
Verified Indifferentiable Hashing

into Elliptic Curves

Gilles Barthe1, Benjamin Grégoire2, Sylvain Heraud2,

Federico Olmedo1, and Santiago Zanella Béguelin1

1 IMDEA Software Institute, Madrid, Spain

{Gilles.Barthe,Federico.Olmedo,Santiago.Zanella}@imdea.org
2 INRIA Sophia Antipolis-Méditerranée, France

{Benjamin.Gregoire,Sylvain.Heraud}@inria.fr

Abstract. Many cryptographic systems based on elliptic curves are proven se-

cure in the Random Oracle Model, assuming there exist probabilistic functions

that map elements in some domain (e.g. bitstrings) onto uniformly and indepen-

dently distributed points in a curve. When implementing such systems, and in

order for the proof to carry over to the implementation, those mappings must be

instantiated with concrete constructions whose behavior does not deviate signif-

icantly from random oracles. In contrast to other approaches to public-key cryp-

tography, where candidates to instantiate random oracles have been known for

some time, the first generic construction for hashing into ordinary elliptic curves

indifferentiable from a random oracle was put forward only recently by Brier et

al. We present a machine-checked proof of this construction. The proof is based

on an extension of the CertiCrypt framework with logics and mechanized tools

for reasoning about approximate forms of observational equivalence, and inte-

grates mathematical libraries of group theory and elliptic curves.

1 Introduction

Following an established trend [18], the prevailing methodology for building secure

cryptosystems is to conduct a rigorous analysis that proves security under standard hy-

potheses. Sometimes this analysis is performed assuming that some components of the

system have an ideal behavior. However, ideal functionalities are difficult or even im-

possible to realize, leading to situations where provably secure systems have no secure

implementation. An alternative methodology is to devise systems based on construc-

tions that do not deviate significantly from ideal ones, and to account for these devia-

tions in the security analysis. Statistical distance is a natural notion for quantifying the

deviation between idealized functionalities and their implementations.

Verifiable security [3, 4] is an emerging approach that advocates the use of inter-

active proof assistants and automated provers to establish the security of cryptographic

systems. It improves on the guarantees of provable security by delivering fully machine-

checked and independently verifiable proofs. The CertiCrypt framework, built on top

of the Coq proof assistant, is one prominent tool that realizes verifiable security by us-

ing standard techniques from programming languages and program verification. Cer-

tiCrypt is built around the central notion of observational equivalence of probabilis-

tic programs, which unfortunately cannot model accurately other weaker, quantitative,

forms of equivalence. As a result, CertiCrypt cannot be used as it is to reason about

the statistical distance of distributions generated by probabilistic programs. More gen-

erally, the development of quantitative notions of equivalence is quite recent and rather

limited; see Section 7 for an account of related work.

One main contribution of this article is the formalization of several quantitative no-

tions of program equivalence and logics for reasoning about them. More specifically, we

extend CertiCrypt with the notion of statistical distance and develop a logic to upper

bound the distance between distributions generated by probabilistic programs. More-

over, we introduce approximate and conditional variants of observational equivalence

and develop equational theories for reasoning about them.

In a landmark article, Maurer et al. [23] introduce the concept of indifferentiabil-

ity to justify rigorously the substitution of an idealized component in a cryptographic

system by a concrete implementation. In a subsequent article, Coron et al. [13] argue

that a secure hash function should be indifferentiable from a random oracle, i.e. a per-

fectly random function. Although the random oracle model has been under fierce crit-

icism [10] and the indifferentiability framework turned out to be weaker than initially

believed [16, 25], it is generally accepted that proofs in these models provide some

evidence that a system is secure. Not coincidentally, all finalists in the ongoing NIST

Cryptographic Hash Algorithm competition have been proved indifferentiable from a

random oracle.

Elliptic curve cryptography allows to build efficient public-key cryptographic sys-

tems with comparatively short keys and as such is an attractive solution for resource-

constrained applications. In contrast to other approaches to public-key cryptography,

where candidates to instantiate random oracles have been known for some time, ad-

equate constructions for hashing into ordinary elliptic curves have remained elusive.

In 2010, Brier et al. [9] proposed the first generic construction indifferentiable from a

random oracle into elliptic curves. This construction is of practical significance since

it allows to securely implement elliptic curve cryptosystems. We present a machine-

checked and independently verifiable proof of the security of this construction. The

proof involves the various notions of equivalence we develop in this paper and is thus

an excellent testbed for evaluating the applicability of our methods. Additionally, the

proof builds on several large developments (including Théry’s formalization of elliptic

curves [30] and Gonthier et al. formalization of finite groups [19]) and demonstrates

that CertiCrypt blends well with large and complex mathematical libraries, and is apt

to support proofs involving advanced algebraic and number-theoretical reasoning.

Organization of the paper. The remainder of the paper is structured as follows. Sec-

tion 2 provides a brief introduction to CertiCrypt. Section 3 introduces the notion of sta-

tistical distance between probabilistic programs and describes programming language

techniques to bound it, whereas Sect. 4 defines weak forms of observational equiva-

lence and their associated reasoning principles. Section 5 presents a machine-checked

proof of the indifferentiability of a generalization of Brier et al.’s construction from a

random oracle into an abelian finite group; its application to elliptic curves is discussed

in Sect. 6. We survey prior art and conclude in Sections 7 and 8.

2 An Overview of CertiCrypt

This section provides a brief description of the CertiCrypt framework. We refer the

reader to [4] for further details.

2.1 Representation of Distributions

CertiCrypt adopts the monadic representation of distributions proposed by Audebaud

and Paulin in [2]. A distribution over a set A is represented as a monotonic, continuous

and linear function of type

D(A) def
= (A→ [0, 1])→ [0, 1]

where [0, 1] denotes the unit interval. Intuitively, an element of type D(A) models the

expectation operator of a sub-probability distribution over A. Thus, the probability that

a distribution µ : D(A) assigns to an event X ⊆ A can be computed by measuring its

characteristic function 1X , i.e. Pr [µ : X] def
= µ(1X).

2.2 Programming Model

We model games as probabilistic imperative programs with procedure calls. The set of

commands C is defined inductively by the clauses:

C ::= skip nop

| V ← E deterministic assignment

| V $← DE random assignment

| if E then C else C conditional

| while E do C while loop

| V ← P(E , . . . , E) procedure call

| C; C sequence

where V is a set of variables tagged with their scope (either local or global), E is a set

of deterministic expressions, and DE is a set of expressions that denote distributions

from which values can be sampled in random assignments. In the remainder, we let

true ⊕δ false denote the Bernoulli distribution with success probability δ, so that the

instruction x $← true ⊕δ false assigns true to x with probability δ, and we denote by

x $← A the instruction that assigns to x a value uniformly chosen from a finite set A.

A program (or game) consists of a command c and an environment E that maps

procedure identifiers to their declaration, specifying its formal parameters, its body, and

a return expression that is evaluated upon exit. (Although procedures are single-exit, we

often write games using explicit return expressions for the sake of readability.) Decla-

rations are subject to well-formedness and well-typedness conditions; these conditions

are enforced using the underlying dependent type system of Coq. Procedures corre-

sponding to adversaries are modelled as procedures with unknown code.

Program states (or memories) are dependently typed functions that map a variable of

type T to a value in its interpretation JT K; we letM denote the set of states. Expressions

have a deterministic semantics: an expression e of type T is interpreted as a function

JeK :M→ JT K. The semantics of a command c in an environment E relates an initial

memory to a probability sub-distribution over final memories: Jc, EK : M → D(M).
We often omit the environment when it is irrelevant.

By specializing the above definition of probability Pr [µ : X] to programs, we have

that the probability Pr [G,m : X] of an event X in a game G and an initial memory m
is given by JGK m 1X . The probability of termination of a game G starting in an initial

memory m is given by Pr [G,m : true]. We say that a game is lossless if it terminates

with probability 1 independently from the initial memory.

In order to reason about program complexity and define the class of probabilistic

polynomial-time computations, the semantics of programs is instrumented to compute

the time and memory cost of evaluating a command, given the time and memory cost

of each construction in the expression language.

2.3 Reasoning Tools

CertiCrypt provides several tools for reasoning about games. One main tool is a prob-

abilistic relational Hoare logic. Its judgments are of the form |= G1 ∼ G2 : Ψ ⇒ Φ,

where G1 and G2 are games, and Ψ and Φ are relations over states. We represent rela-

tions as first-order formulae over tagged program variables; we use the tags 〈1〉 and 〈2〉
to distinguish between the value of a variable or formula in the left and right-hand side

program, respectively.

Formally, a judgment |= G1 ∼ G2 : Ψ ⇒ Φ is valid, iff for all memories m1 and m2

such that m1 Ψ m2, we have that (JG1K m1)L(Φ) (JG2K m2), where L(Φ) denotes the

lifting of Φ to distributions. Relational Hoare logic can be used to prove claims about

the probability of events in games by using, for instance, the following rule:

m1 Ψ m2 |= G1 ∼ G2 : Ψ ⇒ Φ Φ =⇒ (A〈1〉 =⇒ B〈2〉)

Pr [G1,m1 : A] ≤ Pr [G2,m2 : B]

Observational equivalence is defined by specializing the judgments to relations Ψ and

Φ corresponding to the equality relation on subsets of program variables. Formally, let

X be a set of variables, m1,m2 ∈ M and f1, f2 :M→ [0, 1]. We define

m1 =X m2
def
= ∀x ∈ X. m1(x) = m2(x)

f1 =X f2
def
= ∀m1 m2. m1 =X m2 =⇒ f1(m1) = f2(m2)

Then, two gamesG1 andG2 are observationally equivalent w.r.t. an input set of variables

I and an output set of variables O, written |= G1 ≃I
O G2, iff |= G1 ∼ G2 : =I ⇒ =O.

Equivalently, |= G1 ≃I
O G2 iff for all memories m1,m2 ∈ M and functions f1, f2 :

M→ [0, 1],

m1 =I m2 ∧ f1 =O f2 =⇒ JG1K m1 f1 = JG2K m2 f2

Observational equivalence is amenable to automation. CertiCrypt provides mechanized

tactics based on dependency analyses to perform common program transformations

and to prove that two programs are observationally equivalent (note that observational

equivalence is only a partial equivalence relation). The mechanized transformations

include dead code elimination, call inlining, inter- and intra-procedural code motion

and expression propagation.

We sometimes use a standard Hoare logic for reasoning about single programs. Its

judgments are of the form {P}G {Q}, where G is a game and P and Q are predicates

on states. Formally, a judgment {P} G {Q} is valid iff for every memory m ∈ M and

function f :M→ [0, 1],

P m ∧ (∀m. Q m =⇒ f(m) = 0) =⇒ JGK m f = 0

This logic is subsumed by the relational Hoare logic,

|= {P}G {Q} ⇐⇒ |= G ∼ skip : P 〈1〉 ⇒ Q〈1〉

3 Statistical Distance

Statistical distance quantifies the largest difference between the probability that two

distributions assign to the same event. We refer to [28] for an in-depth presentation

of statistical distance and its properties. Formally, the statistical distance ∆ (µ1, µ2)
between two distributions µ1 and µ2 over a set A is defined as:

∆ (µ1, µ2)
def
= sup

f :A→[0,1]

|µ1 f − µ2 f |

One important property of statistical distance that we frequently use in proofs is its

invariance under function application, i.e. for any function F : D(A) → D(B) and

distributions µ1, µ2 over A, ∆ (F (µ1), F (µ2)) ≤ ∆ (µ1, µ2).

Remark. In the traditional definition of statistical distance, f ranges only over Boolean-

valued functions. Our definition is more convenient for reasoning about our monadic

formalization of distributions. We have proved in Coq that the two definitions coincide

for discrete distributions.

3.1 A Logic for Bounding Statistical Distance

Statistical distance admits a natural extension to programs; we define the statistical

distance between two programs G1 and G2 as follows:

∆ (G1,G2)
def
= max

m,f
|JG1K m f − JG2K m f |

Or, fixing an initial memory m,

∆m (G1,G2)
def
= max

f
|JG1K m f − JG2K m f |

We define a logic that allows to upper bound ∆m (G1,G2) by a function of the memory

m; the logic deals with judgments of the form LG1,G2M � g, where

LG1,G2M � g def
= ∀m. ∆m (G1,G2) ≤ g m ≡ ∀m f. |JG1K m f − JG2K m f | ≤ g m

Lskip, skipM � λm. 0
[Skip]

Lx← e, x← eM � λm. 0
[Ass]

∀m. ∆ (Jµ1K m, Jµ2K m) ≤ g m

Lx $← µ1, x $← µ2M � g
[Rnd]

Lc1, c2M � g Lc′1, c
′
2M � g′

Lc1; c
′
1, c2; c

′
2M � λm.Jc1Km g′ + g m

[Seq]

Lc1, c
′
1M � g1 Lc2, c

′
2M � g2

Lif b then c1 else c2, if b then c′1 else c′2M � λm. if JbK m then g1 m else g2 m
[Cond]

Lc1, c2M � g g0(m) = 0 gn+1(m) = if JbK m then Jc1K m gn + g(m) else 0

Lwhile b do c1,while b do c2M � sup(λn. gn)
[Whl]

Lp.body(E1), p.body(E2)M � g g =X g ∀x. x ∈ X ⇒ global(x)

Ly ← p(x), y ← p(x)M � g
[Call]

Fig. 1. Logic to bound the statistical distance between two probabilistic programs

Figure 1 presents the main rules of the logic; for readability, rules are stated for pairs

of commands rather than pairs of programs, and assume that this pair of programs are

executed in two fixed environments E1 and E2 respectively.

To prove the soundness, for instance, of the rule for sequential composition, we

introduce an intermediate program c1; c
′
2 (where c1 is executed in environment E1 and

c′2 in environment E2) and prove that the distance between Jc1; c
′
2K m and Jc1; c

′
1K m is

bounded by Jc1K m g′, while the distance between Jc1; c
′
2K m and Jc2; c

′
2K m is bounded

by g m. The rule for loops relies on the characterization of the semantics of a while loop

as the least upper bound of its n-th unrolling [while e do c]n, and on the auxiliary rule

L[while b do c1]n, [while b do c2]nM � gn

Lwhile b do c1,while b do c2M � sup(λn. gn)

While the rules in Figure 1 are sufficient to reason about closed programs, they do

not allow to reason about games in the presence of adversaries. We enhance the logic

with a rule that allows to bound the statistical distance between calls to an adversaryA
executed in two different environments E1 and E2, i.e. it allows to draw conclusions

of the form LA,AM � g.3 In its simplest formulation, the rule assumes that oracles are

instrumented with a counter that keeps track of the number of queries made, and that the

statistical distance between the distributions induced by a call to an oracle x← O(~e) in

E1 and E2 is upper bounded by a constant ǫ, i.e. LO,OM � ǫ. In this case, the statistical

distance between calls to the adversaryA in E1 and E2 is upper bounded by q ·ǫ, where

q is an upper bound on the number of oracle calls made by the adversary.

For the application presented in Section 5, we need to formalize a more power-

ful rule, in which the statistical distance between two oracle calls can depend on the

program state. Moreover, we allow the counter to be any integer expression, and only

require that it does not decrease across oracle calls.

3 For the sake of readability, we write LA,AM � g instead of Lx← A(~e), x← A(~e)M � g, and

likewise for oracles.

Lemma 1 (Adversary rule). Let A be an adversary and let cntr be an integer expres-

sion whose variables cannot be written by A. Let h : N→ [0, 1] and define

h̄cntr(m,m′) def

= min



1,

JcntrKm′−1
∑

i=JcntrKm

h(i)





Assume that for every oracle O,

LO,OM � λm. JE1(O)K m (λm′. h̄cntr(m,m′))

and {cntr = i} E1(O) {i ≤ cntr}. Then,

LA,AM � λm. JE1(A)K m
(

λm′. h̄cntr(m,m′)
)

3.2 Reasoning about Failure Events

Transitions based on failure events allow to transform a game into another game that

is semantically equivalent unless some failure condition is triggered. The main tool to

justify such transitions is the following lemma.

Lemma 2 (Fundamental Lemma). Consider two games G1, G2 and let A,B, and F
be events. If Pr [G1 : A ∧ ¬F] = Pr [G2 : B ∧ ¬F] , then

|Pr [G1 : A]− Pr [G2 : B] | ≤ max{Pr [G1 : F] ,Pr [G2 : F]}

Note also that if, for instance, game G2 is lossless, then Pr [G1 : F] ≤ Pr [G2 : F].

When A = B and F = bad for some Boolean variable bad, the hypothesis of the

lemma can be automatically established by inspecting the code of both games: it holds

if their code differs only after program points setting bad to true and bad is never reset

to false. As a corollary, if two games G1, G2 satisfy this syntactic criterion and e.g. G2

is lossless, LG1,G2M � λm. Pr [G2,m : bad] .

4 Weak Equivalences

In this section we introduce quantitative notions of program equivalence and equational

theories to reason about them.

4.1 Approximate Observational Equivalence

Approximate observational equivalence generalizes observational equivalence between

two games by allowing that their output distributions differ up to some quantity ǫ. In-

formally, two games G1 and G2 are ǫ-observationally equivalent w.r.t. an input set of

variables I and an output set of variables O iff for every pair of memories m1,m2

coinciding on I ,

∆ ((JG1K m1)/ =O, (JG2Km2)/ =O) ≤ ǫ,

where for a distribution µ over a set A and an equivalence relation R on A, we let µ/R
denote the quotient distribution of µ over A/R. For the purpose of formalization, it is

more convenient to rely on the following alternative characterization that does not use

quotient distributions, in part because the underlying language of Coq does not support

quotient types.

Definition 1. Two games G1 and G2 are ǫ-observationally equivalent w.r.t. an input set

of variables I and an output set of variables O, written |= G1 ≃I
O G2 � ǫ, iff for all

memories m1,m2 ∈M and functions f1, f2 :M→ [0, 1]

m1 =I m2 ∧ f1 =O f2 =⇒ |JG1K m1 f1 − JG2K m2 f2| ≤ ǫ

Figure 2 provides an excerpt of an equational theory for approximate observational

equivalence; further and more general rules appear in the formal development. Most

rules generalize observational equivalence in the expected way. For instance, the rule

for random assignment considers the case of uniformly sampling over two finite sets A
and B: in case A = B, one obtains ǫ = 0.

|= c1 ≃
I
O c2 � ǫ1 |= c2 ≃

I
O c3 � ǫ2

|= c1 ≃
I
O c3 � ǫ1 + ǫ2

|= c1 ≃
I′

O′ c2 � ǫ′ I ′ ⊆ I O ⊆ O′ ǫ′ ≤ ǫ

|= c1 ≃
I
O c2 � ǫ

|= c1 ≃
I
O′ c2 � ǫ1 |= c′1 ≃

O′

O c′2 � ǫ2

|= c1; c
′
1 ≃

I
O c2; c

′
2 � ǫ1 + ǫ2

|= c1 ≃
I
O c′1 � ǫ |= c2 ≃

I
O c′2 � ǫ ∀m,m′. I m m′ =⇒ JbK m = Jb′K m′

|= if b then c1 else c2 ≃
I
O if b′ then c′1 else c′2 � ǫ

ǫ = #(A ∩B)| 1
#A
− 1

#B
|+max

{

#(A\B)
#A

, #(B\A)
#B

}

|= x $← A ≃I
I∪{x} x $← B � ǫ

Fig. 2. Selected rules for reasoning about approximate observational equivalence

4.2 A Conditional Variant

The application we describe in Section 5 requires reasoning about conditional approx-

imate observational equivalence, a generalization of approximate observational equiv-

alence. We define for each distribution µ and event P the conditional distribution µ |P
as

µ |P
def
= λf. µ

(

λa.
f(a) 1P (a)

µ 1P

)

Intuitively, µ |P 1Q yields the conditional probability of Q given P .

Definition 2. A game G1 conditioned on predicate P1 is ǫ-observationally equivalent

to a game G2 conditioned on P2 w.r.t. an input set of variables I and an output set

of variables O, written |= [G1]P1
≃I

O [G2]P2
� ǫ, iff for any m1,m2 ∈ M and

f1, f2 :M→ [0, 1],

m1 =I m2 ∧ f1 =O f2 =⇒ |(JG1K m1) |P1
f1 − (JG2K m2) |P2

f2| ≤ ǫ

Conditional approximate observational equivalence subsumes classic approximate

observational equivalence, which can be recovered by taking P1 = P2 = true.

5 Indifferentiability

In this section we present an application of the techniques introduced above to prove the

security of cryptographic constructions in the indifferentiability framework of Maurer

et al. [23]. In particular, we consider the notion of indifferentiability from a random

oracle. A random oracle is an ideal primitive that maps elements in some domain into

uniformly and independently distributed values in a finite set; queries are answered

consistently so that identical queries are given the same answer. A proof conducted in

the random oracle model for a function h : A → B assumes that h is made publicly

available to all parties.

Definition 3 (Indifferentiability). A procedure F that has access to a random oracle

h : {0, 1}∗ → A is said to be (tS , tD, q1, q2, ǫ)-indifferentiable from a random oracle

H : {0, 1}∗ → B if there exists a simulator S with oracle access to H and executing

within time tS such that any distinguisherD running within time tD and making at most

q1 queries to an oracle O1 and q2 queries to an oracle O2 has at most probability ǫ of

distinguishing a scenario where O1 is implemented as F and O2 as h from a scenario

where O1 is implemented as H andO2 as S instead. Put in terms of games,

Game G : L← nil; b← D()

Oracle O1(x) : return F(x)

Oracle O2(x) :
if x /∈ dom(L) then
y $← A; L(x)← y

return L(x)

Game G′ : L← nil; b← D()

Oracle O1(x) :
if x /∈ dom(L) then
y $← B; L(x)← y

return L(x)

Oracle O2(x) : return S(x)

|Pr [G : b = true]− Pr [G′ : b = true] | ≤ ǫ

Random oracles into elliptic curves over finite fields are typically built from a ran-

dom oracle h on the underlying field and a deterministic encoding f that maps ele-

ments of the field into the elliptic curve. Examples of such encodings include Icart

function [21] and the Shallue-Woestijne-Ulas (SWU) algorithm [27]. In general, and

in particular for the aforementioned mappings, the function f is not surjective and only

covers a fraction of points in the curve. Hence, the naive definition of a hash function H
as f ◦ h would not cover the whole curve, contradicting the assumption that H behaves

as a random oracle. In a recent paper, Brier et al. [9] show how to build hash functions

into elliptic curves that are indifferentiable from a random oracle from a particular class

of encodings, including both SWU and Icart encodings.

We prove the indifferentiability of the construction put forward by Brier et al. in the

formal framework of CertiCrypt. The proof introduces two intermediate constructions

and is structured in three steps:

1. We first prove that any efficiently invertible encoding f can be turned into a weak

encoding (Theorem 1);
2. We then show an efficient construction to transform any weak encoding f into an

admissible encoding (Theorem 2);
3. Finally, we prove that any admissible encoding can be turned into a hash function

indifferentiable from a random oracle (Theorem 3).

Moreover, we show in Sect. 6 that Icart encoding is efficiently invertible and thus yields

a hash function indifferentiable from a random oracle when plugged in into the above

construction. We recall the alternative definitions of weak and admissible encoding

from [22]. Note that these do not match the definitions in [9], but, in comparison, are

better behaved: e.g. admissible encodings as we define them are closed under functional

composition and cartesian product.

Definition 4 (Weak encoding). A function f : S → R is an (α, ǫ)-weak encoding

if it is computable in polynomial-time and there exists a probabilistic polynomial-time

algorithm If : R→ S⊥ such that

1. {true} r $← R; s← If (r) {s = ⊥ ∨ f(s) = r}
2. |= [r $← R; s← If (r)]s6=⊥ ≃

∅
{s} [s $← S] � ǫ

3. Pr [r $← R; s← If (r) : s = ⊥] ≤ 1− α−1

Definition 5 (Admissible encoding). A function f : S → R is an ǫ-admissible encod-

ing if it is computable in polynomial-time and there exists a probabilistic polynomial-

time algorithm If : R→ S⊥ such that

1. {true} r $← R; s← If (r) {s = ⊥ ∨ f(s) = r}
2. |= r $← R; s← If (r) ≃

∅
{s} s $← S � ǫ

Brier et al. [9] prove that if G is a finite cyclic group of order N with generator

g, a function into G indifferentiable from a random oracle can be built from any poly-

nomially invertible function f : A → G and hash functions h1 : {0, 1}⋆ → A and

h2 : {0, 1}∗ → ZN as follows:

H(m) def
= f(h1(m))⊗ gh2(m) (1)

Intuitively, the term gh2(m) behaves as a one-time pad and ensures that H covers all

points in the group even if f covers only a fraction. Our proof generalizes this construc-

tion to finitely generated abelian groups.

We begin by showing that any efficiently invertible encoding is a weak encoding.

Theorem 1. Let f : S → R be a function computable in polynomial-time such that

for any r ∈ R, #f−1(r) ≤ B. Assume there exists a polynomial-time algorithm I
that given r ∈ R outputs the set f−1(r). Then, f is an (α, 0)-weak encoding, with

α = B #R/#S.

Proof. Using I, we build a partial inverter If : R → S⊥ of f that satisfies the proper-

ties in Definition 4:

If (r) : X ← I(r); b $← true⊕#X/B false;
if b = true then s $← X ; return s else return ⊥

First observe that If (r) fails with probability 1−#f−1(r)/B or else returns an element

uniformly chosen from the set of pre-images of r, and thus satisfies the first property

trivially. In addition, for any x ∈ S we have

Pr [r $← R; s← If (r) : s = x] =
1

B#R

Pr [r $← R; s← If (r) : s 6= ⊥] =
1

#R

∑

r∈R

#f−1(r)

B
=

#S

B#R

Hence, for a uniformly chosen r, the probability of If (r) failing is exactly 1 − α−1,

and the probability of returning any particular value in S conditioned to not failing is

uniform.

We show next how to construct an admissible encoding from a weak-encoding into

a finite abelian group. Recall that every finite abelian groupG is isomorphic to a product

of cyclic groups4

G ≃ Zn1
× · · · × Znk

If we fix generators gi for each Zni
, then any x ∈ G admits a unique representation

as a vector (gz11 , . . . , gzkk). We use log to denote the operator that returns the canonical

representation ~z = (z1, . . . , zk) for any x ∈ G.

Theorem 2. Let G ≃ Zn1
×· · ·×Znk

be a finite abelian group and let gi be a generator

of Zni
for i = 1 . . . k. Assume that f : A → G is an (α, ǫ)-weak encoding. Then, the

function

F : A× Zn1
× · · · × Znk

→ G

F (a, z1, . . . , zk) = f(a)⊗ gz11 ⊗ · · · ⊗ gzkk

is an ǫ′-admissible encoding into G, with ǫ′ = ǫ+
(

1− α−1
)T+1

for any polynomially

bounded T .

Proof. Since f is a weak encoding, there exists a polynomial-time computable inverter

If of f satisfying the conditions in Definition 4. Let T ∈ N be polynomially bounded.

Using If , we build a partial inverter IF of F that satisfies the properties in Definition 5:

IF (r) : i← 0; a← ⊥;
while (i ≤ T ∧ a = ⊥) do
~z $← Zn1

× · · · × Znk
;

x← r ⊗ g−z1
1 ⊗ · · · ⊗ g−zk

k ;
a← If (x); i← i + 1

end;
if a 6= ⊥ then return (a, ~z) else return ⊥

4 The decomposition can be made unique by fixing additional conditions on n1 . . . nk .

Game G1 : r $← G; s← IF (r)

Game G2 :
r $← G;
i← 0; a← ⊥;
while (i ≤ T ∧ a = ⊥) do

x $← G; ~z ← log (r ⊗ x−1);
a← If (x); i← i+ 1

end;
if a 6= ⊥ then s← (a, ~z) else s← ⊥

Game G3 :
r $← G;
i← 0; a← ⊥;
while (i ≤ T ∧ a = ⊥) do

x $← G; a← If (x); i← i+ 1
end;
~z ← log (r ⊗ x−1);
if a 6= ⊥ then s← (a, ~z) else s← ⊥

Game G4 :
i← 0; a← ⊥;
while (i ≤ T ∧ a = ⊥) do

x $← G; a← If (x); i← i+ 1
end;

~z $← ~Z;
if a 6= ⊥ then s← (a, ~z) else s← ⊥

Game G5 G6 :
i← 0; a← ⊥;
while (i ≤ T ∧ a = ⊥) do

x $← G; a← If (x); i← i+ 1
end;

~z $← ~Z;
if a 6= ⊥ then a $← A; s← (a, ~z)
else bad← true;

s← ⊥ a $← A; s← (a, ~z)

Game G7 : s $← A× Z

Fig. 3. Sequence of games used in Theorem 2

The partial inverter IF runs in time tIF
= (T + 1) tIf

, where tIf
is a bound on the

running time of If . Hence, IF is polynomial-time for any polynomially bounded T .

For the sake of readability in the following we use ~Z to denote Zn1
× · · ·×Znk

and

~g~z to denote gz11 ⊗ · · · ⊗ gzkk . We prove that

|= r $← G; s← IF (r) ≃
∅
{s} s $← A× ~Z � ǫ′

using the sequence of games G1, . . . ,G7 shown in Figure 3, the mechanized program

transformations of CertiCrypt, and the proof rules for observational and approximate

observational equivalence. We briefly describe the proof below.

We obtain game G2 by first inlining the call to IF in the initial game and then

applying the following algebraic equivalence to transform the body of the while loop:

|= ~z $← ~Z; x← r ⊗ ~g−~z ≃
{r}
{r,x,z} x $← G; ~z ← log (r ⊗ x−1)

We obtain game G3 by moving the assignment to ~z outside the loop in game G2.

This transformation is semantics-preserving because ~z is never used inside the loop

and the value that it has when exiting the loop only depends on the value of x in the

last iteration. Formally, this is proven by unfolding the first iteration of the loop and

establishing that the relation

={i,x,a,r} ∧ (~z = log (r ⊗ x−1))〈1〉

is a relational invariant between the loop in G2 and the loop resulting from removing

the assignment to ~z. By appending ~z ← log (r ⊗ x−1) to the latter loop, we recover

equivalence on ~z.

Since r is no longer used inside the loop, we can postpone its definition after the

loop, and use the following algebraic equivalence to sample ~z instead of r

|= r $← G; ~z ← log (r ⊗ x−1) ≃
{x}
{r,x,z} ~z

$← ~Z; r ← x⊗ ~g~z,

We obtain G4 by additionally removing the assignment to r, which is now dead code.

For the next step in the proof we use the fact that f is a weak encoding and therefore

the distribution of a after a call a ← If (x) conditioned to a 6= ⊥ is ǫ-away from the

uniform distribution. This allows us to resample the value of a after the loop, provided

a 6= ⊥, incurring a penalty ǫ on the statistical distance of the distribution of s between

G4 and G5. To prove this formally, let b be the condition of the loop and c its body. Ob-

serve that the semantics of the loop coincides with the semantics of its (T+1)-unrolling

[while b do c]T+1. We show by induction on T that for any [0, 1]-valued functions f, g
s.t. f ={a′} g,

m1={a,i}m2 ∧ m1(a) = ⊥ =⇒ |Jc1Km1 f
′−Jc2Km2 g

′| ≤ ǫ

where
c1 = [while b do c]T+1; if a 6= ⊥ then a′ ← a
c2 = [while b do c]T+1; if a 6= ⊥ then a′ $← A
f ′(m) = if m(a) 6= ⊥ then f(m) else 0
g′(m) = if m(a) 6= ⊥ then g(m) else 0

and use this to conclude the ǫ-approximate equivalence of G4 and G5.

Since G5 and G6 are syntactically equivalent except for code appearing after flag

bad is set, we apply the corollary of the Fundamental Lemma in Section 3.2 to obtain

the bound

LG5,G6M � Pr [G5 : bad]

Since the probability of failure of If on a uniformly chosen input is upper bounded by

1− α−1, we can show by induction on T that

Pr [G5 : bad] ≤
(

1− α−1
)T+1

,

from which we conclude |= G5 ≃
∅
{s} G6 �

(

1− α−1
)T+1

.

By coalescing the branches in the conditional at the end of G6 and removing dead

code, we prove that the game is observational equivalent w.r.t a and ~z to the game

a $← A; ~z $← ~Z; s← (a, z), which is trivially equivalent to G7.

By composing the above results, we conclude

|= G1 ≃
∅
{s} G7 � ǫ+

(

1− α−1
)T+1

(2)

We must also show that s = ⊥ ∨ F (s) = r is a post-condition of G1. As G1 and

G3 are observationally equivalent with respect to s and r, it is sufficient to establish the

validity of the post-condition for G3. We show that a 6= ⊥ ⇒ x = f(a) is an invariant

of the loop. When the loop finishes, either a = ⊥ and in this case s = ⊥, or a 6= ⊥ and

we have F (s) = f(a)⊗ ~g~z = x⊗ r ⊗ x−1 = r.

Finally, we show that the composition of an admissible encoding f : S → R and a

random oracle into S is indifferentiable from a random oracle into R.

Theorem 3. Let f : S → R be an ǫ-admissible encoding with inverter algorithm

If and let h : {0, 1}⋆ → S be a random oracle. Then, f ◦ h is (tS , tD, q1, q2, ǫ
′)-

indifferentiable from a random oracle into R, where tS = q1 tIf
and ǫ′ = 2(q1 + q2)ǫ.

Before moving to the proof of Theorem 3, we prove the following useful result.

Lemma 3. Let f : S → R be an ǫ-admissible encoding with inverter algorithm If .

Then

|= s $← S; r ← f(s) ≃∅
{r,s} r $← R; s← If (r) � 2ǫ

Proof. Define

ci
def
= s $← S; r ← f(s)

cf
def
= r $← R; s← If (r)

c1
def
= ci; if s = ⊥ then r $← R else r ← f(s)

c2
def
= cf ; if s = ⊥ then bad← true; r $← R else r ← f(s)

c3
def
= cf ; if s = ⊥ then bad← true else r ← f(s)

Since the first branch of the conditional in c1 is never executed, we have:

|= ci ≃
∅
{r,s} c1

Due to the second property of Definition 5, the distributions of s after executing ci and

cf are ǫ-away. Using the rules for approximate observational equivalence, we obtain

|= c1 ≃
∅
{r,s} c2 � ǫ

The corollary to the Fundamental Lemma in Section 3.2 implies that Lc2, c3M �
Pr [c2 : bad]. Moreover,

Pr [c2 : bad] = 1− Pr [cf : s 6= ⊥] = Pr [s $← S : s 6= ⊥]− Pr [cf : s 6= ⊥] ≤ ǫ

where the last inequality holds again because of the second property of Definition 5.

Since the final values of r and s in programs c2 and c3 are independent of the initial

memory, we have

|= c2 ≃
∅
{r,s} c3 � ǫ

Because If is a partial inverter for f , the else branch of the conditional in c3 has

no effect and can be removed, and thus |= c3 ≃
∅
{r,s} cf . We conclude by transitivity of

approximate observational equivalence.

Proof (of Theorem 3). Let D be a distinguisher against the indifferentiability of f ◦ h
making at most q1 queries to O1 and at most q2 queries to O2. We exhibit a simulator

S that uses a random oracle into R to simulate h and show that D cannot distinguish a

game G where O1 and O2 are implemented by f ◦ h and h respectively from a game

G′ where they are implemented by S and a random oracle into R instead. An overview

Game G : L← nil; b← D()

Oracle O1(x) :
if x /∈ dom(L1) then
s $← S; L1(x)← s

return L1(x)

Oracle O2(x) :
if x /∈ dom(L2) then
s← O1(x); r ← f(s); L2(x)← r

return L2(x)

Game G′ : L← nil; b← D()

Oracle O1(x) :
if x /∈ dom(L1) then
r ← O2(x); s← If (r); L1(x)← s

return L1(x)

Oracle O2(x) :
if x /∈ dom(L2) then
r $← R; L2(x)← r

return L2(x)

Game G1 : L← nil; b← A()

Oracle O(x) :
if x /∈ dom(L) then
s $← S; r ← f(s); L(x)← (s, r)

return L(x)

Game G2 : L← nil; b← A()

Oracle O(x) :
if x /∈ dom(L) then
r $← R; s← If (r); L(x)← (s, r)

return L(x)

Game Gbad

1 : L← nil; b← A()

Oracle O(x) :
if x /∈ dom(L) then
if |L| < q1 + q2 then

s $← S; r ← f(s)
else bad← true; s $← S; r ← f(s)
L(x)← (s, r)

return L(x)

Game Gbad

2 : L← nil; b← A()

Oracle O(x) :
if x /∈ dom(L) then
if |L| < q1 + q2 then

s $← S; r ← f(s)
else bad← true; r $← R; s← If (r)
L(x)← (s, r)

return L(x)

Fig. 4. Games used in the proof of Theorem 3

of the proof, including these two games and the definition of the simulator is shown in

Figure 4.

Our goal is to prove

|Pr [G : b = true]− Pr [G′ : b = true] | ≤ 2(q1 + q2)ǫ (3)

The crux of the proof is an application of Lemma 1. In order to apply it, we need first

to transform the initial games to replace oraclesO1 andO2 by a single joint oracle that

simultaneously returns the responses of both. Using D, we construct an adversary A
with access to a single joint oracle, such that games G and G′ are equivalent to games

G1 and G2 in the figure. AdversaryA simply calls the distinguisherD and forwards the

value it returns; it simulatesO1 and O2 by using its own oracle O.

We assume without loss of generality the equivalence between games G and G1,

and G′ and G2, respectively. This is identical to the assumption in [9] that the distin-

guisher always makes the same queries to both its oracles. Games G1 and G2 satisfy the

equalities:

Pr [G : b = true] = Pr [G1 : b = true] Pr [G′ : b = true] = Pr [G2 : b = true]

Furthermore, since D makes at most q1 queries to O1 and q2 queries to oracle O2, A
makes at most q = q1 + q2 queries to its oracle.

We next transform the implementation of oracle O in games G1 and G2 to enforce

the bound q1+ q2 on the total number of queries. After the allotted number of queries is

exhausted, oracle O behaves the same way in the two games. This ensures that further

queries will not make the statistical distance between the two games grow and paves

the way to applying Lemma 1. This transformation preserves observational equivalence

because we know thatAwill not make more queries than allowed. One way of justifying

this is using the syntactic criterion for Lemma 2: we annotate the games with a flag bad

that is set to true at points where the implementations of the oracleO in the games differ

and obtain

Pr
[

Gbad

1 : b = true ∧ ¬bad
]

= Pr
[

Gbad

2 : b = true ∧ ¬bad
]

But since bad =⇒ q < |L| is an invariant and |L| ≤ q is a post-condition of both

games,

Pr
[

Gbad

1 : b = true
]

= Pr
[

Gbad

2 : b = true
]

We can now apply Lemma 1 between games G2 and Gbad

2 , taking cntr = |L| and

h(i) = if i < q then 2ǫ else 0. The second hypothesis of the lemma, i.e that a call to

E2(O) cannot decrease |L|, is immediate. We can assume that 2qǫ < 1 (otherwise the

theorem is trivially true). Then,

JcntrKm′−1
∑

i=JcntrKm

h(i) ≤ 2qǫ < 1, and h̄cntr(m,m′) =

JcntrKm′−1
∑

i=JcntrKm

h(i)

We are only left to prove that

LE2(O), E
bad

2 (O)M � λm. JE2(O)K m (λm′. h̄cntr(m,m′))

Doing a case analysis on the conditions m ∈ dom(L) and |L| < q yields four cases;

three of them yield a null distance and are immediate. The remaining case, where m /∈
dom(L) and |L| < q, yields a distance 2ǫ and follows from Lemma 3. We finally obtain

LG2,G
bad

2 M � 2(q1+q2)ǫ, which combined with the previous results implies the desired

inequality.

6 Application to Elliptic Curves

This section discuss the application of the proof presented in the previous section to

hashing into elliptic curves.

Let Fpm be a finite field of cardinal pm, with p > 3 prime. An elliptic curve over

Fpm is defined by the equation Y 2 = X3 + aX + b where the parameters a, b are

elements of Fpm such that 4a3 +27b2 6= 0 (the curve must be non-singular). The set of

points of such a curve, which we denote Ea,b, can be construed as a finite abelian group

with the point at infinite O as the identity element. Furthermore, it can be shown that

the group Ea,b is either cyclic or a product of two cyclic groups.

Hence, applying the results from the previous section, any polynomially invertible

function into a Ea,b can be transformed into a hash function that is indifferentiable from

a random oracle. In particular, this holds for Icart encoding, as we show next.

For pm ≡ 2 (mod 3), Icart function fa,b : Fpm → Ea,b is defined as:

fa,b(u)
def
=







(x, ux+ v) if u 6= 0

((−b)
1

3 , 0) if u = 0 ∧ a = 0
O if u = 0 ∧ a 6= 0

(4)

where x =

(

v2 − b−
u6

27

)
1

3

+
u2

3
v =

3a− u4

6u

As a side remark, observe that the original definition only deals with the case a 6= 0;

the definition for the case a = 0 was suggested to us by Thomas Icart in a private

communication.

The set of pre-images of a point in the curve under Icart function can be computed

efficiently by solving for the roots of polynomials over Fpm of degree at most 4—any

point in the curve has at most 4 pre-images:

f−1
a,b (O) def

=

{

{0} if a 6= 0
∅ if a = 0

f−1
a,b (X,Y) def

=

{

{u|u3 − 6uX + 6Y = 0} if a = 0
{u|u4 − 6u2X + 6uY = 3a} if a 6= 0

This can be done using any efficient algorithm for factoring polynomials over finite

fields, e.g. Berlekamp’s algorithm. Thus, Icart encoding is polynomially invertible.

Formalization. To apply our generic proof of indifferentiability to Icart function, we

proceeded as follows:

1. We integrated Théry’s formalization of elliptic curves [30] in our framework, and

showed that the set of points of the elliptic curve Ea,b can be construed as a finite

cyclic group, as defined in SSREFLECT standard library [19];
2. We defined Icart function, and showed that it generates points in the curve Ea,b.

This required showing the existence of cubic roots in the field Fpm (the cubic root

of x ∈ Fpm is the element x(2pm−1)/3);
3. We defined the inverse of Icart function, for which we needed to assume a polyno-

mially efficient method for factoring polynomials of degree 4 over the underlying

field, as no existing Coq library readily provides the necessary background;
4. We applied Theorem 1 to show that Icart function is an (α, 0)-weak encoding, with

α = 4N/pm where N is the order of Ea,b;
5. We applied Theorem 2 to show that F : Fpm×ZN , defined as F (u, z) = fa,b(u)+

gz , where g is a generator of ZN , is an ǫ-admissible encoding, with ǫ = (1−α−1)T

for any polynomially bounded T ;
6. We finally applied Theorem 3 to show that if F is composed with a random oracle

into Fpm × ZN (equivalently, a random oracle into Fpm and a random oracle into

ZN), the resulting construction is (tS , tD, q1, q2, 2(q1+ q2)ǫ)-indifferentiable from

a random oracle into Ea,b, where tS = q1 tIF
= q1 (T + 1) tf−1 and tf−1 is an

upper bound on the time needed to compute the pre-image of a point under Icart

function, i.e. to solve a polynomial of degree 4 in Fpm .

7 Related Work

Weak Equivalences. The impossibility to achieve perfect security has motivated several

proposals for weaker, quantitative, definitions of security. Prominent examples include

notions of confidentiality based on information theory [11, 12, 24, 29]. More recently,

Dwork [14] has suggested differential privacy as an alternative notion that quantifies

the privacy guaranteed by confidential data analysis; Barthe et al. [6] builds on the

work presented in this paper and reports on an extension of the CertiCrypt framework

for reasoning about differential privacy. All of these definitions can be construed as

quantitative hyperproperties [12], and readily extend to relational properties that are

closely related to statistical distance.

Approximate observational equivalence is also closely related to weak notions of

bisimulations [26]. In fact, approximate observational equivalence naturally generalizes

to an approximate relational Hoare logic. The latter is based on a notion of approximate

lifting of a relation that is closely related to the notion used in [26].

Hashing into Elliptic Curves. A number of highly relevant cryptographic constructions,

including identity based schemes [8] and password based key exchange protocols [7],

require hashing into elliptic curves. Indeed, there have been a number of proposals for

such hash functions, see for instance [17, 21, 27]. Recently, Farashahi et al. [15] devel-

oped powerful techniques to show the indifferentiability of hash function constructions

based on deterministic encodings. Their results improve on [9], in the sense that they

apply to a larger class of encodings, including encodings to hyperelliptic curves, and

that they provide tighter bounds for encodings that are covered by both methods.

Formalization and Verification of Elliptic Curves. To our best knowledge, our work

provides the first machine-checked proof of security for a cryptographic primitive based

on elliptic curves. There are, however, previous works on the formalization of elliptic

curves: Hurd, Gordon and Fox [20] report on the verification in HOL of the group laws,

and an application to showing the functional correctness of ElGamal encryption. Théry

and Hanrot [30] used the Coq proof assistant to formalize the group laws, and show

how the formalization of elliptic curves can be used to build efficient reflective tactics

for testing primality.

8 Conclusion

This paper reports on a machine-checked proof of a recent construction to build hash

functions that are indifferentiable from a random oracle into an elliptic curve. The ex-

ample is singular among other examples that have been formalized using CertiCrypt,
because it involves complex reasoning about algebraic geometry and requires the for-

malization of new weak forms of program equivalence.

The formalization establishes the ability of CertiCrypt to integrate smoothly with

existing libraries of complex mathematics. Overall, the formalization consists of over

65,000 lines of Coq (without counting components reused from the standard libraries

of Coq and SSReflect), which break down as follows: 45,000 lines corresponding to

the original CertiCrypt framework, 3,500 lines of extensions to CertiCrypt, 7,000 lines

written originally for our application to indifferentiability, and 10,000 lines of a slightly

adapted version of Théry [30] elliptic curve library.

Our work paves the way for further developments. We are particularly interested in

leveraging our earlier formalization of zero-knowledge protocols [5] to statistical zero-

knowledge, and to use the result as a back-end for a certifying ZK compiler, in the style

of [1]. We also intend to pursue the machine-checked formalization of indifferentia-

bility proofs, and in particular to show that the finalists of NIST SHA-3 competition

are indifferentiable from a random oracle. Finally, it would be of interest to enhance

EasyCrypt [3], an automated front-end that generates verifiable security proofs in Cer-

tiCrypt, so that it can manipulate the notions of equivalence considered in this paper

(and in [6]).

References

1. Almeida, J., Bangerter, E., Barbosa, M., Krenn, S., Sadeghi, A.R., Schneider, T.: A certifying

compiler for Zero-Knowledge Proofs of Knowledge based on Sigma-protocols. In: Computer

Security – ESORICS 2010, 15th European Symposium on Research In Computer Security.

Lecture Notes in Computer Science, vol. 6345, pp. 151–167. Springer, Heidelberg (2010)

2. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Sci. Comput.

Program. 74(8), 568–589 (2009)

3. Barthe, G., Grégoire, B., Heraud, S., Zanella-Béguelin, S.: Computer-aided security proofs

for the working cryptographer. In: Advances in Cryptology – CRYPTO 2011. Lecture Notes

in Computer Science, vol. 6841, pp. 71–90. Springer, Heidelberg (2011)

4. Barthe, G., Grégoire, B., Zanella-Béguelin, S.: Formal certification of code-based crypto-

graphic proofs. In: 36th ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL 2009. pp. 90–101. ACM, New York (2009)

5. Barthe, G., Hedin, D., Zanella-Béguelin, S., Grégoire, B., Heraud, S.: A machine-checked

formalization of Sigma-protocols. In: 23rd IEEE Computer Security Foundations Sympo-

sium, CSF 2010. pp. 246–260. IEEE Computer Society, Los Alamitos (2010)

6. Barthe, G., Köpf, B., Olmedo, F., Zanella-Béguelin, S.: Probabilistic relational reasoning for

differential privacy. In: 39th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, POPL 2012. pp. 97–110. ACM, New York (2012)

7. Bellovin, S., Merritt, M.: Encrypted key exchange: password-based protocols secure against

dictionary attacks. In: 13th IEEE Symposium on Security and Privacy, S&P 1992. pp. 72

–84. IEEE Computer Society, Los Alamitos (1992)

8. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Journal of Cryp-

tology 17, 297–319 (2004)

9. Brier, E., Coron, J.S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient indiffer-

entiable hashing into ordinary elliptic curves. In: Advances in Cryptology – CRYPTO 2010.

Lecture Notes in Computer Science, vol. 6223, pp. 237–254. Springer (2010)

10. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM

51(4), 557–594 (2004)

11. Clark, D., Hunt, S., Malacaria, P.: A static analysis for quantifying information flow in a

simple imperative language. Journal of Computer Security 15(3), 321–371 (2007)

12. Clarkson, M.R., Schneider, F.B.: Hyperproperties. Journal of Computer Security 18(6),

1157–1210 (2010)

13. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård revisited: How to construct

a hash function. In: Advances in Cryptology – CRYPTO 2005. Lecture Notes in Computer

Science, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)

14. Dwork, C.: Differential privacy. In: 33rd International Colloquium on Automata, Languages

and Programming, ICALP 2006. Lecture Notes in Computer Science, vol. 4052, pp. 1–12.

Springer, Heidelberg (2006)

15. Farashahi, R.R., Fouque, P.A., Shparlinski, I., Tibouchi, M., Voloch, J.F.: Indifferentiable de-

terministic hashing to elliptic and hyperelliptic curves. Mathematics of Computation (2011)

16. Fleischmann, E., Gorski, M., Lucks, S.: Some observations on indifferentiability. In: Infor-

mation Security and Privacy. Lecture Notes in Computer Science, vol. 6168, pp. 117–134.

Springer, Heidelberg (2010)

17. Fouque, P.A., Tibouchi, M.: Deterministic encoding and hashing to odd hyperelliptic curves.

In: 4th International Conference on Pairing-Based Cryptography, Pairing 2010. Lecture

Notes in Computer Science, vol. 6487, pp. 265–277. Springer, Heidelberg (2010)

18. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299

(1984)

19. Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A modular formalisation of

finite group theory. In: 20th International Conference on Theorem Proving in Higher Order

Logics, TPHOLs 2007. Lecture Notes in Computer Science, vol. 4732, pp. 86–101. Springer,

Heidelberg (2007)

20. Hurd, J., Gordon, M., Fox, A.: Formalized elliptic curve cryptography. In: High Confidence

Software and Systems, HCSS 2006 (2006)

21. Icart, T.: How to hash into elliptic curves. In: Advances in Cryptology – CRYPTO 2009.

Lecture Notes in Computer Science, vol. 5677, pp. 303–316. Springer (2009)

22. Icart, T.: Algorithms Mapping into Elliptic Curves and Applications. Ph.D. thesis, Université

du Luxembourg (2010)

23. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reduc-

tions, and applications to the random oracle methodology. In: 1st Theory of Cryptography

Conference, TCC 2004. Lecture Notes in Computer Science, vol. 2951, pp. 21–39. Springer,

Heidelberg (2004)

24. Pierro, A.D., Hankin, C., Wiklicky, H.: Approximate non-interference. Journal of Computer

Security 12(1), 37–82 (2004)

25. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Limitations of the

indifferentiability framework. In: Advances in Cryptology – EUROCRYPT 2011. Lecture

Notes in Computer Science, vol. 6632, pp. 487–506. Springer, Heidelberg (2011)

26. Segala, R., Turrini, A.: Approximated computationally bounded simulation relations for

probabilistic automata. In: 20th IEEE Computer Security Foundations Symposium, CSF

2007. pp. 140–156. IEEE Computer Society (2007)

27. Shallue, A., van de Woestijne, C.: Construction of rational points on elliptic curves over finite

fields. In: 7th International Symposium on Algorithmic Number Theory, ANTS-VII. Lecture

Notes in Computer Science, vol. 4076, pp. 510–524. Springer, Heidelberg (2006)

28. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cambridge Uni-

versity Press, second edn. (2009)

29. Smith, G.: On the foundations of quantitative information flow. In: 12th International Con-

ference on Foundations of Software Science and Computational Structures - FoSSaCS 2009.

pp. 288–302. Springer, Heidelberg (2009)

30. Théry, L., Hanrot, G.: Primality proving with elliptic curves. In: 20th International Confer-

ence on Theorem Proving in Higher Order Logics, TPHOLs 2007. Lecture Notes in Com-

puter Science, vol. 4732, pp. 319–333. Springer, Heidelberg (2007)

