ; f ← gy1 ĝy2 ; h← gz1 ĝz2 ;
(m0,m1)← A1(hk, g, ĝ, e, f, h); b $← {0, 1};
c← az1 · âz2 ·mb;
v ← H(hk, a, â, c); d← ax1+vy1 · âx2+vy2 ;
γ∗ ← (a, â, c, d); γ∗

def ← true; b′ ← A2(γ
∗)

Oracle D(a, â, c, d) :
if |LD| < qD ∧ ¬(γ

∗

def ∧ (a, â, c, d) = γ∗) then
LD ← γ :: LD;
v ← H(hk, a, â, c);
if d = ax1+vy1 · âx2+vy2 then return c/(az1 · âz2)
else return ⊥

else return ⊥

|= DDH1 ∼ G2 : true⇒ ={res} Pr [DDH1 : b = b′] = Pr [G2 : b = b′]

Game G2 :
g $← G \ {1}; w $← Z

∗
q ; ĝ ← gw;

u, u′ $← Zq; a← gu; â← ĝu
′

;
x1, x2, y1, y2, z1, z2 $← Zq; hk $← K;
e← gx1 ĝx2 ; f ← gy1 ĝy2 ; h← gz1 ĝz2 ;
(m0,m1)← A1(hk, h, ĝ, e, f, h); b $← {0, 1};
c← az1 · âz2 ·mb;
v ← H(hk, a, â, c); d← ax1+vy1 · âx2+vy2 ;
γ∗ ← (a, â, c, d); γ∗

def ← true; b′ ← A2(γ
∗)

Oracle D(a, â, c, d) :
if |LD| < qD ∧ ¬(γ

∗

def ∧ (a, â, c, d) = γ∗) then
LD ← γ :: LD; v ← H(hk, a, â, c);
if â = aw then ;

if d = ax1+vy1 · âx2+vy2 then return c/(az1 · âz2)
else return ⊥

elsif d = ax1+vy1 · âx2+vy2 then

bad← true; return c/(az1 · âz2)
else return ⊥

else return ⊥

|= G2 ∼ G3 : true⇒ ={bad} ∧
(

¬bad〈1〉 →={res}

)

|Pr [G2 : b = b′]− Pr [G3 : b = b′]| ≤ Pr [G3 : bad]

Game G3 :
g $← G \ {1}; w $← Z

∗
q ; ĝ ← gw; hk $← K;

x, x2
$← Zq; x1 ← x− wx2; e← gx;

y, y2 $← Zq; y1 ← y − wy2; f ← gy;
z, z2 $← Zq; z1 ← z − wz2; h← gz;
(m0,m1)← A1(hk, h, ĝ, e, f, h); b $← {0, 1};

u, u′ $← Zq; a← gu; â← ĝu
′

; c← az1 · âz2 ·mb;
v ← H(hk, a, â, c); d← ax1+vy1 · âx2+vy2 ;
γ∗ ← (a, â, c, d); γ∗

def ← true; b′ ← A2(γ
∗)

Oracle D(a, â, c, d) :
if |LD| < qD ∧ ¬(γ

∗

def ∧ (a, â, c, d) = γ∗) then
LD ← γ :: LD; v ← H(hk, a, â, c);
if â = aw then

if d = ax+vy then return c/az else return ⊥
elsif d = ax1+vy1 · âx2+vy2 then

bad← true; return ⊥
else return ⊥

else return ⊥

|= G3 ∼ G4 : true⇒ (u = u′)〈1〉 ↔ (u = u′)〈2〉 ∧
(

(u 6= u′)〈1〉 →={res,bad}

)

Pr [G4 : b = b′] = 1/2 |Pr [G3 : b = b′]− Pr [G4 : b = b′]| ≤ Pr [G3 : u = u′] = 1/q

Fig. 2. Proof sketch of the IND-CCA security of the Cramer-Shoup cryptosystem

Game G4 :
g $← G \ {1}; w $← Z

∗
q ; ĝ ← gw; hk $← K;

x, x2
$← Zq; x1 ← x− wx2; e← gx;

y, y2 $← Zq; y1 ← y − wy2; f ← gy;
z $← Zq; h← gz;

u, u′ $← Zq; a← gu; â← ĝu
′

; r $← Zq; c← gr;
v ← H(hk, a, â, c); d← ax1+vy1 · âx2+vy2 ;
(m0,m1)← A1(hk, h, ĝ, e, f, h); b $← {0, 1};
γ∗ ← (a, â, c, d); γ∗

def ← true; b′ ← A2(γ
∗)

Oracle D(a, â, c, d) :
if |LD| < qD ∧ ¬(γ

∗

def ∧ (a, â, c, d) = γ∗) then
LD ← γ :: LD; v ← H(hk, a, â, c);
if â = aw then

if d = ax+vy then return c/az else return ⊥
elsif d = ax1+vy1 · âx2+vy2 then

bad← true; return ⊥
else return ⊥

else return ⊥

|= G4 ∼ G′
4 : true⇒ (u = u′)〈1〉 ↔ (u = u′)〈2〉 ∧

(

(u 6= u′)〈1〉 →={bad}

)

|= G′
4 ∼ G5 : true⇒ ={bad1} ∧

(

¬bad1〈1〉 →={bad,u,u′}

)

Pr [G4 : bad ∧ u 6= u′] ≤ Pr [G5 : bad ∧ u 6= u′] + Pr [G5 : bad1] ≤ Pr [G5 : bad ∧ u 6= u′] + (qD/q)4

Game G′
4 G5 :

g $← G \ {1}; w $← Z
∗
q ; ĝ ← gw; hk $← K;

u, u′ $← Zq; a← gu; â← ĝu
′

;
y, y2 $← Zq ; y1 ← y − wy2; f ← gy;

x $← Zq; e← gx; r′ $← Zq; d← gr
′

;
x2 ← (r′ − u(x+ vy))/(w(u′ − u))− vy2;
x1 ← x− wx2; z $← Zq; h← gz; r $← Zq; c← gr;
v ← H(hk, a, â, c); γ∗ ← (a, â, c, d);
(m0,m1)← A1(hk, h, ĝ, e, f, h);
γ∗

def ← true; b′ ← A2(γ
∗)

Oracle D(a, â, c, d) :
if |LD| < qD ∧ ¬γ

∗

def ∧ (a, â, c, d) = γ∗ then

bad1 ← true

if |LD| < qD ∧ (¬γ∗

def∨ (a, â, c, d) 6= γ∗) then

LD ← γ :: LD; v ← H(hk, a, â, c);
if â = aw then

if d = ax+vy then return c/az else return ⊥
elsif d = ax1+vy1 · âx2+vy2 then bad← true;

if v = H(hk, gu, ĝu
′

, gr) then bad2 ← true

else return ⊥
else return ⊥

|= G5 ∼ TCR : true⇒ bad2〈1〉 → res〈2〉
Pr [G5 : bad ∧ u 6= u′] ≤ Pr [TCR : H(hk,m0) = H(hk,m1) ∧m0 6= m1] + Pr [G5 : bad ∧ u 6= u′ ∧ ¬bad2]

Game TCR :
m0 ← C1(); hk $← K; m1 ← C2(hk);
return (H(hk,m0) = H(hk,m1) ∧m0 6= m1)

Adversary C1() :
g $← G \ {1}; w $← Z

∗
q ; ĝ ← gw;

u, u′ $← Zq; a← gu; â← ĝu
′

; r $← Zq; c← gr;
return (a, â, c)

Adversary C2(hk) :

r′, x, y, z $← Zq; d← gr
′

; e← gx; f ← gy; h← gz;

y2 $← Zq ; y1 ← y −wy2; ĥk ← hk;
v ← H(hk, a, â, c);
x2 ← (r′ − u(x+ vy))/(w(u′ − u))− vy2;
x1 ← x−wx2; (m0,m1)← A1(hk, h, ĝ, e, f, h);
γ∗ ← (a, â, c, d); b′ ← A2(γ

∗); return m̂

Oracle D(a, â, c, d) :
if |LD| < qD ∧ (a, â, c, d) 6= γ∗) then

LD ← γ :: LD; v ← H(ĥk, a, â, c);
if â = aw then

if d = ax+vy then return c/az else return ⊥

elsif d = ax1+vy1 · âx2+vy2 ∧ v = H(ĥk, gu, ĝu
′

, gr)
then m̂← (a, â, c); return ⊥
else return ⊥

else return ⊥

Fig. 2. Proof sketch of the IND-CCA security of the Cramer-Shoup cryptosystem

The decryption oracle in game G5 also raises a flag bad2 when a valid ciphertext with
H(hk, a, â, c) = H(hk, gu, ĝu

′
, gr) is queried. Since this leads to a collision, we can build

an adversary C against the TCR of H such that its success probability is lower bounded by
the probability of bad2 being raised in G5. Thus,

Pr
[

G5 : bad ∧ u 6= u′
]

≤ SuccCTCR + Pr
[

G5 : bad ∧ u 6= u′ ∧ ¬bad2

]

The proof concludes by showing that the probability of bad being set but not bad2 in G5

is bounded by qD/q. This is done by reformulating the test under which bad2 is set so
that it does not depend on x1, x2, y1, y2, therefore, the probability of this test succeeding in
any decryption query (under the condition that u 6= u′) is the probability of the adversary
guessing a random value in the group, at most qD/q summing over all queries. The bound in
the statement follows.

5 Conclusion

Computer-aided verification of cryptographic protocols in the symbolic model is an estab-
lished field of research: robust tools are available and have been used successfully to analyze
realistic protocols [2, 9, 18]. In contrast, there is little prior work on computer-aided cryp-
tographic proofs in the computational model. The importance of such proofs was suggested
independently by Bellare and Rogaway [8] and, more explicitly, by Halevi [17], who convinc-
ingly argues that they can be viewed as the “natural next step along the way of viewing
cryptographic proofs as a sequence of probabilistic games”. To date, there are two main
tools for computer-aided cryptographic proofs: CertiCrypt, which favors generality and ver-
ifiable proofs, and CryptoVerif, which favors automation. Other frameworks are confined to
specific properties [14], or dispense from formalizing the computational model by advocating
soundness results [21,22], or have not yet been applied to significant examples [1], or are not
implemented [7, 19].

EasyCrypt provides, the first flexible and automated framework for building machine-
checkable cryptographic proofs. Moreover, proofs in EasyCrypt are significantly easier and
faster to build than in any of its predecessors, while providing guarantees similar to CertiCrypt.
We have substantiated our claim by presenting computer-aided securtiy proofs of Hashed
ElGamal in the random oracle model and of the Cramer-Shoup cryptosystem in the standard
model. Overall, EasyCrypt makes an important step towards the adoption of computer-aided
proofs by working cryptographers. A public release of EasyCrypt is planned for Summer 2011.
We intend to incorporate some missing features, for instance automated complexity analyses,
and proof-producing computations of probabilities. Moreover, we plan to incorporate a few
useful functionalities, such as generating LATEX code and figures from sequences of games.
A longer-term goal will be to build a structured proof editor for writing games, and a user
interface that supports rich features like proof-by-pointing or drag-and-drop of pieces of code.

There remain ample opportunities to apply methods from programming languages and
formal verification to computer-aided cryptographic proofs. We mention two exciting avenues
for improving automation in EasyCrypt. The first avenue is to improve our mechanism for
inferring relational specifications of adversaries: there is a large body of knowledge on inferring
invariants, and it would be beneficial to transpose them to our setting. More speculatively,
program synthesis could be used to discover the sequence of games that must be used to carry
a game-based proof. Both specification inference and program synthesis rely on verification
condition generation and SMT solving, hence the basic blocks for such an investigation are
in place.

References

1. M. Backes, M. Berg, and D. Unruh. A formal language for cryptographic pseudocode. In 15th International

conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR 2008, volume 5330 of
Lecture Notes in Computer Science, pages 353–376. Springer, 2008.

2. Michael Backes, Matteo Maffei, and Dominique Unruh. Computationally sound verification of source
code. In 17th ACM conference on Computer and Communications Security, CCS 2010, pages 387–398,
New York, 2010. ACM.

3. G. Barthe, P. D’Argenio, and T. Rezk. Secure information flow by self-composition. In 17th IEEE workshop

on Computer Security Foundations, CSFW 2004, pages 100–114, Washington, 2004. IEEE Computer
Society.

4. G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal certification of code-based cryptographic proofs.
In 36th ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages, POPL 2009,
pages 90–101, New York, 2009. ACM.

5. Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin. Formal certification
of ElGamal encryption. A gentle introduction to CertiCrypt. In 5th International workshop on Formal

Aspects in Security and Trust, FAST 2008, volume 5491 of Lecture Notes in Computer Science, pages
1–19, Berlin, 2009. Springer.

6. Gilles Barthe, Benjamin Grégoire, Yassine Lakhnech, and Santiago Zanella Béguelin. Beyond provable
security. Verifiable IND-CCA security of OAEP. In Topics in Cryptology – CT-RSA 2011, volume 6558
of Lecture Notes in Computer Science, pages 180–196, Berlin, 2011. Springer.

7. Gilles Barthe, Daniel Hedin, Santiago Zanella Béguelin, Benjamin Grégoire, and Sylvain Heraud. A
machine-checked formalization of Sigma-protocols. In 23rd IEEE Computer Security Foundations sympo-

sium, CSF 2010, pages 246–260, Los Alamitos, Calif., 2010. IEEE Computer Society.

8. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In Advances in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes in

Computer Science, pages 409–426, Berlin, 2006. Springer.

9. Karthikeyan Bhargavan, Cédric Fournet, and Andrew D. Gordon. Modular verification of security protocol
code by typing. In 37th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

POPL 2010, pages 445–456. ACM, 2010.

10. B. Blanchet, A. D. Jaggard, A. Scedrov, and J.-K. Tsay. Computationally sound mechanized proofs for
basic and public-key Kerberos. In 15th ACM conference on Computer and Communications Security,

CCS 2008, pages 87–99, New York, 2008. ACM.

11. Bruno Blanchet. A computationally sound mechanized prover for security protocols. In 27th IEEE

symposium on Security and Privacy, S&P 2006, pages 140–154. IEEE Computer Society, 2006.

12. Bruno Blanchet and David Pointcheval. Automated security proofs with sequences of games. In Advances

in Cryptology – CRYPTO 2006, volume 4117 of Lecture Notes in Computer Science, pages 537–554, Berlin,
2006. Springer.

13. Sylvain Conchon, Evelyne Contejean, Johannes Kanig, and Stéphane Lescuyer. CC(X): Semantic com-
bination of congruence closure with solvable theories. Electronic Notes in Theoretical Computer Science,
198(2):51–69, 2008.

14. Judicaël Courant, Marion Daubignard, Cristian Ene, Pascal Lafourcade, and Yassine Lakhnech. Towards
automated proofs for asymmetric encryption schemes in the random oracle model. In 15th ACM conference

on Computer and Communications Security, CCS 2008, pages 371–380, New York, 2008. ACM.

15. David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for program checking.
Technical Report HPL-2003-148, HP Laboratories Palo Alto, 2003.

16. Jean-Christophe Filliâtre. The WHY verification tool: Tutorial and Reference Manual Version 2.28.
Online – http://why.lri.fr, 2010.

17. S. Halevi. A plausible approach to computer-aided cryptographic proofs. Cryptology ePrint Archive,
Report 2005/181, 2005.

18. Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols. J. of Comput. Secur.,
6(1-2):85–128, 1998.

19. Arnab Roy, Anupam Datta, Ante Derek, and John Mitchell. Inductive proofs of computational secrecy.
In Computer Security – ESORICS 2007, 12th European symposium on Research In Computer Security,
volume 4734 of Lecture Notes in Computer Science, pages 219–234, Berlin, 2008. Springer.

20. Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint
Archive, Report 2004/332, 2004.

21. Christoph Sprenger, Michael Backes, David Basin, Birgit Pfitzmann, and Michael Waidner. Cryptograph-
ically sound theorem proving. In 19th IEEE workshop on Computer Security Foundations, CSFW 2006,
pages 153–166. IEEE Computer Society, 2006.

22. Christoph Sprenger and David Basin. Cryptographically-sound protocol-model abstractions. In 21st IEEE

Computer Security Foundations symposium, CSF 2008, pages 115–129, Los Alamitos, Calif., 2008. IEEE
Computer Society.

23. Aaron Stump. Proof checking technology for satisfiability modulo theories. Electr. Notes Theor. Comput.

Sci., 228:121–133, 2009.
24. The Coq development team. The Coq Proof Assistant Reference Manual Version 8.3. Online – http:

//coq.inria.fr, 2010.
25. S. Zanella Béguelin, B. Grégoire, G. Barthe, and F. Olmedo. Formally certifying the security of digital

signature schemes. In 30th IEEE symposium on Security and Privacy, S&P 2009, pages 237–250, Los
Alamitos, Calif., 2009. IEEE Computer Society.

A Input File for the Proof of Security of Hashed ElGamal

The following is an extract of the EasyCrypt input file giving a proof sketch for the IND-CPA

security of Hashed ElGamal described in Section 2:

100 type group
101

102 cnst k : i n t
103

104 type s e c r e t k ey = in t
105 type publ i c key = group
106 type keys = s ec r e t k ey ∗ publ i c key
107 type message = b i t s t r i n g {k}
108 type c ipher = group ∗ b i t s t r i n g {k}
109

110 cnst q : i n t
111 cnst qH : i n t
112 cnst g : group
113 cnst zero : b i t s t r i n g {k}
114

115 op (∗) : group , group −> group = group mult
116 op (ˆ) : group , i n t −> group = group pow
117 op (+) : b i t s t r i n g {k} , b i t s t r i n g {k} −> b i t s t r i n g {k} = xor bs
118

119 axiom group pow mult : f o r a l l (x : int , y : i n t) . { (gˆx)ˆ y == gˆ(x∗y) }
120

121 . . .
122

123 adversary A1(pk : pub l i c key) : message ∗ message { group −> message }
124 adversary A2(pk : pub l i c key , c : c ipher) : bool { group −> message }
125

126 game INDCPA = {
127 var L : (group , b i t s t r i n g {k}) map
128

129 fun H(lam : group) : message = {
130 var h : message = {0 ,1}ˆk ;
131 i f (! in dom (lam , L)) { L [lam] = h ; } ;
132 return L [lam] ;
133 }
134

135 fun H A (lam : group) : message = {
136 var m : message ;
137 LA = lam : : LA;
138 m = H(lam) ;

139 return m;
140 }
141

142 . . .
143

144 abs A1 = A1 {H A}
145 abs A2 = A2 {H A}
146

147 fun Main () : bool = {
148 var sk : s e c r e t k ey ;
149 var pk : pub l i c key ;
150 var m0, m1 : message ;
151 var c : c ipher ;
152 var b , b ’ : bool ;
153

154 L = empty map () ; LA = [] ;
155 (sk , pk) = KG() ;
156 (m0,m1) = A1(pk) ;
157 b = {0 , 1} ;
158 c = Enc (pk , b ? m0 : m1) ;
159 b ’ = A2(pk , c) ;
160 return (b == b ’) ;
161 }
162 }
163

164 game G1 = INDCPA
165 var y ’ : group
166 where Main = {
167 var sk : s e c r e t k ey ;
168 var pk : pub l i c key ;
169 var m0, m1 : message ;
170 var c : c ipher ;
171 var b , b ’ : bool ;
172 var y : i n t ;
173 var hy : message ;
174

175 L = empty map () ; LA = [] ;
176 (sk , pk) = KG() ;
177 y = [0 . . q−1] ;
178 y ’ = pkˆy ;
179 (m0,m1) = A1(pk) ;
180 b = {0 , 1} ;
181 hy = H(y ’) ;
182 b ’ = A2(pk , (g ˆ y , hy ˆˆ (b ? m0 : m1))) ;
183 return (b == b ’) ;
184 }
185

186 equiv auto Fact1 : INDCPA.Main \ t i l d e G1 .Main : { t rue } ==> ={res ,LA} inv ={L ,LA}
187

188 claim Pr1 : INDCPA.Main [r e s && length (LA) <= qH] == G1 .Main [r e s && length (LA) <= qH]
189 using Fact1
190

191 . . .

B Justifying Verification Conditions

The purpose of this appendix is to justify the last step in the generation of verification
conditions. For simplicity, we only deal with the case where Φ is a partial equivalence relation.
In this case, a judgment |= G1 ∼ G2 : Ψ ⇒ Φ is valid iff for every m′,m1,m2 s.t. m1 Ψ m2,

Pr
[

G1,m1 : λm. m Φ m′
]

= Pr
[

G2,m2 : λm. m Φ m′
]

Now let S1
def
= x1 $← T1; . . . xl $← Tl and S2

def
= y1 $← U1; . . . yn $← Un. Assume there exists a

1-1 mapping f : T1 × · · · × Tl → U1 × · · · × Un such that the verification condition Φ ⇒f Ψ ,
defined as

∀m1 m2 ~t . m1 Ψ m2 =⇒ m1

{

~t/~x
}

Φ m2

{

f(~t)/~y
}

is valid. We prove that |= S1 ∼ S2 : Ψ ⇒ Φ. First, observe that

Pr
[

S1,m1 : λm. m Φ m′
]

=
#{~t | m1

{

~t/~x
}

Φ m′}

#(T1 × · · · × Tl)

This equality follows from the definition of the semantics of S1 since the set T1 × · · · × Tl is
finite. Likewise,

Pr
[

S2,m2 : λm. m Φ m′
]

=
#{~u | m2 {~u/~y} Φ m′}

#(U1 × · · · × Un)

Now let m1 and m2 such that m1 Ψ m2. We claim that

Pr
[

S1,m1 : λm. m Φ m′
]

= Pr
[

S2,m2 : λm. m Φ m′
]

from which the result follows.
Since f is a 1-1 mapping, we have #(T1×· · ·×Tl) = #(U1×· · ·×Un), so by the above it is

sufficient to show that for every memory m′, #{~t | m1

{

~t/~x
}

Φ m′} = #{~u | m2 {~u/~y} Φ m′}.
Since Φ is a partial equivalence relation and Φ ⇒f Ψ is valid, we can easily prove that for
every ~t ∈ T1 × · · · × Tl, we have m1

{

~t/~x
}

Φ m′ iff m2 {~u/~y} Φ m′, where f(~t) = (~u). The
claim follows.

