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Abstract 
 

Lots of work has been done in texture feature 
extraction for rectangular images, but not as much 
attention has been paid to the arbitrary-shaped regions 
available in region-based image retrieval (RBIR) systems. 
In this paper, we present a texture feature extraction 
algorithm based on Projection Onto Convex Sets (POCS) 
theory. POCS iteratively concentrates more and more 
energy into the selected coefficients from which texture 
feature of an arbitrary-shaped region can be extracted.  
Experimental results demonstrate the effectiveness of the 
proposed algorithm for image retrieval purposes.  
 
1. Introduction 
 

Texture plays an important role in human vision and is 
important in image classification. Lots of work has been 
done in efficient texture feature extraction from 
rectangular images. Texture features extracted using, for 
example, Discrete Wavelet Transform (DWT) [1], Gabor 
[2], have been proved to be efficient in texture 
description. However, it is not unusual that the query 
image or the database images are of arbitrary-shape, such 
as in a region-based image retrieval system. So far, there 
is no paper specifically focuses on texture featuring of 
arbitrary-shaped regions.   

Textures can be structured with repetitive patterns, as 
in Figure 1(a), or non-structured as in Figure 1(b) with no 
obvious pattern. To efficiently describe such texture as in 
Figure 1(b), information from the entire region (or as 
large a region as possible) shall be considered. Hence, the 
intuitive way of finding an inner rectangular block (IRB) 
from a region, then applying traditional texture feature 
extraction algorithms, is not suitable. The reason is that it 
is difficult to find an IRB as large as possible due to the 
various shapes. In [4], DWT domain texture features of all 
the 4*4 blocks in a region are calculated and the mean of 

these features is used as the region feature (referred to as 
‘Ave’). The problem is that the average feature of small 
blocks can’t sufficiently describe the texture property of 
an entire region.  

 

         (a)   (b)                     
Figure 1. structured texture, less-homogeneous 
texture(Brodatz textures[3], d36 and d42)  
 

To extract texture feature from the entire region, a 
direct way is to extend the region to a rectangular area by 
padding zero outside the boundary and then applying 
transformations such as DWT or Gabor. Texture feature 
can be calculated using the coefficients obtained. We refer 
to this method as ‘RCT’ (region coefficient taking). 
However, zero padding introduces spurious frequency 
components and the corresponding coefficients will 
degrade the retrieval performance of the texture feature 
obtained. To relieve this problem, this paper presents a 
texture feature extraction algorithm based on POCS [5] 
theory which can select a set of coefficients best 
describing a region from a superset of coefficients 
available. Experimental results prove it to be effective in 
describing arbitrarily-shaped regions for image retrieval.  

The remainder of the paper is organized as follows. 
Section 2 describes the proposed texture feature extraction 
algorithm. Section 3 provides experimental results. 
Finally, Section 4 concludes this paper. 
 
2. The proposed algorithm 
 
2.1. Problem description 
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2D-DWT decomposes an image into different 
frequency subbands. Mean and variance of the 
coefficients in each subband can be calculated as texture 
feature [1]. Given an arbitrary-shaped region 

Ayxyxf ∈),(),,(  containing M pixels, with A being the 
region interior and the boundary. To apply 2D-DWT, we 
first extend it into a rectangular block L of size N (>M) 
enclosing the region interior by padding some values 
outside the boundary. Then, the region can be 
approximated by a set of N 2D-DWT basis functions 
defined on L as 
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where vK  denotes the set of basis function indices used in 
the expansion for ),( yxg , klc is the coefficient 
corresponding to basis function klϕ . 

As zero-padding in ‘RCT’ introduces spurious high 
frequency components, including such components into 
texture feature extraction will certainly degrade retrieval 
performance. The problem then is among the superset of 
N basis functions, how to select the basis best representing 
the region and obtain the corresponding coefficients from 
which texture feature can be extracted. POCS can be used 
to answer this question.   

 
2.2. POCS in texture description 
 

H.H.Chen proposed an algorithm based on POCS [6], 
in which a given image segment is approximated using 
2D-DCT basis functions. We extend it by using 2D-DWT 
(denoted as ‘POCS-DWT’) for the purpose of feature 
extraction from arbitrary-shaped regions. Other 
transforms such as Gabor can be applied as well, we 
choose DWT due to its efficiency in texture classification 
and fast implementation available.  

‘POCS-DWT’ defines two convex sets. The set of 
images represented by a selected group of coefficients 
constitutes the first set, and is referred to as Selected 
Coefficient Set (SCS). 

 { }0),(| == jiGgSCS , Iji ∈),(             (2) 
where G is the transform coefficients set and I the 
discarded group of transform coefficients. This can be 
obtained by performing the block transform, zeroing the 
coefficients in I and retaining the rest. 

The projection of an arbitrarily-shaped region onto the 
second set can be obtained by replacing the interior pixels 
of ),( yxg  with the original interior pixel values of ),( yxf , and 
is referred to as the Region of  Support Set (RSS). 
    { }),(),(| nmfnmggRSS == , Anm ∈),(       (3) 

Given the two convex sets SCS and RSS, ‘POCS-
DWT’ finds an image which lies in the intersection of the 

two sets. The algorithm comprises of two parts. The first 
part is ‘initial padding’. The second part involves a POCS 
iteration loop. It projects the initial estimate onto either 
one of the two sets SCS and RSS, and iteratively mapping 
it back and forth to the other set. The iteration terminates 
when the difference between ),( yxg  obtained from different 
iteration is below a given threshold. The convergence of 
the iteration is guaranteed [5]. Finally, the reconstructed 
region is obtained                                     

      Anmnmgnmf ∈= ),(),,(),(ˆ                   (4)         
Different initial padding techniques can be used. Zero 

padding (ZR) is the simplest. However, it introduces 
discontinuities at the region boundary, yielding spurious 
high frequency coefficients that will degrade performance 
of the texture feature obtained. To relieve this problem, 
we investigate two different padding techniques: a simple 
mirroring (MR) padding, and an Object-based Padding 
(OBP) [7] which provides smooth extrapolation.  

MR extends the region with its ‘mirror image’ outside 
the boundary. Usually, the support of the region is 
arbitrary with respect to the extended rectangle, and the 
mirroring may have to be done several times up to the 
rectangle boundary.   

OBP has the following 4 steps: i)The region A is first 
extended over the rectangular block L by zero-padding. ii) 
L is divided into 8*8 or 16*16 blocks, and each block is 
classified into one of the 3 types: (1) all pixels are in A; 
(2) some pixels belong to A; (3) all pixels do not belong to 
A. iii) Only blocks in the above case (2) and (3) need 
padding. For case (2), pixels that do not belong to A are 
replaced with the mean value of the pixels that are in A. In 
case (3), the pixel values are computed by referring to the 
adjacent blocks around the current block. If no block that 
has already been padded has been found among the 
adjacent blocks, the current block is skipped and 
operation is moved to the next block. This process 
proceeds from top-left to bottom-right in L and is repeated 
until all blocks are padded. iv) Finally, the entire padded 
region is low-pass filtered to reduce discontinuities 
because there are some block discontinuities between 
padded blocks. The extrapolation result of OBP is smooth. 
Figure 2 gives an example.  

 

            
                 (a)                     (b)                      (c)  

Figure 2.  (a) ZR and (b) MR (C) OBP 
 

  In this paper, we refer to ‘POCS’ with ‘ZR’, ‘MR’ and 
‘OBP’ as ‘PZR’, ‘PMR’ and ‘POBP’, respectively. The 



algorithm converges after about 3~5 iterations for texture 
description. It is shown that the region approximation 
performance of ‘POBP’, ‘PMR’ is better than ‘PZR’ and 
‘RCT’ with higher PSNR. For example, for the region in 
Figure 2, the PSNR values of the reconstructed region are 
36.55dB, 65.64dB, 68.56dB, 84.81dB respectively using 
‘RCT’, ’PZR’, ‘PMR’ and ‘POBP’. 

Other transformations such as Gabor can be applied to 
‘POCS’ as well, we choose DWT due to its efficiency in 
texture classification and fast implementation available.  
 
2.3. Texture features 
 

A 5-scale 2D-DWT(Db4) produces 16 subbands as in 
Figure 3(a).  The coefficients used to compute texture 
features are taken from a coefficient selection mask 
(CSMask) related to the region shape. The CSMask is 
obtained by iteratively down-sampling the mask of the 
original region at each decomposition scale. Figure 3(b) 
gives an example. Mean and variance are calculated from 
each subband to form the texture feature.  

 

                                   (a)         (b)                                               
Figure 3. (a) The 15 subbands in DWT domain (b) 
Coefficient selection mask example 
 
3. Experimental results 
 

In our experiments, three test data sets are used. The 
first contains 448 irregular-shaped textures created from 
the 112 Brodatz textures [3], referred to as ‘DB1’. 
Examples are given in Figure 4. The second is ‘DB2’, 
obtained by cutting texture tiles from each of the 112 
Brodatz textures.  In the third database ‘DB3’, half of the 
textures are rectangular textures from ‘DB2’ and the other 
half from ‘DB1’.  

For each database, 112 queries are performed and the 
average recall and precision are computed to measure 
retrieval performance. Recall indicates the proportion of 
similar textures retrieved from the database for a query 
and Precision the proportion of the retrieved textures that 
are similar to the query. For each query region, there are 4 
tiles in the database similar to it. 
      Firstly, we compare the texture retrieval performance 
of ‘Ave’, ’RCT’, ‘PZR’ and ‘POBP’ using ‘DB1’ (for 
clarity concern, results of ‘PMR’ which is very close to 
‘POBP’ is not shown here). With ‘k’ being the number of 
textures retrieved, experimental results in Figure 5 show 
that, 1) the performance of ‘PZR’, ‘RCT’, ‘PMR’ and 

‘POBP’ are much better than that of ‘Ave’. This proves 
that the average feature of small blocks can’t sufficiently 
describe the property of an entire region. 2) Performance 
of ‘PZR’ is close to that of ‘RCT’, while ‘POBP’ and 
‘PMR’ perform better. For example, when k=4, recall of 
‘RCT’, ‘PZR’, ‘PMR’ and ‘POBP’ are 0.682, 0.690, 0.73, 
and 0.736, respectively.  
     Secondly, we test the retrieval performance of ‘PZR’, 
‘PMR’ and ‘POBP’ on rectangular textures in ‘DB2’. The 
performance improvement brought by ‘POBP’ and ‘PMR’ 
is significant as shown in Figure 6. For instance, when 
k=10, recall of ‘PZR’, ‘PMR’, ‘POBP’ are 0.576, 0.891 
and 0.873 respectively. 

Applied to ‘DB3’ which contains both rectangular and 
arbitrary-shaped textures, again it is shown that the 
retrieval performance of ‘POBP’ and ‘PMR’ is much 
better than that of ‘PZR’, as shown in Figure 7.  

Experimental results prove that ‘POBP’ and ‘PMR’ can 
well describe the texture property of arbitrary-shaped 
regions, with the performance of ‘PMR’ marginally better. 
From Figure 5, Figure 6 and Figure 7, we also observed 
that with arbitrary-shaped region as query, the advantage 
of ‘POBP’ and ‘PMR’ over ‘PZR’ and ‘RCT’ is more 
obvious when they are applied to database including nice 
texture features extracted from rectangular textures.  

 

                         
Figure 4.  Examples of arbitrary-shaped textures 

 
4. Conclusions 
 

This paper presented a texture feature extraction 
algorithm based on POCS theory for arbitrary-shaped 
regions. Mirroring padding and an object-based initial 
padding technique providing smooth extrapolation are 
used to relieve the spurious high frequency components as 
introduced by zero padding. Experimental results prove 
the algorithm to be effective in describing arbitrary-
shaped regions for image retrieval purposes.  
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  Figure 5. Performance comparison using ‘DB1’ 
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Figure 6. Performance comparison using ‘DB2’ 
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Figure 7. Performance comparison using ‘DB3’ 


