Foundational Analyses of Computation

Yuri Gurevich
Microsoft Research, Redmond, Washington, USA

Technical Report
MSR-~TR-2012-14, February 2012

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052



Foundational Analyses of Computation

Yuri Gurevich
Microsoft Research, Redmond, Washington, USA

Give me a fulerum, and I shall move the world.

—Archimedes

Abstract

How can one possibly analyze computation in general? The task
seems daunting if not impossible. There are too many different kinds
of computation, and the notion of general computation seems too
amorphous. As in quicksand, one needs a rescue point, a fulcrum.
In computation analysis, a fulcrum is a particular viewpoint on com-
putation that clarifies and simplifies things to the point that analysis
become possible.

We review from that point of view the few foundational anal-
yses of general computation in the literature: Turing’s analysis of
human computations, Gandy’s analysis of mechanical computations,
Kolmogorov’s analysis of bit-level computation, and our own analysis
of computation on the arbitrary abstraction level.

1 Introduction

Algorithms and computations are closely related concepts. Syntactically al-
gorithms are programs (or recipes) but semantically they specify computa-
tions. And the only computations that we consider here are algorithmic (also
known as mechanical). In this paper, we abstract from the syntax of algo-
rithms, so that analysis of algorithms and analysis of computation are one
and the same.

Turing’s analysis of algorithms was provoked by the Entscheidungsprob-
lem, the problem whether the validity of first-order formulas is computable.



Logicians have been interested in what functions are computable, and Tur-
ing’s analysis is often seen from that point of view. But there may be much
more to an algorithm than its input-output behavior. In general algorithms
perform tasks, and computing functions is a rather special class of tasks.
Here we concentrate on  foundational analyses of algo-
rithms/computations, not on what functions are computable.

Acknowledgements

Many thanks to Andreas Blass and Oron Shagrir for useful comments.

2 Turing

Alan Turing analyzed computation in his 1936 paper “On Computable Num-
bers, with an Application to the Entscheidungsproblem” [2I]. The validity
relation on first-order formulas can be naturally represented as a real number,
and the Entscheidungsproblem becomes whether this particular real number
is computable. “Although the subject of this paper is ostensibly the com-
putable numbers, it is almost equally easy to define and investigate com-
putable functions of an integral variable or a real or computable variable,
computable predicates, and so forth. The fundamental problems involved
are, however, the same in each case, and I have chosen the computable num-
bers for explicit treatment as involving the least cumbrous technique” [21]
p. 230].

How could Turing analyze computation in such generality? The world
of algorithms is large and diverse. Explicitly or implicitly, he imposed some
constraints on the computations in consideration. And he found a fulcrum.
We start with the fulerum. There were no computers in Turing’s timd!| but
that does not seem to make Turing’s task much simpler. Humans are hard
to analyze. Amazingly Turing found a way to do just that: Ignore how the
algorithm is given, ignore what human computers have in their minds, and
concentrate on what the computers do, what their observable behavior is.
That is his fulcrum.

L“Numerical calculation in 1936 was carried out by human beings; they used mechan-
ical aids for performing standard arithmetical operations, but these aids were not pro-
grammable” (Gandy [8, p. 12]).



One may argue that Turing did not ignore the mind. He speaks about
the state of mind of the human computer explicitly and repeatedly. For
example, he says that “[t|he behaviour of the computer at any moment is
determined by the symbols which he is observing, and his ’'state of mind’
at that moment” [21, p. 250]. But Turing postulates that “the number of
states of mind which need be taken into account is finite.” The computer
just remembers the current state of mind, and even that is not necessary:
“we avoid introducing the ’state of mind’ by considering a more physical and
definite counterpart of it. It is always possible for the computer to break off
from his work, to go away and forget all about it, and later to come back and
go on with it. If he does this he must leave a note of instructions (written in
some standard form) explaining how the work is to be continued. This note
is the counterpart of the ’state of mind’.”

Turing introduced abstract computing machines that became known as
Turing machines (and constructed a universal Turing machine). He defined
a real number to be computable “if its decimal can be written down by a
[Turing] machine” [21, p. 230]. His thesis was that Turing computable num-
bers “include all numbers which could naturally be regarded as computable”
(Turing [21) p. 230]). He used the thesis to prove the undecidability of the
Entscheidungsproblem. To convince the reader of his thesis, Turing used
three arguments.

Reasonableness: He gave examples of large classes of real numbers which
are [Turing] computable.

Robustness He gave another explicit definition of computability and proved
it is equivalent to the original one “in case the new definition has a
greater intuitive appeal.” The robustness argument was strengthened
in the appendix where, after learning about Church’s explicit definition
of computability [6], he proved the equivalence of their definitions.

Appeal to Intuition He analyzed computation appealing directly to intu-
ition.

The first two arguments are important but insufficient. There are other
reasonable and robust classes of computable real numbers, e.g. the class of
primitive recursive real numbers. The direct appeal to intuition is crucial.

While Turing’s analysis is very general, his algorithms are subject to some
constraints. Here are some of them.



Symbolic Computation is symbolic (or digital, symbol-pushing).
Sequential time Computation splits into a sequence of steps.
Bounded work Only bounded work is performed at any one step.

Isolated Computation is self-contained. No oracle is consulted, and nobody
interferes with the computation either during a computation step or in
between steps. The whole computation of the algorithm is determined
by the initial state.

2.1 Discussion

@ Did Turing really impose the symbolic constraint?

A: Yes, he did. “Computing is normally done by writing certain symbols on
paper,” writes Turing [21], p. 249], and he analyses only such computations.

Q: Is this really a constraint?

A: These days we are so accustomed to digital computations that the sym-
bolic constraint may not look like a constraint. But it is. Non-symbolic
computations have been performed by humans from ancient times [13] §3].

Q: I came across a surprising remark of Godel that Turing’s argument “is
supposed to show that mental procedures cannot go beyond mechanical pro-
cedures” [9]. T believe that Turing’s goal was to analyze mechanical proce-
dures. Since such procedures were executed by humans in his time, he had
to analyze human execution of mechanical procedures; there was no other
way.

A: We may never know what goal was in Turing’s head; let’s hear Godel’s
argument.

Q: “What Turing disregards completely is the fact that mind, in its use,
is not static, but constantly developing, i.e., that we understand abstract
terms more and more precisely as we go on using them, and that more and
more abstract terms enter the sphere of our understanding. There may exist
systematic methods of actualizing this development, which could form part
of the procedure” (Godel, [9]).

2Q is my inquisitive friend Quisani, and A is the author.



A: Godel raises a possibility that there exists a sophisticated decision pro-
cedure for the Entscheidungsproblem that can be executed by gifted mathe-
maticians.

Q: Hmm, if gifted mathematicians can reliably execute a procedure, they
should be able to figure out how to program it, and then the procedure is
mechanical.

A: Well, it is hard to delimit human creativity. Certainly Turing did not do
that.

Q: And didn’t intend to, I am sure. But let me change the topic. You said
nothing about Church’s arguments in favor of his definition of computability.

A: Church had strong arguments that his definition of reasonable and robust.
In particular, he and his student Kleene proved that a numerical function is
expressible in Church’s A-calculus if and only if it is expressible in Goédel’s
recursive calculus. Church’s thesis was that [Godel’s| recursive functions
include all numerical functions that are “effectively calculable”.

Q: Here is another quote. “For the actual development of the (abstract) the-
ory of computation, where one must build up a stock of particular functions
and establish various closure conditions, both Church’s and Turing’s defini-
tion are equally awkward and unwieldy. In this respect, general recursiveness
is superior” (Sol Feferman, [8 p. 6]). Do you buy that?

A: Indeed, the recursive approach has been dominant in mathematical logic,
but Turing’s approach dominates in computer science and it influenced the
early design of digital computers.

3 Kolmogorov

Andrei Kolmogorov analyzed computation in abstraction from the computer.
Kolmogorov’s fulcrum seems to be the idea that computations, indepen-
dently from the computer, satisfy nontrivial constraints. In a 1953 talk to
the Moscow Mathematical Society [14], he stipulated that every algorithmic
process satisfies the following constraints.

Sequentiality An algorithmic process splits into steps whose complexity is
bounded in advance.

Elementary steps Each step consists of a direct and unmediated transfor-
mation of the current state S to the next state S*.



Locality Each state S has an active part of size bounded in advance. The
direct and unmediated transformation of S to S* is based only on the
information about the active part of S and applies only to the active
part.

These ideas gave rise to a new computation model developed by Kolmogorov
and his student Vladimir Uspensky [I5]. Instead of a linear tape, a Kol-
mogorov machine has a graph of bounded degree (so that there is a bound
on the number of edges attached to any vertex), with a fixed number of the
types of vertices and a fixed number of the types of edges. We speculated
in [10] that “the thesis of Kolmogorov and Uspensky is that every compu-
tation, performing only one restricted local action at a time, can be viewed
as (not only being simulated by, but actually being) the computation of an
appropriate KU machine.” Uspensky agreed [22] p. 396].

We do not know what analysis, if any, allowed Kolmogorov and Uspensky
to arrive from the constraints above at the particular architecture of Kol-
mogorov machines. “As Kolmogorov believed,” wrote Uspensky [22] p. 395],
“each state of every algorithmic process ... is an entity of the following struc-
ture. This entity consists of elements and connections; the total number of
them is finite. Each connection has a fixed number of elements connected.
Each element belongs to some type; each connection also belongs to some
type. For every given algorithm the total number of element types and the
total number of connection types are bounded.” In that approach, the num-
ber of nonisomorphic active zones is finite (because of a bound on the size
of the active zones), so that the state transition can be described by a finite
program.

Leonid Levin told us that Kolmogorov thought of computation as a phys-
ical process developing in space and time, that the edges of Kolmogorov
machine reflect physical closeness of computation elements [16]. But then,
as we mentioned in [12], the dimensionality of the space may grow with the
input size.

Kolmogorov’s analysis has not been well known. In this connection, let
us point out these references: [1I, 10, 22] 23].

4 Gandy

Gandy analyzed computation in his 1980 paper “Church’s Thesis and Prin-
ciples for Mechanisms” [7]. In this section, by default, quotations are from

6



that paper.

Turing’s analysis of computation by a human being does not ap-
ply directly to mechanical devices ... Our chief purpose is to an-
alyze mechanical processes and so to provide arguments for ...

Thesis M. What can be calculated by a machine is computable.

Contrary to human computers, a machine can perform parallel actions. Kol-
mogorov machines are fine “but at each step only a bounded portion of the
whole state [of a Kolmogorov machine] is changed.” Thesis M “must take
parallel working into account.” A question arises what machines are.

(1) In the first place I exclude from consideration devices which
are essentially analogue machines. ... I shall distinguish between
“mechanical devices” and “physical devices” and consider only
the former. The only physical presuppositions made about me-
chanical devices ...are that there is a lower bound on the linear
dimensions of every atomic part of the device and that there is an
upper bound (the velocity of light) on the speed of propagation
of changes.

(2) Secondly we suppose that the progress of calculation by a me-
chanical device may be described in discrete terms, so that the
devices considered are, in a loose sense, digital computers.

(3) Lastly we suppose that the device is deterministic; that is, the
subsequent behaviour of the device is uniquely determined once
a complete description of its initial state is given.

After these clarifications we can summarize our argument for a
more definite version of Thesis M in the following way.

Thesis P. A discrete deterministic mechanical device satisfies
principles I-IV below.

Later, discussing how to describe computation states, Gandy says that he
wants “the form of description to be sufficiently abstract to apply uniformly
to mechanical, electrical or merely notional devices.” After all the clarifi-
cations, it is not clear what Gandy’s notion of machine is; see [18] in this
connection. Gandy does presume that machine computations are sequential-
time and isolated; these are two of the four constraints in Sequential time
parallelism is known as synchronous.



Principles I-IV are precise though require too many definitions to be
stated precisely here. The four principles entail Gandy’s main theorem:
“What can be calculated by a machine is computable.”

Principle I asserts in particular that, for any machine, the states can
be described by hereditarily finite set$’and there is a transition function F
such that, if = describes an initial state, then Fx, F/(Fz),... describe the
subsequent states. Principles II are III are technical restrictions on the state
descriptions and the transition function respectively. Principle IV generalizes
Kolmogorov’s locality constraint to parallel computations.

We now come to the most important of our principles. In Tur-
ing’s analysis the requirement that the action depend only on a
bounded portion of the record was based on a human limitation.
We replace this by a physical limitation [Principle IV] which we
call the principle of local causation. Its justification lies in the
finite velocity of propagation of effects and signals: contempo-
rary physics rejects the possibility of instantaneous action at a
distance.

A preliminary version of Principle IV gives a good idea about the intentions
behind the principle.

Principle IV (Preliminary version). The next state, F'z, of a
machine can be reassembled from its restrictions to overlapping
“regions” s and these restrictions are locally caused. That is, for
each region s of Fx there is a causal neighborhood ¢t C TC(z) of
bounded size such that Fz [ s [the restriction of Fx to s| depends
only on x [t [the restriction of z to t].

4.1 Comments

It isn’t clear to us what Gandy’s fulcrum was and even whether he had
a fruitful viewpoint on machine computations. We recently [13] criticized
Gandy’s approach. Here we add just a few remarks.

The only parallelism that Gandy considers is synchronous. That is re-
strictive. Nowadays asynchronous machine computations are common.

3A set z is hereditarily finite if its transitive closure TC(x) is finite. Here TC(z) is the
least set t such that x € t and such that z € y € t implies z € t.



The principle of local causality does not apply to all synchronous parallel
algorithms. Gandy himself mentions one counterexample, namely Markov’s
normal algorithms [I7]. The principle fails in the circuit model of parallel
computation, the oldest model of parallel computation in computer theory.
The reason is that the model allows gates to have unbounded fan-in. We
illustrate this on the example of a first-order formula VzR(z) where R(x)
is atomic. The formula gives rise to a collection of circuits C,, of depth 1.
Circuit C,, has n input gates, and any unary relation R on {1,...,n} provides
an input for C),. Circuit C,, computes the truth value of the formula VzR(x)
in one step, and the value depends on the whole input. Ironically, it is
easy to construct a Turing machine that simulates sequentially these parallel
computations.

Hereditarily finite sets are finite. The finiteness constraint is understand-
able taking into account that Gandy’s goal was to confirm Church’s thesis.
However, taking into account that Gandy’s machines are isolated (and thus
non-interactive), the finiteness constraint excludes some useful algorithms.
For example it excludes a simple algorithm that consumes a stream of num-
bers keeping track of the maximum of the numbers seen so far. The finiteness
constraint is not necessarily satisfied by Turing machines. In particular, a
Turing machine can execute the stream algorithm above if the whole stream
is written on its initial tape.

We accept that computation states can be described in set theoretic
terms. A problem arises how to make the transition function work with
such a description. Many of Gandy’s technical problems are related to this
problem, and indeed describing algorithms in Gandy’s terms is rather chal-
lenging.

This said, let us emphasize that Gandy pioneered the axiomatic approach
in foundational analysis of algorithms. He bravely attacked the hard prob-
lem of a general analysis of machine computations. Wilfried Sieg adopted
Gandy’s approach and reworked Gandy’s axioms, see [23] and references
there, but he did not clarify or justify Gandy’s fulcrum. The problem of
a general analysis of machine computations is wide open. In our view, the
notion of machine computation is evolving and will be evolving for the fore-
seeable future; think of quantum computers for example. The notion has not
matured enough to lend itself to formal analysis.



5 Analyzing computations on their native
levels of abstraction

5.1 Motivation

By the 1980s, there were plenty of computers and software. A problem arose
how to specify software. The most popular approaches to this problem were
denotational semantics and algebraic specifications. Both approaches were
proudly declarative. The declarative character of specifications was supposed
to be an advantage. Indeed, declarative specifications tend to be more com-
prehensible, higher-level (that is of higher level of abstraction) and cleaner
than operational, executable specifications, which is great. But executable
specifications have their own advantages. You can‘“play” with them: run
them, test, debug. In principle, you can verify properties of a declarative or
executable spec mathematically, and sometimes you have to, and there are
better and better tools to do that. In practice though, mathematical verifi-
cation is out of the question in an overwhelming majority of cases, and the
possibility to test specs is indispensable. Declarative specifications are static
while software evolves. In most cases, it is virtually impossible to keep a
declarative spec and an implementation in sync. In the case of an executable
spec, you can test whether the implementation conforms to the spec (or, if
the spec was reverse-engineered from an implementation, whether the spec
is consistent with the implementation).

A question arises whether an executable specification have to be low-
level and detailed? This leads to a theoretical, even foundational problem.
Is there an executable specification of any algorithm A on the level of ab-
straction of A itself? For example, imagine that you conceived a wonderful
algorithm. How would you specify it succinctly in an executable way? A
natural-language explanation would not do as it is not executable. Besides,
such an explanation may introduce ambiguities and misunderstanding. You
can program your algorithm in a conventional programming language but
this will surely introduce lower-level details.

Turing and Kolmogorov machines are executable but low-level. Consider
for example Turing-machine implementations of these two versions of Eu-
clid’s algorithm for the greatest common divisor of two natural numbers:
the original version where you advance by means of differences, and a faster
(and higher-level) version where you advance by means of divisions. The

10



chances are that divisions were reduced to differences in the Turing machine
implementation, and the distinction of the abstraction levels disappeared.

Can we generalize Turing and Kolmogorov machines in order to solve the
foundational problem in question? The answer turns out to be positive, at
least for sequential algorithms [12], synchronous parallel algorithms [2], and
interactive algorithms [3] [4].

Following Kolmogorov, we consider computation in abstraction from the
computer. Following Gandy, we use an axiomatic approach. The fulcrum for
the sequential case is this. Every algorithm A has its native level of abstrac-
tion. On that level, the states can be faithfully represented by first-order
structures of a fixed vocabulary in such a way that state transitions become
just sets of assignments. The fulcrums for the parallel and interactive cases
are built on this fulcrum. Here we restrict attention to sequential algorithms
and do not cover parallel and interactive ones. Sequential algorithms are
also known as classical as they had been virtually the only algorithms from
time immemorial to the 1950s. The three stipulations of Kolmogorov in
give a great informal description of sequential algorithms. In the rest of this
section, algorithms are by default sequential.

5.2 Constraints

Sequential Time Any algorithm A is associated with a nonempty collection
S(A) of states, a subcollection T(A) C S(A) of initial states and a
(possibly partial) state transition map 74 : S(A) — S(A).

Q: Your algorithm A is deterministic: 74(X) is determined by
state X. Why not to make 74 multi-valued?

A: Inour view, this would involve intra-step (within a single step)
interaction with the environment [12], §9]. Intra-step interactive
algorithms are analyzed in [3, 4]. Note in this connection that we
do not rule out inter-step interaction with the environment. In
other words, the environment can intervene between the steps of
the algorithm A. If the intervention results in a legitimate state
of A, the algorithm A continues to run. So, in general, the steps
of A are interleaved with those of the environment, and thus the
behavior of A is not necessarily determined by the initial step.

11



Recall that a first-order structure X is a nonempty set (the base set of X)
with relations and operations; the vocabulary of X consists of the names of
those relations and operations. For example, if the vocabulary of X consists
of one binary relation then X is a directed graph.

Abstract State The states of an algorithm A can be faithfully represented
by first-order structures of the same finite vocabulary, which we call the
vocabulary of A, in such a way that

e 74 does not change the base set of a state,
e collections S(A) and Z(A) are closed under isomorphisms, and

e any isomorphism from a state X to a state Y is also an isomor-
phism from T4(X) to Ta(Y).

Q: You claim that first-order structures are sufficiently general
to faithfully represent the states of any algorithm?

A: T have been making that claim from the 1980s. The collective
experience of computer science seems to corroborate the claim.

Q: But maybe the notion of first-order structure is too broad.
Consider for example, natural numbers with the usual arithmetic
relations and operations plus the unary relation T'(n) that is true
if and only if the Turing machine number n halts on the empty
tape. Starting with such a structure, a simple algorithm solves
the halting problem.

A: Suppose, more generally, that 7" is produced by some pro-
cess, not necessarily algorithmic. For example, T" is the result of
some measurement or coin flipping. How would you rule out your
particular version of T'7

Q: OK, but I have another question about the postulate. That
base-set preservation sounds restrictive. A graph algorithm may
extend the graph with new nodes.

A: And where will the algorithm take those nodes? From some
reserve? Make that reserve a part of your initial state.

12



Q: Now, why should the collection of states be closed under iso-
morphisms, and why should the state transition respect isomor-
phisms?

A: Every algorithm works at its native level of abstraction. Ir-
relevant details should not matter. Consider a graph algorithm
for example. In an implementation, nodes may be integer num-
bers, but the algorithm cannot examine whether a node is even or
odd or which of the nodes is greater. These are implementation
details irrelevant to the graph algorithm. And if the algorithm
does take advantage of the integer representation of nodes then
its vocabulary should reflect the relevant part of arithmetic.

According to Kolmogorov’s informal definition of sequential algorithms, there
is a bound on the amount of work done during any one step. But how to
measure step complexity or the work done during one step? Fortunately the
abstract state constraint helps.

Note that, according to the sequential-time constraint, the next state
74(X) of an algorithm A depends only on the current state X of A. The
executor does not need to remember any history (even the current position
in the program); all that is reflected in the state. If the executor is human
and writes something on scratch paper, that paper should be a part of the
computation state.

In order to change the given state X into 74(X), the algorithm A explores
a portion of X and then performs the necessary changes of the values of
the predicates and operations of X. According to Kolmogorov’s informal
definition, the explored portion, the “active zone”, is bounded. And the
change from X to 74(X), let us call it A4(X), depends only on the results of
exploration. Formally, A4(X) can be defined as the collection of equations
F(a) = b where b is a new value of a vocabulary function F' at point a.

But how does the algorithm know what to explore and what to change?
That information is normally supplied by the program, and it should be
applicable to all the states. In the light of the abstract state constraint, it
should be given symbolically, in terms of the vocabulary of A.

Bounded Exploration There exists a finite set T of terms (or expressions)

in the vocabulary of algorithm A such that Ax(X) = Aa(Y) whenever
states X, Y of A coincide over T'.

13



5.3 Definition and the representation theorem

Now think of the sequential-time constraint as a postulate where S(A) is just
a nonempty collection of things. Think of the abstract-state and bounded-
exploration constraints as postulates that clarify /restrict what those things
are and how the map 74 works.

Definition 1 A (sequential) algorithm is any entity that satisfies the
sequential-time, abstract-state and bounded-exploration postulate.

Abstract state machines (ASMs) were defined in [I1]. Here we restrict
attention to sequential ASMs, which are undoubtedly algorithms.

Theorem 1 ([12]) For every algorithm A, there exists a sequential ASM
with the same states and the same state transition function.

5.4 Deriving Church’s thesis

Our postulates do not entail Church’s thesis. The reason is that initial states
of sequential algorithms may be uncomputable. The halting problem for
Turing machines may be encoded in an initial state. Think also of ruler-and-
compass algorithms or the Gauss elimination procedure; they satisfy our
postulates but cannot be simulated by Turing machines. An arithmetical-
state postulate of [5] asserts that only undeniably-computable operations are
available in initial states; see details in [5].

Theorem 2 ([5]) Church’s thesis follows from the sequential-time, abstract-
state, bounded-exploration and arithmetical-state postulates.

References

[1] Andreas Blass and Yuri Gurevich, “Algorithms: A quest for absolute
definitions,” in Current Trends in Theoretical Computer Science, World
Scientific (G. Paun et. al, eds.), 2004, 283-311, and in Church’s Thesis
After 70 Years (A. Olszewski, ed.) Ontos Verlag, 2006, 24-57.

[2] Andreas Blass and Yuri Gurevich, “Abstract state machines capture
parallel algorithms,” ACM Trans. on Computational Logic 4:4 (2003),
578-651. Correction and extension, same journal, 9:3 (2008), article 19.

14



3]

[10]

[11]

[12]

[13]

[14]

Andreas Blass and Yuri Gurevich, “Ordinary interactive small-step algo-
rithms”, ACM Trans. Computational Logic 7:2 (2006) 363-419 (Part I),
plus 8:3 (2007), articles 15 and 16 (Parts II and III).

Andreas Blass, Yuri Gurevich, Dean Rosenzweig, and Benjamin Ross-
man, “Interactive small-step algorithms”, Logical Methods in Computer
Science 3:4 (2007), papers 3 and 4 (Part I and Part II).

Nachum Dershowitz and Yuri Gurevich, “A natural axiomatization of
computability and proof of Church’s thesis”, Bull. of Symbolic Logic
14:3 (2008), 299-350.

Alonzo Church, “An unsolvable problem of elementary number theory”,
American Journal of Mathematics 58 (1936), 345-363.

Robin Gandy, “Church’s thesis and principles for mechanisms”, In The
Kleene Symposium (J. Barwise et al., eds.),, North-Holland, 1980, 123
148.

R.O. (Robin) Gandy and C.E.M (Mike) Yates (eds.), “Collected works
of A.M. Turing: Mathematical logic”, Elsevier, 2001.

Kurt Godel, “A philosophical error in Turing’s work,” in Kurt Godel:
Collected Works,” Volume II (S. Feferman et. al, eds.), Oxford Univer-
sity Press, 1990, p. 306.

Yuri Gurevich, “On Kolmogorov machines and related issues,” Bull. of
Euro. Assoc. for Theor. Computer Science 35 (1988), 71-82.

Yuri Gurevich, “Evolving algebra 1993: Lipari guide,” in Specification
and Validation Methods (E. Borger, ed.), Oxford Univ. Press (1995),
9-36.

Yuri Gurevich, “Sequential abstract state machines capture sequential
algorithms,” ACM Trans. on Computational Logic 1:2 (2000), 77-111.

Yuri Gurevich, “What is an algorithm?” in SOFSEM 2012: Theory and
Practice of Computer Science (M. Bielikova et al, eds.), Springer LNCS
7147, 2012.

Andrei N. Kolmogorov, “On the concept of algorithm”, Uspekhi Mat.
Nauk 8:4 (1953), 175-176, Russian.

15



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

Andrei N. Kolmogorov and Vladimir A. Uspensky, “On the definition
of algorithm”, Uspekhi Mat. Nauk 13:4 (1958), 3-28, Russian. English
translation in AMS Translations 29 (1963), 217-245.

Leonid A. Levin, Private communication, 2003.

Andrei A. Markov, “Theory of algorithms,” Trans. of the Steklov Insti-
tute of Mathematics 42, 1954, Russian. English translation by the Israel
Program for Scientific Translations, 1962; also by Kluwer, 2010.

Oron Shagrir, “Effective computation by humans and machines”, Minds
and Machines 12 (2002), 221-240.

Oron Shagrir, “Godel on Turing on computability,” Church’s Thesis
after 70 years (A. Olszewski et. al, eds.), Ontos-Verlag, 2006, 393-419.

Wilfried Sieg, “On computability,” in Handbook of the Philosophy of
Mathematics (A. Irvine, ed.), Elsevier, 2009, 535-630.

Alan M. Turing, “On computable numbers, with an application to the
Entscheidungsproblem”, Proceedings of London Mathematical Society
2:42 (1936), 230-265.

Vladimir A. Uspensky, “Kolmogorov and mathematical logic,” Journal
of Symbolic Logic 57:2 (1992), 385-412.

Vladimir A. Uspensky and Alexei L. Semenov, Theory of algorithms:
Main Discoveries and Applications, Nauka 1987 (Russian), Kluwer 2010
(English).

16



	Introduction
	Turing
	Discussion

	Kolmogorov
	Gandy
	Comments

	Analyzing computations on their native levels of abstraction
	Motivation
	Constraints
	Definition and the representation theorem
	Deriving Church's thesis


