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Abstract

Object instance matching is a cornerstone component in
many computer vision applications such as image search,
augmented reality and unsupervised tagging. The common
flow in these applications is to take an input image and
match it against a database of previously enrolled images
of objects of interest. This is usually difficult as one needs
to capture an image corresponding to an object view al-
ready present in the database, especially in the case of 3D
objects with high curvature where light reflection, viewpoint
change and partial occlusion can significantly alter the ap-
pearance of the captured image. Rather than relying on
having numerous views of each object in the database, we
propose an alternative method of capturing a short video
sequence scanning a certain object and utilize information
from multiple frames to improve the chance of a successful
match in the database. The matching step combines local
features from a number of frames and incrementally forms a
point cloud describing the object. We conduct experiments
on a database of different object types showing promising
matching results on both a privately collected set of videos
and those freely available on the Web such that on YouTube.
Increase in accuracy of up to 20% over the baseline of using
a single frame matching is shown to be possible.

1. Introduction

Object instance matching is a key step in many com-
puter vision-based applications such as image search, auto-
tagging and augmented reality-type of applications. The
state-of-the art approach is to extract a set of interest points
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on views of objects of interest and then describe these using
a geometric and photometric invariant descriptor to be used
in matching against captured images. While affine geomet-
ric invariance may be achieved using available descriptors
such as ASIFT [19], this comes at an extra computational
cost and cannot handle large 3D viewpoint changes. An-
other approach is to store a large collection of views for
each object (or synthesize them as in [12]) and use them
in matching. This is infeasible in many cases as one may
not have full control on database creation. In this paper, we
investigate an alternative approach. Instead of taking a sin-
gle picture of the object to be matched, we capture a frame
sequence. The main idea is that while single frame informa-
tion might not lead to a good database image match, infor-
mation incrementally aggregated over a time window can
lead to better matching probability. Specifically, the main
contributions in this paper are:

• Proposing a time incremental object description
method by accumulation of individual frame features
and using it in performing image matching.

• Investigating and quatitatvely comparing different
strategies for incremental object description using ex-
periments on objects of different natures and under dif-
ferent capturing conditions.

To the best of our knowledge, the presented investiga-
tions and results have not been reported before in the lit-
erature. Besides, it is worth pointing out that the idea of
shifting part of the burden of matching a certain object to
the user’s side is motivated by a number of factors:

• Increasingly, users would be capturing objects with
their hand held devices such as mobile devices. These
days, those devices are commonly equipped with good
quality video cameras.



• Taking a short video of a certain object, possibly from
a number of views and aggregating information over
time is an easier alternative compared to snapping a
picture of the object and waiting for a successful match
such as in Google goggles [2] and Bing for Mobile
[1]. This process may need to be repeated a few times
due to mismatch in viewpoint between the captured
image and that in the database as well as light con-
ditions or reflections.

The rest of the paper is structured as follows. Related
research work is reviewed in section 2. Section 3 gives an
overview of the proposed matching algorithm. In section 4,
the proposed sequence-based matching techniques are pre-
sented in detail. Experimental results are reported in sec-
tion 5. Some conclusions and future research directions are
given in section 6.

2. Related Work
The presented work in this paper touches on two research

areas: a) object instance matching and recognition and b)
utilization of video information in matching. Most mod-
ern object instance recognition techniques are based on lo-
cal features matching. The common pipeline is composed
of feature detection, description and matching. Many de-
tectors and descriptors have been proposed in the literature
(Mikolajczyk et al. [17] and Mikolajczyk and Schmid [16]
presented a good survey on exiting methods along with ex-
perimental evaluation of the different techniques). These
surveys have concluded that there is no clear winner detec-
tor, nonetheless highest detection scores were obtained by
the MSER detector [14] followed by the Hessian-Affine
[15]. On the front of descriptors, Mikolajczyk and Schmid
[16] reported on experimental evaluations of different in-
terest region descriptors in the presence of real geometric
and photometric transformations. They compared shape
context [4], steerable filters [7], PCA-SIFT [9], differen-
tial invariants [10], spin images [11], SIFT [13], complex
filters [23] and moment invariants [8]. They observed that
descriptor ranking in terms of matching scores, is mostly
independent of the used interest region detector and that the
SIFT-based descriptors performed best. Hence, we adopt a
combination of MSER detector and SIFT descriptor in our
work.

Object instance matching and recognition techniques
build on local features descriptors while putting an empha-
sis on indexing procedures for scalability purposes. For ex-
ample, Lowe [13] uses a KD-tree with a best-bin-first mod-
ification to find approximate nearest neighbors to descrip-
tor vectors of a query. Sivic and Zisserman [24] describe
a text-based approach to object and scene retrieval. In this
technique, descriptors extracted from local affine invariant
regions are quantized into visual words by K-means per-

formed on descriptor vectors from training frames. Term
Frequency Inverse Document Frequency (TF-IDF) is used
to rank the search results. In a way, the approach proposed
by Sivic et al. [24] can be considered as the opposite of
ours. In their case they use a query image from one frame to
retrieve from a video database, whereas we supply a video
query of an object to match against an image database. In
[21], they devised a graph-based connectivity structure to
represent different stored views for a given object in the
database. They addressed very briefly the idea of using a
video to perform object matching. However, they have not
investigated how many frames are needed for matching nor
their sampling as opposed to our proposed work. Nister and
Stewnius [20] proposed a hierarchical TF-IDF scoring using
hierarchically defined visual words that form a vocabulary
tree. This allows a much more efficient look up of visual
words and a larger vocabulary that can be used. Torresani
et al. [25] described a scalable algorithm for similar image
search. It uses a form of fast prefiltering on the database,
based on Boolean conjunctions, before applying a more ex-
pensive analysis or ranking step.

Literature also includes work related to the usage of
video information in object matching and tagging. For ex-
ample, Mooser et al. [18] presented a unified approach for
object recognition and tracking using local features and op-
tical flow. Similarly, Sakagaito et al. [22] presented a form
of simultaneous tracking and recognition but using a global
object template, thus would suffer from occlusion. Real
time recognition and tracking in [18] is achieved by in-
crementally extracting keypoints on objects that do match
the image database as well as being consistent with object’s
pose estimated through optical flow tracking. The goal in
[18] is to unify the matching and tracking processes in a
single approach rather than treating them separately in an
effort to equalize computational burden over video frames.
This has the benefit of avoiding the need of an expensive
real-time matching system in every frame as in Lepetit et
al. [12] as well as avoiding the case of uneven processing
time over frames if one utilizes a matching process on the
first frame and then tracking for others [3]. While there are
commonalities with Mooser’s approach [18], the presented
method in this paper is computationally more efficient as it
does not require explicit tracking and pose estimation by
targeting applications where the object occupies most of
the field of view. Besides, Mooser has not presented any
quantitative results related to matching accuracy and how
it is affected by utilizing multiple frames information or by
varying the number of considered previous frames and their
sampling.

3. Matching Algorithm Overview
The proposed object instance matching in this paper is

based on utilizing sequence information in building key-



Figure 1. Illustration of the concept of utilizing multiple frame
information in image matching. Matches with each video frame
are shown in a different color.

points relevant to the object at hand. An illustrating exam-
ple is shown in Figure 1 where we show four time sampled
frames from a captured video of an object. By utilizing in-
formation from a set of sampled frames within a time win-
dow, one can optimize between aggregating complementary
information about a certain object while avoiding excessive
redundancy1 2. Colored lines correspond to matching fea-
tures between each one of the four frames and one specific
database image. It is interesting to note that while the four
frames are quite similar in content, each has a different and
small number of matching features with the database image.
Hence, the aggregation of features from multiple frames has
the potential of leading to a higher number of matching fea-
tures with the target database image and hence can boost its
ranking in the final list of ranked images.

Another example illustrating the benefit in aggregating
features over a time sequence is shown in Figure 2. What
the figure shows is that feature aggregation can lead to a
higher percentage of correctly matched database images
among the top M similar images as compared to just us-

1A number of experiments were conducted for different sampling rates
and effective time window for information aggregation.

2For a sampling rate and time window length, frame ordering is irrele-
vant. However, the fact that these frames come from a single short video
sequence is important (rather than a collection of separate images) to avoid
frames depicting different objects.

ing the current frame keypoints. Specifically, in the case
shown in Figure 2 using one or two frames is not enough
for achieving database matches compared to the case of us-
ing three frames. Another observation is that feature ag-
gregation can alleviate reflection artifacts on objects. This
example shows one of the strengths of the approach is that
it can accommodate for different lighting conditions each of
which may result in a different set of extracted keypoints.

The overall proposed matching algorithm is illustrated in
Figure 3. The main idea is in concatenating keypoints from
previous frames to the one being considered if a previous
frame is sufficiently similar to the current one measured us-
ing a suitable similarity measure. If the similarity is above
a certain threshold, then the keypoints are passed to the fil-
tering stage that may discard some of the keypoints. In the
experiments, we consider multiple alternatives for the fil-
tering stage and evaluate them based on the correct matches
among the top ones.

4. Detailed Object Matching Algorithm
4.1. Object Instance Matching

For each frame i, fi, a set of keypoints are detected us-
ing the MSER detector [14]. Let’s denote the keypoints
set as Ki = {Ki1,Ki2, ...KiLi

} where Li is the number
of keypoints detected in frame fi. These keypoints are de-
scribed using the SIFT descriptor [13]. The state-of-the art
approach is to match the set of keypoints Ki to a database
of features using a K-nearest neighbor (NN) with an effi-
cient indexing scheme such as a KD-tree while using the
NN ratio for discarding likely outliers as in [13]. A voting
scheme is then applied to identify top M matching images
in the database3. Consider the jth keypoint Kij in frame
fi, the nearest neighbors in the database matching keypoint
Kij , in terms of Euclidean distance, are identified based on
normalized score. The matching score of keypoint Kij to
the cth nearest neighbor, Pc, is obtained as follows:

Score(Kij , Pc) =

√
‖desc(Kij)− desc(P1)‖
‖desc(Kij)− desc(Pc)‖

(1)

where desc(X) is the SIFT descriptor [13]. Based on ( 1),
images in the database are ranked by aggregating the scores
of their individual keypoints.

The proposed contribution in this paper is to incorpo-
rate previous frames keypoint sets Ki−1 through Ki−N , up
to a maximum adjustable time window N in matching for
frame fi. However, it is not favorable to include all key-
points from a previous frame for two reasons: a) a previous

3A geometric verification step is usually applied on the top matches.
In this paper, geometric verification has not been used in aggregating key-
points over frames. However, its inclusion is independent of the proposed
techniques.



Figure 2. Utilizing previous frames keypoints can lead to higher precision matching in the top M results.

frame can be visually different from fi and b) a previous
frame may be similar but some of its keypoints may be just
outliers occurring on the background for example. For the
first reason, we propose using a fast similarity measure be-
tween frame fi and a frame fi−h and propagate keypoints
Ki−h to frame fi if and only if the measured similarity is
beyond a threshold th4. The similarity measure used in this
paper is the normalized intensity histogram similarity as it
is fast enough and leads to reasonable results:

Sim(fi, fi−h) = 1− (|H(fi)−H(fi−h)|) (2)

where H(fi) is the normalized grayscale histogram for
frame fi obtained using uniform quantization.

For the second reason, when two frames fi and fi−h

are deemed similar enough, we seek to propagate a subset
Pi−h of keypoints which matches the top M images in the
database. Pi−h is a filtered version (see Figure 3) of Ki−h

and its cardinality |Pi−h| will be variable depending on the
number M of top matches considered. M can be fixed or

4Different th values were tested and a value of 60% was found reason-
able.

adaptive based on the similarity score of the query image to
the database images.

4.2. Keypoint Filtering

We propose two different filtering schemes: a) select to
propagate the keypoints from a previous frame, ft, match-
ing keypoints in the top M images, or b) according to a
threshold on the database matching score. In the second
case, M would be variable and will be determined using
a ratio test comparing the matching image with respect to
the highest matching image. For example, if for a previous
frame, ft, there are 10 matching images I1 through I10 with
scores S1 through S10 and keypoints sets K1 through K10,
then a specific keypoint set Kq , 1 ≤ q ≤ 10 is propagated
to the current frame fi if Sq satisfies:

Sq > S1R, where 0 < R < 1 (3)



Figure 3. Overall proposed matching algorithm using previous frames information up to a maximum time window of N frames. Previous
frames keypoints are aggregated subject to being similar enough to the current frame fi.

5. Experiments
5.1. Dataset Description and Evaluation Metrics

Our proposed algorithm was tested on different objects
captured in a set of videos under different conditions on a
moderately sized database of about 5, 000 image from 250
objects whose images were collected from a commercial
image search engine5. In total, there were seven videos
which cover 2D as well as 3D objects, whose description
are given in Table 1. Two of the videos were obtained from
the YouTube video sharing site and thus illustrates the case
of videos commonly captured by regular users to remove
any authors’ bias in the results. Experimental results for the
authors’ collection of videos and those from YouTube were
consistent.

We evaluated our proposed algorithm using the precision
and recall metrics. For a given frame, fi, in a test video, let

5We may also consider some of existing video databses such as the
CamVid labeled video database of semantic objects for testing the concept
of multi-frame matching [6] [5]. However this has been left for future
work.

G be the ground truth set of similar database images and
L be the proposed technique result set; precision and recall
are defined as:

Precision =
|L ∩G|
|L|

, Recall =
|L ∩G|
|G|

(4)

We evaluated the proposed algorithm while varying dif-
ferent parameters: time window size, N and sampling rate,
S, i.e. sampling the past frames every S frames. Different
N and S values have been experimented with. However, in
order to avoid a prohibitively time consuming task, we have
employed a cascade approach in the evaluation. Basically,
we test using different values of N while restricting S to a
small set of values and then vice-versa. Besides, we per-
formed an evaluation of two filtering schemes: a) propagate
the keypoints from a previous frame, ft, matching keypoints
in the top M images, or b) according to a threshold on the
database matching score based on a ratio R.



Code Data Set Description # Frames
BOOK1 A video of a book testing different illumination conditions and lighting

reflections as in Figure 2.
300

BOOK2 A video of a book testing different view-points, scales and orientations. 100
BUIL1 A video of a building, Egyptian museum, as an example of a landmark

object.
150

BUIL2 A video of a building, Egyptian museum, testing different view points and
orientation.

200

MED A video of a medicine box under different view-points and scale variations 350
PAINT1 A video of a painting. 500
PAINT2 A video of a painting partially occluded in the majority of the frames. 260

Table 1. Test videos used in the evaluation

(a) (b)

Figure 4. Effect of different time window sizes N when sampling rate: (a) S = 5 (b) S = 25.

5.2. Matching Results

Figure 4 presents the average Precision-Recall graph on
the seven test videos, the graph illustrates that the algorithm
based on increasing the window size, N , outperforms the
classical approach using a single image. Besides, it shows
that the window size is useful up to some threshold. When
N gets large, the performance degrades. This is expected as
frame correlation becomes weaker when N gets larger and
one would risk accumulating noisy features from previous
frames.

Figure 5 illustrates the effect of changing the frame sam-
pling rate S on matching effectiveness. Increase in S leads
to an increase in matching quality. This can be justified
as follows. Between two consecutive frames, the similarity
is very high leading to high redundancy in detected key-
points. Whereas, if we skip frames in between (S > 1),
then keypoints aggregation over time can be more beneficial

and thus leads to a better matching. However, increasing S
excessively can decrease the effectiveness in matching (as
in the case of S = 35) as the time window becomes un-
necessarily long and can hurt precision/recall. Besides, the
results suggest a relation between the optimal value of S
and the selected value of N . If N is small, then one has to
rely more on increasing S and vice-versa.

In Figure 6, we study the effect of filtering keypoints
propagated from previous frames by either: a) propagat-
ing keypoints matched in the top M database images or b)
propagating keypoints from top matched images based on
matching score ratio R to the first match. From Figure 6.a,
a good compromise M value is around 5 as it does not lead
to an excessive accumulation of keypoints from previous
frames which raises the matching computational complex-
ity. For the ratio test, Figure 6.b suggests the presence of a
tradeoff between using a small ratio value and a large one.



(a) (b)

Figure 5. Effect of different sampling rates S when window time size: (a) N = 2 (b) N = 5.

On one hand, if we use a small R value, we risk including all
the keypoints matching database images with some of them
being noisy matches as well as increasing the computation
time unnecessarily. On the other hand, a large R value will
mean that we are very reluctant in including keypoints from
previous frames and hence previous frame information will
not benefit the matching. From Figure 6.b, a compromise
R value was experimentally found to be around 0.2. A final
note worth making is that the results in both 6.a and 6.b re-
veal little difference in adopting one measure over the other
in filtering keypoints for propagation across frames.

6. Conclusion and Future Work
In this paper, we have presented a novel algorithm aim-

ing at exploiting time sequence information in matching ob-
jects captured in a video to a database of images for the
purpose of object instance identification. The main idea be-
hind the algorithm is relatively simple, yet the experimental
results are very encouraging. We have investigated differ-
ent choices in incorporating previous frames information
such as the number of previous frames considered, their
sampling rate as well as different keypoints filtering alter-
natives. The results were reported on a moderately sized
database of images. Though the proposed algorithm is
likely to improve on the traditional single frame matching
approaches even for larger database sizes, it would be inter-
esting to see how the performance is affected on larger sets.
Another point worth the investigation is the computational
complexity (space and time) involved in the usage of pre-
vious frames information specially when the time window
is allowed to be large. Additonally, a quantitative compar-

ative study with related methods6 [18] [22] would be ben-
eficial. Finally, the proposed algorithms can also be tested
when used with quantized features in the currently popular
framework of visual words [20] [24].
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