
Header for SPIE use

Rendering of 3D Wavelet Compressed Concentric Mosaic Scenery with
Progressive Inverse Wavelet Synthesis (PIWS)

Yunnan Wu, Lin Luo†*, Jin Li and Ya-Qin Zhang‡

†University of Science and Technology of China, Hefei, 230026, China
‡Microsoft Research China, 49 Zhichun Road, Haidian, Beijing 100080, China

ABSTRACT

The concentric mosaics offer a quick solution to the construction and navigation of a virtual environment. To
reduce the vast data amount of the concentric mosaics, a compression scheme based on 3D wavelet transform
has been proposed in a previous paper. In this work, we investigate the efficient implementation of the renderer.
It is preferable not to expand the compressed bitstream as a whole, so that the memory consumption of the
renderer can be reduced. Instead, only the data necessary to render the current view are accessed and decoded.
The progressive inverse wavelet synthesis (PIWS) algorithm is proposed to provide the random data access and
to reduce the calculation for the data access requests to a minimum. A mixed cache is used in PIWS, where the
entropy decoded wavelet coefficient, intermediate result of lifting and fully synthesized pixel are all stored at the
same memory unit because of the in-place calculation property of the lifting implementation. PIWS operates
with a finite state machine, where each memory unit is attached with a state to indicate what type of content is
currently stored. The computation saving achieved by PIWS is demonstrated with extensive experiment results.

Keywords: Wavelet compression, synthesis, lifting, progressive inverse wavelet synthesis (PIWS), concentric
mosaics, random data access, selective decompression

1. INTRODUCTION

The concentric mosaic [1] has proven itself to be a very useful tool for generating real-time photo realistic views
of the synthetic and real world scenery. By rotating a single off-center camera and recording the captured images
at regular intervals, a concentric mosaic scenery is built up quickly, and novel views can be easily obtained by
interpolating existing light rays. Under the paradigm of image-based rendering (IBR), concentric mosaic gives a
3D parameterization of the plenoptic function. The concentric mosaic greatly eases the task of 3D scene
acquisition and navigation. However, the data amount is huge, which presents a heavy burden for storage,
transmission and display. Efficient compression algorithm is thus indispensable for the application of the
concentric mosaics.

In a previous work [2], we have proposed a compression scheme based on 3D wavelet transform. 3D Wavelet is
efficient to compact the energy and to exploit the redundancy within frame and across frames. The multi-
resolution structure of the 3D wavelet is also highly desirable, especially in the Internet streaming application
where a single compressed bitstream need to satisfy a variety of display resolution and quality settings.
However, issues of real time decoding and rendering are not addressed in [2]. It is assumed that the entire
compressed concentric mosaic bitstream is fully decoded prior to the rendering. Fully decompressing the
concentric mosaics requires not only a huge memory at the renderer to hold the entire expanded scene, but also a
long initial delay. This approach is not a satisfactory solution, because at any time of rendering, only a view of
the concentric mosaic is rendered, which accesses only a small portion of the data set. In this work, our objective

* The work was performed when Mr. Yunnan Wu and Ms. Lin Luo were interns at Microsoft Research China.
Correspondence: Email: jinl@microsoft.com. Telephone: (86-10) 6261-7711 Ext. 5793. Fax: (86-10) 6255-5337.



Header for SPIE use

is to develop a data access mechanism so that a portion of the 3D wavelet compressed data can be randomly
accessed and decoded with high efficiency.

Most wavelet decompression techniques today assume an entire image and/or a block of data is accessed and
decoded. There are extensive researches on speeding up of the wavelet encoding and decoding system for an
image frame, e.g. [7][8]. In volume graphics, decoding cubes of data is also investigated in [3][4][5][6]. To
enable easy access of partial data, short kernel wavelet filters such as the Haar filter are often adopted. However,
Haar filter is not efficient in energy compaction, and the blocking artifact introduced by the Haar filter is very
objectionable visually.

In this paper, we present the progressive inverse wavelet synthesis (PIWS) scheme that can access and partially
decode wavelet compressed data without speed penalty. The key idea is to develop a mixed cache, where each
memory unit is associated with a state machine that transits among wavelet coefficient, intermediate lifting value
and output pixel. With the mixed cache, the intermediate lifting values are not dropped, therefore, PIWS
guarantees a minimum amount of computation for a randomly accessed data set. PIWS is designed specifically
in this paper for just-in-time (JIT) rendering of the concentric mosaics, i.e., to perform only the operation
necessary to render the current view. However, it may also be extended to other wavelet compressed dataset,
such as wavelet compressed volume graphics or 3D texture. PIWS may be applied to any wavelet filter with a
lifting implementation.

This paper is organized as following. We briefly review the capturing, compression, decompression and
rendering system of the 3D wavelet compressed concentric mosaics in section 2. In Section 3, accessing and
selective decoding a portion of data with the PIWS algorithm is described in detail. Experimental results are
shown in section 4. Finally, conclusions are given in section 5.

2. THE CONCENTRIC MOSAICS AND 3D WAVELET COMPRESSION

A concentric mosaic scene is captured by mounting a camera at the end of a leveled beam, and shooting images
at regular intervals as the beam rotates. The resulting dataset is a shot sequence, which can be denoted as
f(n,w,h), where n indexes the camera shot, w and h represent the horizontal and vertical position of each ray
within a shot, respectively. Let N be the total number of shots during the 360 degrees rotation, W and H be the
width and the height of each shot. N is often set between 900 and 1500, which means that the camera shots are
very dense, typically 2.5 to 4 shots per degree. Alternatively, the entire data volume can be interpreted as a stack
of panorama images co-centered with the camera track, where each panorama is the mosaic image of vertical
slits with the same w. The concentric mosaic is named after such a data structure.

Rendering of the concentric mosaics involves reassembling slits from existing shots. Shown in Figure 1, let P be
a novel viewpoint and AB be the virtual field of view to be rendered. We split the view into multiple vertical
slits, and render each of them independently. For example, when the slit PV is rendered, we simply search for the
slit P’V in the captured dataset, where P’ is the intersection between ray PV and the camera track, as they are just
the same because the intensity of the ray does not change along a straight line. Because of the discrete sampling,
the exact slit P’V might not be found in the captured dataset. Let the four sampled slits closest to P’V be P1V11,
P1V12, P2V21 and P2V22, where P1 and P2 are the two nearest captured shots on the two sides of the intersection
point P’ along the camera track, P1V11 and P1V12 are slits just beside P1V in shot P1, and P2V21 and P2V22 are slits
beside P2V in shot P2. We may bilinearly interpolate the four slits to approximate the content of P’V (denoted as
bilinear interpolation mode), or, possibly due to complexity and network bandwidth constraint, we may use the
one slit closest to P’V to represent it (denoted as point sampling mode). It is obvious that the bilinear
interpolation mode results in a better rendering quality of the scene, at the price of a slower rendering speed. In
either case, the content of the slit P’V is recovered, which is then used to render slit PV in the rendered view. The
environmental depth information may be helpful to find the best approximating slits and alleviate the vertical
distortion. More detailed description of concentric mosaics rendering may be found in [1].



Header for SPIE use

r

Virtual View

R

P

V

P'

P1

P2

Scene/Object

A

B

V11

V22

V21

V12

FOV/2

Camera
Track

Figure 1 Rendering with the concentric mosaics

A 3D wavelet compression algorithm for the concentric mosaics is proposed in [2], the system architecture can
be shown in Figure 2. The initial captured shot sequence first flows through a panorama alignment module to
enhance its cross mosaic correlation, where each mosaic is circularly shifted. A 3D wavelet decomposition is
then applied to the aligned mosaics, concentrating the source energy into relatively few large coefficients. After
that, wavelet coefficients in each subband are split into individual blocks, scalar quantized and entropy encoded
into an embedded bitstream. Finally, a rate-distortion optimized bitstream assembler truncates and concatenates
the block bitstreams to form the compressed bitstream.

The rendering and decompression operations are procedurally opposite of the capturing and compression
operation. In [2], block bitstream is first parsed from the compressed bitstream. Each wavelet coefficient block is
then entropy decoded and inverse quantized. After that the inverse wavelet lifting and inverse alignment is
performed. The fully expanded concentric mosaic data set is then used for the rendering. The approach is
straightforward, however, a large memory is necessary to hold the decompressed concentric mosaics, and there
is a long initial delay to decode the entire data set.

Alignment 3D Wavelet
Decomposition Quantization Block Entropy

Coder

Inverse
Alignment

3D Wavelet
Synthesis

Inverse
Quantization

Block Entropy
Decoder

Bitstream
Assember

Bitstream
Parser

Rendering
Engine

Bitstream

Capturing
Engine

Selective
Decompression Engine

Data Flow

Data Access Flow

Figure 2 The 3D wavelet compression/selective decompression system architecture

To render any view of the concentric mosaics, only a small set of vertical slits are accessed. We therefore
implement the function of just-in-time (JIT) rendering, i.e., to perform only the operation necessary to render the
current view. Driven by the rendering engine, JIT renderer issues request for a set of slits needed for the current
view to the selective decompression engine. The wavelet coefficients necessary to decode the slits are located,
and inverse lifted to recover the accessed slits. When necessary, blocks of wavelet coefficients are entropy
decoded and inverse quantized. There are previous works on selective decoding. Given the point or region of
interest, one can derive the perfect reconstruction mask using the wavelet filter information and perform the
synthesis work, as shown in [10]. The wavelet synthesis module has been found to be the bottleneck in the
decompression system. The progressive inverse wavelet synthesis (PIWS) is proposed so that a minimum
computation is performed to recover the accessed slits. Consequently, the decompression engine is accelerated
to a large extent.



Header for SPIE use

3. PROGRESSIVE INVERSE WAVELET SYNTHESIS (PIWS)

Progressive inverse wavelet synthesis (PIWS) is based on the inverse lifting operation. The core is to provide a
minimum number of computations for the recovery of a few randomly distributed data points. We first review
the forward and inverse lifting operation in Section 3.1. The one dimensional PIWS algorithm is investigated in
Section 3.2. Finally, the PIWS for concentric mosaic rendering is explored in Section 3.3.

3.1 Lifting Scheme

Lifting is a memory and computation efficient implementation of the forward wavelet analysis and inverse
wavelet synthesis. Every FIR wavelet filter can be factored into lifting steps[12]. A sample forward and
backward one-dimension biorthogonal 9-7 lifting wavelet is illustrated in Figure 3 and Figure 4, respectively. In
Figure 3, the original data x0, x1,

…,x8 are input at the left, while the decomposed wavelet coefficients are output at
the right. The high pass and low pass wavelet coefficients are interleaved at the output. It is observed that the
wavelet coefficients are calculated through four stages of computation, each of which involves only half the
nodes. An elementary forward lifting unit is shown in the right of Figure 3. An important feature of lifting is the
in-place execution. When a calculation is executed in the elementary unit, the previous node is never used in
subsequent stages, thus the memory is reused to store the resultant value. Through lifting, no additional memory
is needed in the intermediate steps. The memory unit can be used to store the original data, the intermediate
lifting result and the final wavelet coefficient.

Figure 3 Forward wavelet analysis via lifting and an elementary forward lifting unit.

Because each elementary forward lifting unit can be straightforward inversed to an inverse lifting unit, the
inverse wavelet synthesis can be easily derived by directly inverting the data flow of the forward lifting, as
shown in Figure 4. The same in-place execution property also holds for the inverse lifting operation.



Header for SPIE use

Figure 4 Inverse wavelet synthesis via lifting and the elementary inverse lifting unit.

3.2 1D data access through progressive inverse wavelet synthesis

Let us first consider the access of data points in one dimension. We use the biorthogonal 9-7 wavelet filter for
explanation. However, other wavelet filters can be easily applied as well. The data is recovered through inverse
lifting, as shown in Figure 4. Each data at odd index is recovered from 9 wavelet coefficients, with 5 high pass
coefficients and 4 low pass coefficients. Each data at even index is recovered from 7 wavelet coefficients, with 4
high pass coefficients and 3 low pass coefficients. Let the coefficients necessary to decode a data point be its
covering coefficients. If a long segment of data is recovered with lifting, on average 4 additions and 2
multiplications are needed to recover each data point. However, to recover a single data point at odd index, 20
additions and 10 multiplications are necessary. The computation load is 12 additions and 6 multiplications for
the recovery of a single data point at even index. On average, 16 additions and 8 multiplications are needed if
each data point is synthesized separately.

Suppose a set of data points is to be randomly accessed from the compressed data set. We may decode each data
point independently, i.e., decode the wavelet coefficients covering the data point and then perform the inverse
lifting. There is a heavy computation burden with the point decoding approach, as on average 4 times more
calculation is needed if we decode each data point separately. An alternative approach is to first decompress all
the data and then provide random access. Though the average computation load is low when the entire data set is
decompressed, there is a long initial delay if only a few data points are accessed. Moreover, a large memory
buffer is also needed to hold the expanded data set.

In this work, we propose the progressive inverse wavelet synthesis (PIWS) for the random data access. PIWS
achieves a minimum computation for the recovery of a random data set. Let y0, y1,

. . ., yN-1 be a set of transform
coefficients, where low and high pass coefficients are interleaved at even and odd index, respectively. Let the
recovered data be denoted as x0, x1,

. . ., xN-1. In the lifting operation, both the transform coefficients and the
recovered data can be placed at the same memory location, based on the in-place execution property of lifting.
Let the memory unit which holds the coefficient yi and the data xi be denoted as mi. A state si is attached to the
memory unit mi. We note that for the 9-7 biorthogonal wavelet, two lifting operations are performed for each
memory unit before the data is recovered. Therefore, there are 3 possible states for each memory unit, as shown
in Table 1. The PIWS operates as a state machine, at first, all the memory unit are in state 0, and after the
accessing operation, the accessed data are brought to state 2.



Header for SPIE use

Table 1 States for 1D progressive inserve wavelet synthesis

State Information
0 Wavelet coefficient
1 Intermediate result after 1st lifting
2 Recovered data

Each transition of state in PIWS is driven by one elementary lifting operation. All the possible state transition of
the lifting can be shown in Table 2. The lifting operation at even index is different from that at the odd index, so
there are four different state transition operations.

Table 2 State transition operations for 1D inverse lifting.

Original State Destination State
I mi mi-1 mi+1 mi

Even 0 0 0 1
Odd 0 1 1 1
Even 1 1 1 2
Odd 1 2 2 2

The access of data point xi is equivalent to bring the memory unit mi to destination state 2, which can be achieved
through an elementary inverse lifting operation if unit mi is in state 1, and its neighborhood units mi-1 and mi+1 are
in state 2 (for odd i) or 1 (for even i). We may implement the access of data point with a recursive function
access(i, state), where i is the accessed data point, and the state is 2 for data access, 1 and 0 for intermediate
execution and wavelet coefficients, respectively. The pseudo code can be written as Figure 5.

access (i, state)
{

if (si <state)
{

if (i is even) {access (i-1,state-1);access(i+1,state-1); access(i,state-1); }
else {access (i-1,state); access(i+1,state); access(i,state-1); }

perform an elementary lifting;
}
return mi

}
Figure 5 Pseudo code for 1D progressive inverse wavelet synthesis

At first, the contents in all memory units are wavelet coefficients at state 0. As data are accessed, the state of the
memory unit gradually transits to higher states. For any randomly accessed data points, only the operation
necessary to calculate the accessed data point is performed, which greatly reduces the computation load.

3.3 Slit access through progressive inverse wavelet synthesis in the concentric mosaics

We first investigate the single scale PIWS algorithm for the 3D wavelet transform, and then extend to the case of
multiple scales. Let the axis along the slit be the slit axis, and the other two axes be the horizontal and vertical
axes, respectively. Since in the concentric mosaics, data are always accessed by slits, the memory unit is set as



Header for SPIE use

one slit, instead of each individual data point. A state is again assigned to each memory unit. A mixed cache is
again used to hold the wavelet coefficients, intermediate lifting results and the recovered pixels all at one place.
Let the memory unit be denoted as mi,j, and its state as si,j. Similar to the 1D PIWS case, we index the memory
unit with the recovered slit, and interleave low and high pass coefficients at even and odd index, both for the
horizontal and vertical axes. It is assumed that the horizontal inverse wavelet lifting is performed first and then
the vertical lifting follows. The slit inverse wavelet synthesis is performed at the last. However, since the wavelet
transform is separable, other transform orders are plausible as well. A list of feasible states can be shown in
Table 3.

Table 3 States of the 3D progressive inverse wavelet synthesis

No. State Information
0 n No coefficients available
1 x0 Entire slit decoded
2 x1 1st stage horizontal lifting performed
3 x2=y0 2nd stage horizontal lifting performed
4 y1 1st stage vertical lifting performed
5 y2 2nd stage vertical lifting performed
6 z Slit lifting performed, data recovered.

The state goes through a single direction transition with n!x0!x1!y0!y1!y2!z. PIWS first occupies the
memory unit with the wavelet coefficient, and then the intermediate horizontal lifting result, after that the
intermediate vertical lifting result, and finally the recovered pixel, all in the same place. A similar recursive
algorithm as the one in Figure 5 is developed for the PIWS slit access. We illustrate in Figure 6 the states of the
cache when a single slit at even horizontal and odd vertical index is accessed. The covering area of the slit covers
7x9 slits. The access of a single slit is computational expensive. In fact, it takes 66 multiplications and 132
additions per sample to access the slits in Figure 6. However, the intermediate lifting results are not dropped,
they can be used when neighborhood slits are accessed for significant computation savings. Although accessing
a single slit, the total operational cost of the PIWS is the same as straightforward synthesizing the slit, none of
the intermediate results is wasted. Ultimately, as more and more slits are accessed, the computational complexity
of PIWS approaches that of the full inverse wavelet synthesis, i.e., 6 multiplications and 12 additions per sample
per scale.

The memory requirement can be greatly reduced for the PIWS enabled concentric mosaic renderer too. With
PIWS, we do not need to expand the compressed concentric mosaic scene. Instead, a cache is allocated to hold
the most recent used memory units of PIWS, whether they are the wavelet coefficients, the intermediate lifting
results or the recovered pixels. No memory is allocated for slits in state n, as such slits hold no data. Whenever
the cache is used up, the less frequently used slits are swapped out and pushed back to state n, whose memory is
then reused for the newly accessed slits.



Header for SPIE use

x0 x1 x1 x2 x1 x1

x0 x1 x1 y1 x1 x1

x0 x1 x1 y1 x1 x1

x0 x1 x1 y2 x1 x1

x0 x1 x1 Z x1 x1

x0 x1 x1 y2 x1 x1

x0 x1 x1 y1 x1 x1

x0

x0

x0

x0

x0

x0

x0

x0 x1 x1 y1 x1 x1

x0 x1 x1 x2 x1 x1

x0

x0

current
accessed
slit

Figure 6 Cache states when a single slit is accessed

In the concentric mosaics, multiple scale wavelet decomposition may be used. In such a case, the access of
wavelet coefficients at state x0 is achieved either through another PIWS engine at a coarser resolution level, or
through decoding the wavelet coefficients from the compressed bitstream. The flowchart of a 3 scale PIWS
engine with pyramidal wavelet decomposition can be shown in Figure 7. At first, slits are accessed by the
rendering engine at level 1. Through the recursive access function, wavelet coefficients covering the slits are
accessed. For the low pass subband in the horizontal, vertical and slit directions, a second level PIWS engine is
used for coefficient access. The accessed coefficients in the other subbands are inverse quantized and entropy
decoded. The second level PIWS engine may call a third level PIWS engine for the access of the low pass band,
and the inverse quantizer and entropy decoder for the access of the rest subbands. PIWS ensures that a minimum
amount of computation is performed for the access of a set of slits.

RENDERING ENGINE

PIWS ENGINE, LEVEL 1

PIWS ENGINE, LEVEL 2 INVERSE
QUANTIZER, LEVEL 1

ENTROPY
DECODER, LEVEL 1

INVERSE
QUANTIZER, LEVEL 2

ENTROPY
DECODER, LEVEL 2

PIWS ENGINE,
LEVEL 3

INVERSE
QUANTIZER, LEVEL 3

ENTROPY
DECODER, LEVEL 3

BITSTREAM

Figure 7 Multiscale progressive inverse wavelet synthesis.



Header for SPIE use

4. EXPERIMENTAL RESULTS

Extensive experiments have been performed to demonstrate the effectiveness of the progressive inverse wavelet
synthesis (PIWS) algorithm. The testing platform is a Pentium III PC running at 500MHz. All timing tests are
collected on the concentric mosaic scene Kids (Figure 8), which is comprised of 1462 shot images with
resolution 352x288, totaling 424MB. The wavelet decomposition structure in use is the 4-level mallat
decomposition, where wavelet transform is applied along all three directions, and only the low pass subband of
all three directions is further decomposed in the next level. However, other wavelet decomposition structures that
yield better compression performance may be used as well. An optimal wavelet packet structure suggested by [2]
uses 4 level decomposition along the y-axis (vertical) followed by 4 level mallat structure in each resulting (x, z)
layer. It leads to even simpler design than the current full mallat decomposition, because we may simply apply
the vertical inverse lifting as an end step and treat the decompression problem as two-dimensional.

Figure 8: Concentric mosaic scene Kids.

In the first experiment, we compare the proposed PIWS decoder with two benchmark algorithms. We assume
that all wavelet coefficients are already decoded, so that only the computation complexity of the inverse wavelet
transform is investigated. The first benchmark algorithm is a simple slit decoder (SSD), where each slit accessed
by the rendering engine is independently inverse wavelet transformed with no cache. The second benchmark
algorithm is a block selective decoder (BSD). BSD maintains a block cache, and decodes slits block-by-block.
The block used in BSD consists of 32x32 slits. SSD and BSD may be used instead of PIWS to provide access to
slits requested by the rendering engine, however, as demonstrated below, they are not as efficient as PIWS.

We time the speed to fully decode the concentric mosaics, as well as the speed for actual concentric mosaic
viewing operation. The speed is measured in number of slits decoded per second. The larger the number is, the
faster the decoder. The speed when an entire concentric mosaic scene is decoded is listed in the first row of
Table 4. We observe that the decoding speed of PIWS is slightly faster than BSD (22% speed up), and is much
superior to SSD (49 times faster). Although PIWS is designed for the access of random slits, it is also good at the
accessing of chunk of data, and does not lose to BSD. The accessing and decoding of individual slit (SSD) is not
a good option, as the computation speed is much slower than both PIWS and BSD.

We next investigate the decoding speed in an actual concentric mosaic wondering scenario. Three motion passes
of the viewer are simulated, i.e., rotation, forward, and sidestep modes, as shown in Figure 9. In the rotation (RT)
mode, the viewpoint is at the center of the circle and rotates 0.006 radians per view. In the forward (FW) mode,
the viewpoint starts at the edge of the inner circle and moves forward along the optical axis of the camera. In the
sidestep (ST) mode, the viewpoint moves sidestep perpendicular to the optical axis of the camera. The accessed
slits associated with the three modes are drawn on a 2D slit plane and shown in Figure 10, where the horizontal
and the vertical axes are the angular and radius indices of the concentric mosaics, respectively. The slit plane is
exactly the data plane shown in Figure 6. We draw the accessed slits for two views of the motion modes. The RT
mode accesses a set of slits parallel to the angular axis. As the viewpoint rotates, the trace slowly shifts to the
right. The FW mode accesses a set of slits along a line segment. As the viewpoint moves forward, the line
segment rotates along the slit plane. The ST mode accesses a set of slits along a bending curve, and as the



Header for SPIE use

viewpoint moves sidestep, the curve gradually flattens towards the radius axis. The ST mode is the most
computation consuming motion, and the RT mode is the cheapest.

RT

0.006 rad/view

r

R

r

R

0.026 unit/view

r

R

0.003 unit/view

FW ST

Figure 9 Three kinds of movement in concentric mosaics

angular

ra
di

us

ra
di

us

angular angular

RT FW ST

ra
di

us

Figure 10 Access slits associated with three motion modes in the concentric mosaics. The slits of two views are
drawn.

Rows 2-4 of Table 4 give the average number of slits rendered per second for motion mode RT, FW and ST,
respectively. It is observed that PIWS outperforms SSD by 35 to 44 times, and outperforms BSD by 2 to 5 times.
The SSD rendering time has been relatively constant since no matter what access pattern is, individual slit is
decompressed and then rendered. It is the slowest as a huge number of inverse wavelet lifting is performed to
decode the slits. Although BSD is pretty efficient to decompress the entire concentric mosaic data set, it is not
suitable for JIT rendering, as the decoding and rendering speed of BSD is dramatically lower than that of PIWS.
The decoding speed of BSD slows down by a factor of 5.6 times in the RT mode, and 1.6 times in the ST mode.
This is because in the BSD algorithm, additional decoding operations are needed for non-accessed coefficients in
each block.

Table 4 Comparison of decoding speed

PIWS (Slits/Sec) SSD (Slits/Sec) BSD (Slits/Sec)
Full Decompression 9756 197 8000
RT: 500 views, 4196 slits 7160 204 1424
FW: 250 views, 8630 slits 7583 202 3512
ST: 50 views, 12403 slits 9260 209 5044



Header for SPIE use

For the comparison algorithms, the time used to render each individual view of the ST mode is further plotted in
Figure 11. The horizontal axis is the rendered frame, and the vertical axis is the decoding time for a specific
view. It is observed that the SSD is very slow, as it takes on average 1.2 second to render each view. The
rendering time of BSD fluctuates greatly from 0ms to 200 ms, as sometimes, there is a cache miss, and large
number of blocks is recovered, and some times, all the accessed slits are available and a view can be rendered in
no time. The viewing experience of BSD is thus not smooth. PIWS provides a very stable solution as except the
first view, on average a view is rendered every 27.1ms. A smooth viewing experience is thus provided. The
results clearly demonstrate the superiority of PIWS as it achieves a minimum number of computations required
to recover the current view.

�

���

���

���

���

����

����

����

� � � �	 �
 �� �� �� 		 	
 �� �� ��

��
���

�
�
�
�
� ����

���

���

Figure 11 Timing curves for the translation motion of concentric mosaics

In the second experiment, we compare the rendering speed of PIWS with two existing compression and
rendering systems for the concentric mosaics: the spatial vector quantization (SVQ) scheme [1] and the reference
block coding scheme (RBC)[11]. Both the point sampling (PS) and bilinear interpolation (BI) rendering modes
are tested. We observe from Table 5 that the rendering speed of PIWS is slower than SVQ for 26.8% and slower
than RBC for 11.5%, especially in the mode ST, where more new slits are accessed. However, the rendering
speed is acceptable for a 3D wavelet algorithm.

Table 5 Overall rendering speed measured in frames per sec: VQ, RBC vs. PIWS

Rendering setting
Mode/Algorithm

PS BI

VQ 19.7 16.3
RBC 16.8 13.9

RT

PIWS 17.6 14.3
VQ 19.0 15.8

RBC 16.4 13.9
FB

PIWS 15.8 13.5
VQ 17.7 14.9

RBC 12.5 10.9
ST

PIWS 7.9 7.3



Header for SPIE use

6. CONCLUSION

A progressive inverse wavelet synthesis (PIWS) algorithm has been proposed to achieve a minimum
computation for the random access of 3D wavelet compressed data. With PIWS, views of the concentric mosaics
can be rendered reasonably fast. Although the PIWS is designed for the rendering of the concentric mosaics,
with 3D wavelet transform and biorthogonal 9-7 lifting wavelet, it can be extended to other applications with
data access to the compressed wavelet, to other wavelet dimension and other lifting filters.

ACKNOWLEDGEMENT

The authors would like to thank Mr. Lie Gu for his generous help in collecting the experimental results.

REFERENCES

[1] H.-Y. Shum and L.-W. He. “Rendering with concentric mosaics”, Computer Graphics Proceedings, Annual
Conference series (SIGGRAPH'99), pp. 299-306, Los Angeles, Aug. 1999.
[2] L. Luo, Y. Wu, J. Li, and Y.-Q. Zhang, “Compression of concentric mosaic scenery with alignment and 3D
wavelet transform”, SPIE Image and Video Communications and Processing, vol. 3974, SPIE 3974-10, San
Jose, CA, Jan. 2000.
[3] I. Ihm and S. Park, “Wavelet-based 3D compression scheme for very large volume data”, Graphics
Interface, pp. 107-116, Jun. 1998.
[4] I. Ihm, and S. Park, “Wavelet-based 3D compression scheme for interactive visualization of very large
volume data”, Computer Graphics Forum, Vol.18, No.1, pp.3-15, Mar. 1999.
[5] C. Bajaj, I. Ihm, and S. Park, “Making 3D texture practical”, Pacific Graphics’99, pp.259-268, Seoul, Korea,
Oct. 1999.
[6] F. F. Rodler, “Wavelet based 3D compression with fast random access for very large volume data”, the
Seventh Pacific Conference on Computer Graphics and Applications, Seoul, Korea, Oct. 1999.
[7] E. Ordentlich, D. Taubman, M. Weinberger, G. Seroussi, M. W. Marcellin, “Memory efficient scalable line-
based image coding”, IEEE Data Compression Conference. Snowbird, Utah, March 1999.
[8] P. Cosman and K. Zeger, “Memory constrained wavelet-based image coding”, Signal Processing Letters,
vol. 5, pp 221-223, Sept. 1998.
[9] W. Sweldens, “The lifting scheme: A new philosophy in biorthogonal wavelet constructions,” in Wavelet
Applications in Signal and Image Processing III, pp. 68-79, Proc. SPIE 2569, 1995.
[10] Verification model ad-hoc, “JPEG 2000 verification model 5.0”, ISO/IEC JTC1/SC29/WG1/N1420, Oct.
1999.
[11] C. Zhang, J. Li, “Compression and rendering of concentric mosaics with reference block codec(RBC)”,
SPIE Visual Communications and Image Processing 2000, SPIE 4067-05, Perth, Australia, Jun. 2000.
[12] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting steps”, J. Fourier Anal.
Appl., vol. 4, pp. 247-269, 1998.


