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Abstract
Recurrent Neural Network Language Models (RNN-LMs) have
recently shown exceptional performance across a variety of ap-
plications. In this paper, we modify the architecture to perform
Language Understanding, and advance the state-of-the-art for
the widely used ATIS dataset. The core of our approach is to
take words as input as in a standard RNN-LM, and then to pre-
dict slot labels rather than words on the output side. We present
several variations that differ in the amount of word context that
is used on the input side, and in the use of non-lexical features.
Remarkably, our simplest model produces state-of-the-art re-
sults, and we advance state-of-the-art through the use of bag-
of-words, word embedding, named-entity, syntactic, and word-
class features. Analysis indicates that the superior performance
is attributable to the task-specific word representations learned
by the RNN.
Index Terms: Recurrent Neural Networks, Spoken Language
Understanding

1. Introduction
In recent years, Recurrent Neural Network language models
(RNN-LMs) have demonstrated outstanding performance in a
variety of natural language processing tasks [1, 2, 3, 4, 5, 6].
In common with other continuous space language models such
as feed-forward neural network LMs [7, 8, 9, 10, 11] and the
Hierarchical Log-Bilinear model [12], the RNN-LM represents
each word as a high-dimensional real-valued vector. Critically,
in this vector space, similar words tend to be close together,
and relationships between words are preserved [13]; thus, ad-
justing the model parameters to increase the likelihood of one
word in a particular context increases the likelihood of sim-
ilar words in similar contexts. In conjunction with training
on large datasets, continuous space language models have re-
sulted in improvements in language model perplexity [3, 9, 8]
machine translation Bilingual Evaluation Understudy (BLEU)
score [14, 15, 16] and speech recognition Word Error Rate
(WER) [7, 10, 6].

In this paper, we apply recurrent neural networks to Lan-
guage Understanding (LU). In classical LU systems [17, 18, 19,
20, 21, 22, 23, 24, 25], one of the key tasks is to label words with
semantic meaning. For example, in the sentence “I want to fly
from Seattle to Paris,” the word “Seattle” should be labeled as
the departure-city of a trip, and “Paris” as the arrival-city. Per-
haps the most obvious approach to this task is the use of Con-
ditional Random Fields (CRFs) [26], in which an exponential
model is used to compute the probability of a label sequence
given the input word sequence. The CRF produces the single,
globally most likely labeling, and has been widely used in LU

[21, 27, 28]. Other sequence labeling methods that have been
investigated include Support Vector Machines [29], Finite State
Transducers [21] and Machine Translation models [30].

To adapt the RNN-LM to the LU task, we use the classic El-
man RNN architecture [31] adopted by Mikolov [1]. This archi-
tecture consists of inputs to a set of hidden nodes; a fully con-
nected set of recurrent connections amongst the hidden nodes;
and a set of output nodes. For language modeling, the network
has the property that the output is simply the input word se-
quence shifted in time so that the network predicts the next word
in the sequence; both inputs and outputs are words. To perform
LU, we train the network using the semantic labels rather than
the words themselves as targets. In the most basic configura-
tion, our network has no explicit knowledge of “future words”
when predicting the label of the current word, and we present an
extension which does. As further extensions, we use the named
entity and syntactic features present in the ATIS dataset, word
embeddings trained on the ATIS dataset, as well as word-class
information inferred from Wikipedia data using the Brown word
classing algorithm [32]. A number of alternative architectures
are discussed elsewhere in this proceedings [33].

The remainder of this paper is organized as follows. Sec-
tion 2 describes the model we use, and its extensions. Section
3 presents experimental results, and Section 4 presents an anal-
ysis of what the system learned. Section 5 offers concluding
remarks.

2. Recurrent Neural Networks for LU
2.1. Elman Architecture

The RNN architecture is illustrated in Figure 1, where it is “un-
rolled” across time to cover three consecutive word inputs. This
architecture consists of an input layer at the bottom, a hidden
layer in the middle with recurrent connections shown as dashed
lines, and an output layer at top. Each layer represents a set of
neurons, and the layers are connected with weights denoted by
the matrices U, W, and V. The input layer w(t) represents
input word at time t encoded using 1-of-N coding, and the out-
put layer y(t) produces a probability distribution over semantic
labels. The hidden layer s(t) maintains a representation of the
sentence history. The input vector w(t) has a dimensionality
equal to the vocabulary size, and the output vector y(t) has a
dimensionality equal to the number of possible semantic labels.
The values in the hidden and output layers are computed as fol-
lows:

s(t) = f (Uw(t) +Ws(t−1)) (1)

y(t) = g (Vs(t)) , (2)



Figure 1: Recurrent Neural Network Model for Language Un-
derstanding.
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The model is trained using standard back-propagation to
maximize the data conditional likelihood:∏

t

P (y(t)|w(1) . . .w(t)) (4)

Note that this model has no direct interdependence between
slot output values; the probability distribution is strictly a func-
tion of the hidden layer activations, which in turn depend only
on the word inputs (and their own past values). Thus, the like-
liest sequence of semantic labels can be output with a series of
online decisions:

y?(t) = argmaxP (y(t)|w(1) . . .w(t)) (5)

This has the advantage of being online and very simple; it is
unnecessary to do a dynamic programming search over labeling
to find the optimum.

2.2. Incorporating Future Word Observations

Since our task is to find the likeliest label sequence given all
the words in the input, we may legitimately use “future” words
as input when determining the semantic label for word w(t).
We have considered two methods for doing this. In the first,
we change the input layer from a ”one-hot” representation to an
“n-hot” or bag-of-words (BoW) representation in which there
is a non-zero value for not just the current word, but the next
n − 1 words as well. This has the advantage of using greater
context, but the disadvantage that ordering information is lost.
To address this, we have also used the “feature-augmented” ar-
chitecture of Figure 2, as proposed in [5, 34]. In this approach,
side-information is provided to the network via an extra layer of
dense (as opposed to 1-hot) inputs f(t) with connection weights
F to the hidden layer and G to the output layer. In our case,
we provide continuous space vector representations of the fu-
ture words as input. The representation of a word is learned by
a non-augmented network (it consists of the weights from the
input to the hidden layer) as described in [1]. To keep word

Figure 2: Adding information to the basic model.

ordering information, these representations are concatenated in
sequence in a given context window. The training and decoding
procedures are otherwise unaltered.

In this model, we modify the activation computation as fol-
lows:

s(t) = f (Ux(t) +Ws(t−1) + Ff(t)) (6)

y(t) = g (Vs(t) +Gf(t)) , (7)

where x(t) now can be either w(t) or a bag-of-words vector.
For instance, x(t) = {w(t),w(t + 1)} and it consists of the
current and the next words, forming a “2-hot” representation.

2.3. Incorporating A-Priori Word Information

The ATIS dataset provides two forms of input besides the words
themselves: named-entity tags for the words, and syntactic la-
bels. Previous researchers [35] have found it useful to exploit
this information, and it is easily incorporated in the RNN ap-
proach. We have done this with the architecture of Figure 2 by
making f(t) to be a concatenation of “one-hot” input vectors.
Each input vector represents the named-entity and/or syntactic
label of a word in a context window. This is feasible since the
number of such labels is small; thus the number of dimensions
in the dense f vector is manageable.

As an additional experiment, we have considered the ad-
dition of information to the system via classes derived from the
Wikipedia dataset. To do this, we sub-sampled 70M words from
Wikipedia, and used the clustering criterion of Brown et al. [32]
to group the words into 200 classes. These were then used rather
than the named entity labels. We have also used f(t) to include
both the word embedding and “one-hot” side information. We
found that the continuous valued word embeddings need to be
normalized to unit-length to avoid numerical issues.

3. Experiments
3.1. ATIS Dataset

In order to be able to compare with previously studied methods,
we report results with the widely used ATIS dataset [17, 36].
This dataset focuses on the air travel domain, and consists of



I want to fly to Boston tomorrow
- - - - - Dest ArDay

Table 1: Examples of labeled sentences. Label names have been
shortened to fit. Many words are labeled “null” or “-”.

audio recordings of people making travel reservations, and se-
mantic interpretations of the sentences. In this database, the
words in each sentence are labeled with their value with respect
to certain semantic frames. Table 1 shows an example of an
annotated sentence.

The training data consists of 4978 sentences and 56590
words. Test data consists of 893 sentences and 9198 words.
The number of distinct slot labels is 128, including the com-
mon “null” label; there are a total of 25509 non-null slot occur-
rences in the training and testing data respectively. In addition
to the words themselves, the ATIS set provides named-entity
and syntactic labels. There are 132 named entity labels 1, e.g.
“B-city name,” “B-time” and “I-time,” and 38 standard syntac-
tic labels, e.g. “NNP,” “VBP,” and “JJ.” To deal with unseen
words in test set, we marked any words with only one occur-
rence in the training data as <unk> and use this label to repre-
sent those unseen words in the test set. Based on the number of
words in the dataset and assuming independent errors, changes
of approximately 0.6% in F1 measure are significant at the 95%
level.

3.2. Results with Lexical Features

Figure 3 shows results using lexical features, using just the cur-
rent word as the input when predicting a slot value, and when
using the next two words as well. Initial experiments showed
no significant gain from looking more than two words ahead
with ordered lookahead; thus the plots are for two-word looka-
head. Unordered lookahead was done by using a 3-hot in-
put representation, while ordered lookahead was done with the
side-information channel of Section 2.2. To obtain the continu-
ous space embedding of words for use in the side-channel, we
trained a standard RNN-LU model with a hidden layer size of
200, and used the input layer weights as the word representa-
tions [13]. For two words of lookahead, we concatenated the
word vectors, forming a 400 dimensional side-channel. We see
that using two words of lookahead is significantly better than
not, especially for small hidden layer sizes. Hidden layer sizes
of 100 and more all perform similarly. Also shown in Figure
3 is the result of adding the class label of the current word, as
learned from the Wikipedia corpus. This was added as an addi-
tional 1-hot input.

3.3. Adding Non-Lexical Features

Figure 4 shows results using the named-entity and syntactic tags
included in the database. The named entity features provide a
large boost, typically 3% in F1 measure, and double that when
a small network is used. These features are highly related to the
final output labels, and hand-determined, so this is not surpris-
ing. The syntactic part-of-speech tags are not directly related to
the output labels, and provide relatively little benefit.

3.4. Bag-of-Words Effects

One originality of this work is to use a bag-of-words input to
the RNN. To verify effectiveness of using a bag-of-words, we

1These include the “null” label for words other than named-entity
and the beginning and ending sentence labels.

Figure 3: F measure for different hidden layer sizes, using lexi-
cal features only.

Figure 4: F measure for different hidden layer sizes, using non-
lexical features. All conditions use one word lookahead for the
lexical feature only.

conducted experiments on top of using ordered lookahead and
Wikipedia class information. Table 2 shows the F1 score of us-
ing an ordered lookahead of two future words, each represented
as a 200 dimension word embedding learned from the standard
RNN-LU model mentioned in Sec. 3.2. Wikipedia class is also
the same as in Sec. 3.2. Results in the table show that F1 score
can be further improved using bag-of-words input, compared
against using the current word as input. For example, when hid-
den layer dimension is 200, the F1 score is increased to 94.79%
with the addition of “2-hot” input, from 94.01% with the current
word as input.

3.5. Comparison with Past Results

ATIS is a well-studied dataset, and Table 3 presents our results
alongside benchmark numbers. The result of [37] is the best
previously published result with lexical plus Wikipedia [38]
features, with a slot filling F1 score of 91.88% using a kernel
deep convex network; our comparable result is 93.61% if using
the embedding from [38] and 94.39% if using Wikipedia class
information described in Sec. 2.3. Using bag-of-words input,
our result is further improved to 94.91%. The result of [35],
which is 95.0% F1 score, is the best previously published re-
sult with lexical plus named-entity (NE) feature; ours is 96.04%
with word plus NE feature in a context window of length 3. As



BoW x(t) 100 200 300 400
{w(t)} 94.39 94.01 94.18 93.99
{w(t),w(t+ 1)} 93.71 94.79 94.45 94.55
{w(t),w(t+ 1),w(t+ 2)} 94.26 94.91 94.11 94.27

Table 2: Effects of using Bag-of-Words input in addition to or-
dered lookahead, as a function of hidden layer size.

Method Features F1 (in %)
FST [21] Lex 91.73
SVM [21] Lex 89.76
CRF [37] Lex 91.09
RNN [This work] Lex 94.11 2

KDCN [37] Lex + Wikipedia 91.88
RNN [This work] Lex + Wikipedia 94.91 3

CRF [35] Lex + NE 94.4
CRF [21] Lex + NE 95.0 4

CRF [35] Lex + NE+Syntactic+SentSimp 95.0
SVM [21] Lex + NE + Prior Knowledge 95.74
RNN [This work] Lex + NE 96.60 5

Table 3: Comparison with Previous Results.

is evident in the table, the RNN approach advances the state-
of-the-art over previous techniques. The highest score we ob-
tained was 96.60%, which used bag-of-words and named-entity
features.

4. What the Model Learned
In contrast to previous CRF approaches, the RNN approach
implicitly learns a task-appropriate continuous space represen-
tation for each word in the ATIS set, and we hypothesize
that learning this task-specific representation accounts for the
method’s improved performance. This representation is present
in the weights connecting the one-hot input layer to the hidden
layer, and learned through back propagation to maximize the
likelihood of the semantic output labels. To understand it bet-
ter, we use t-SNE [39] to plot frequent words that are in the ten
most common slots in two-dimensional space, as shown in color
in Figure 5. Perhaps the most striking feature of this visualiza-
tion is that in the projection plane, the words that are labeled as
background (null) in the dataset have been completely separated
from the others, and restricted to the bottom-left half-plane. In
the upper-right half plane, the other words are clearly clustered
by semantic label.

We have made two quantitative studies of this phenomenon.
First, we computed the Fisher discriminant value of two pro-
jections: that learned by training the RNN to do LU, and that
learned by training the RNN as a language model. This is com-
puted as the ratio of the between-class variance to the within-
class variance. When trained to do LU, the values for the first
and second dimensions are 10.5 and 32.6 respectively. In con-
trast, when we use the representations learned in a generic lan-
guage model trained on the ATIS data, the ratios are only 7.6
and 7.0 respectively. This indicates that the task specific train-
ing indeed focuses the representations to distinguish relevant

2with word embedding learned from ATIS
3with word embedding learned frm ATIS, Wikipedia class, and bag-

of-words input
4using a different set of phrase based units for evaluation, hence not

comparable.
5with bag-of-words {w(t),w(t+1),w(t+2)} and NE feature in

a context window of length 3

Figure 5: Learned word representations. Note the separation
between labeled and unlabeled (null) words.

Figure 6: Improvement from task-specific word embeddings.

concepts.
As a second experiment, we trained RNN-LU systems us-

ing three different embeddings to represent the future words as
in Section 2.2: a task-specific embedding learned from training
an RNN-LU system on the ATIS data; a language-model (RNN-
LM) embedding also trained with the ATIS data; and finally the
generic SENNA embeddings derived from the Wikipedia cor-
pus [38]. Performance with the SENNA features was not quite
as good as with the discrete classes of Section 2.3, but they pro-
vide a Wikipedia-based embedding for comparison. For con-
sistency with SENNA, 50 dimensional embeddings were used
in all cases. As can be seen in Figure 6, the RNN-LU embed-
dings are the most effective for the LU task. After that, the
SENNA embeddings, trained on the much larger Wikipedia cor-
pus are the most effective, followed by the RNN-LM embed-
dings. Thus, both qualitative and quantitative evaluations show
that the task-specific word representations learned by the RNN
are effective and behave differently from other representations.
The similar argument and observation has been made in deep
neural networks applied to speech recognition tasks[40, 41].

5. Conclusion
We have presented an adaptation of Recurrent Neural Networks
to perform a language understanding task. In contrast to CRFs,
the basic RNN approach we evaluate makes a sequence of lo-
cal labeling assignments. Remarkably, it outperforms previous
CRF results by a large margin, as well as previous neural-net
based approaches. We show that the model learns task appro-
priate word-embedding, and hypothesize that this accounts for
the improved performance.
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