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Abstract. The basis of applying deep learning to solve natural language process-
ing tasks is to obtain high-quality distributed representations of words, i.e., word
embeddings, from large amounts of text data. However, text itself usually con-
tains incomplete and ambiguous information, which makes necessity to leverage
extra knowledge to understand it. Fortunately, text itself already contains well-
defined morphological and syntactic knowledge; moreover, the large amount of
texts on the Web enable the extraction of plenty of semantic knowledge. There-
fore, it makes sense to design novel deep learning algorithms and systems in
order to leverage the above knowledge to compute more effective word embed-
dings. In this paper, we conduct an empirical study on the capacity of leveraging
morphological, syntactic, and semantic knowledge to achieve high-quality word
embeddings. Our study explores these types of knowledge to define new basis for
word representation, provide additional input information, and serve as auxiliary
supervision in deep learning, respectively. Experiments on an analogical reason-
ing task, a word similarity task, and a word completion task have all demonstrated
that knowledge-powered deep learning can enhance the effectiveness of word em-
bedding.

1 Introduction

With rapid development of deep learning techniques in recent years, it has drawn in-
creasing attention to train complex and deep models on large amounts of data, in order
to solve a wide range of text mining and natural language processing (NLP) tasks [4,
1, 8, 13, 19, 20]. The fundamental concept of such deep learning techniques is to com-
pute distributed representations of words, also known as word embeddings, in the form
of continuous vectors. While traditional NLP techniques usually represent words as
indices in a vocabulary causing no notion of relationship between words, word em-
beddings learned by deep learning approaches aim at explicitly encoding many seman-
tic relationships as well as linguistic regularities and patterns into the new embedding
space.

Most of existing works employ generic deep learning algorithms, which have been
proven to be successful in the speech and image domains, to learn the word embeddings
for text related tasks. For example, a previous study [1] proposed a widely used model
architecture for estimating neural network language model; later some studies [5, 21]
employed the similar neural network architecture to learn word embeddings in order
to improve and simplify NLP applications. Most recently, two models [14, 15] were
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proposed to learn word embeddings in a similar but more efficient manner so as to
capture syntactic and semantic word similarities. All these attempts fall into a common
framework to leverage the power of deep learning; however, one may want to ask the
following questions: Are these works the right approaches for text-related tasks? And,
what are the principles of using deep learning for text-related tasks?

To answer these questions, it is necessary to note that text yields some unique prop-
erties compared with other domains like speech and image. Specifically, while the suc-
cess of deep learning on the speech and image domains lies in its capability of dis-
covering important signals from noisy input, the major challenge for text understand-
ing is instead the missing information and semantic ambiguity. In other words, image
understanding relies more on the information contained in the image itself than the
background knowledge, while text understanding often needs to seek help from various
external knowledge since text itself only reflects limited information and is sometimes
ambiguous. Nevertheless, most of existing works have not sufficiently considered the
above uniqueness of text. Therefore it is worthy to investigate how to incorporate more
knowledge into the deep learning process.

Fortunately, this requirement is fulfillable due to the availability of various text-
related knowledge. First, since text is constructed by human based on morphological
and grammatical rules, it already contains well defined morphological and syntactic
knowledge. Morphological knowledge implies how a word is constructed, where mor-
phological elements could be syllables, roots, or affix (prefix and suffix). Syntactic
knowledge may consist of part-of-speech (POS) tagging as well as the rules of word
transformation in different context, such as the comparative and superlative of an adjec-
tive, the past and participle of a verb, and the plural form of a noun. Second, there has
been a rich line of research works on mining semantic knowledge from large amounts
of text data on the Web, such as WordNet [25], Freebase [2], and Probase [26]. Such
semantic knowledge can indicate entity category of the word, and the relationship be-
tween words/entities, such as synonyms, antonyms, belonging-to and is-a. For example,
Portland belonging-to Oregon; Portland is-a city. Given the availability of the morpho-
logical, syntactic, and semantic knowledge, the critical challenge remains as how to
design new deep learning algorithms and systems to leverage it to generate high-quality
word embeddings.

In this paper, we take an empirical study on the capacity of leveraging morpho-
logical, syntactic, and semantic knowledge into deep learning models. In particular,
we investigate the effects of leveraging morphological knowledge to define new basis
for word representation and as well as the effects of taking advantage of syntactic and
semantic knowledge to provide additional input information and serve as auxiliary su-
pervision in deep learning. In our study, we employ an emerging popular continuous
bag-of-words model (CBOW) proposed in [14] as the base model. The evaluation re-
sults demonstrate that, knowledge-powered deep learning framework, by adding appro-
priate knowledge in a proper way, can greatly enhance the quality of word embedding
in terms of serving syntactic and semantic tasks.

The rest of the paper is organized as follows. We describe the proposed methods to
leverage knowledge in word embedding using neural networks in Section 2. The experi-
mental results are reported in Section 3. In Section 4, we briefly review the related work
on word embedding using deep neural networks. The paper is concluded in Section 5.



3

2 Incorporating Knowledge into Deep Learning

In this paper, we propose to leverage morphological knowledge to define new basis
for word representation, and we explore syntactic and semantic knowledge to provide
additional input information and serve as auxiliary supervision in the deep learning
framework. Note that, our proposed methods may not be the optimal way to use those
types of knowledge, but our goal is to reveal the power of knowledge for computing
high-quality word embeddings through deep learning techniques.

2.1 Define New Basis for Word Representation

Currently, two major kinds of basis for word representations have been widely used
in the deep learning techniques for NLP applications. One of them is the 1-of-v word
vector, which follows the conventional bag-of-word models. While this kind of rep-
resentation preserves the original form of the word, it fails to effectively capture the
similarity between words (i.e., every two word vectors are orthogonal), suffers from too
expensive computation cost when the vocabulary size is large, and cannot generalize to
unseen words when it is computationally constrained.

Another kind of basis is the letter n-gram [11]. For example, in letter tri-gram (or
tri-letter), a vocabulary is built according to every combination of three letters, and a
word is projected to this vocabulary based on the tri-letters it contains. In contrast to
the first type of basis, this method can significantly reduce the training complexity and
address the problem of word orthogonality and unseen words. Nevertheless, letters do
not carry on semantics by themselves; thus, two words with similar set of letter n-grams
may yield quite different semantic meanings, and two semantically similar words might
share very few letter n-grams. Figure 1 illustrates one example for each of these two
word representation methods.

Fig. 1. An example of how to use 1-of-v word vector and letter n-gram vector as basis to represent
a word.

To address the limitations of the above word representation methods, we propose to
leverage the morphological knowledge to define new forms of basis for word represen-
tation, in order to reduce training complexity, enhance capability to generalize to new
emerging words, as well as preserve semantics of the word itself. In the following, we
will introduce two types of widely-used morphological knowledge and discuss how to
use them to define new basis for word representation.
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Root/Affix As an important type of morphological knowledge, root and affix (prefix
and suffix) can be used to define a new space where each word is represented as a vector
of root/affix. Since most English words are composed by roots and affixes and both roots
and affixes yield semantic meaning, it is quite beneficial to represent words using the
vocabulary of roots and affixes, which may not only reduce the vocabulary size, but
also reflect the semantics of words. Figure 2 shows an example of using root/affix to
represent a word.

Fig. 2. An example of how to use root/affix and syllable to represent a word.

Syllable Syllable is another important type of morphological knowledge that can be
used to define the word representation. Similar to root/affix, using syllable can signifi-
cantly reduce the dimension of the vocabulary. Furthermore, since syllables effectively
encodes the pronunciation signals, they can also reflect the semantics of words to some
extent (considering that human beings can understand English words and sentences
based on their pronunciations). Meanwhile, we are able to cover any unseen words by
using syllables as vocabulary. Figure 2 presents an example of using syllables to repre-
sent a word.

2.2 Provide Additional Input Information

Existing works on deep learning for word embeddings employ different types of data
for different NLP tasks. For example, Mikolov et al [14] used text documents col-
lected from Wikipedia to obtain word embeddings; Collobert and Weston [4] leveraged
text documents to learn word embeddings for various NLP applications such as lan-
guage model and chunking; and, Huang et al [11] applied deep learning approaches
on queries and documents from click-through logs in search engine to generate word
representations targeting the relevance tasks. However, those various types of text data,
without extra information, can merely reflect partial information and usually cause se-
mantic ambiguity. Therefore, to learn more effective word embeddings, it is necessary
to leverage additional knowledge to address the challenges.

In particular, both syntactic and semantic knowledge can serve as additional inputs.
An example is shown in Figure 3. Suppose the 1-of-v word vector is used as basis for
word representations. To introduce extra knowledge beyond a word itself, we can use
entity categories or POS tags as the extension to the original 1-of-v word vector. For
example, given an entity knowledge graph, we can define an entity space. Then, a word
will be projected into this space such that some certain elements yield non-zero values
if the word belongs to the corresponding entity categories. In addition, relationship be-
tween words/entities can serve as another type of input information. Particularly, given
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Fig. 3. An example of using syntactic or semantic knowledge, such as entity category, POS tags,
and relationship, as additional input information.

various kinds of syntactic and semantic relations, such as synonym, antonym, belonging-
to, is-a, etc., we can construct a relation matrix Rw for one word w (as shown in Fig-
ure 3), where each column corresponds to a word in the vocabulary, each row encodes
one type of relationship, and one element Rw(i, j) has non-zero value if w yield the
i-th relation with the j-th word.

2.3 Serve as Auxiliary Supervision

According to previous studies on deep learning for NLP tasks, different training samples
and objective functions are suitable for different NLP applications. For example, some
works [4, 14] define likelihood based loss functions, while some other work [11] lever-
ages cosine similarity between queries and documents to compute objectives. However,
all these loss functions are commonly used in the machine learning literature without
considering the uniqueness of text.

Fig. 4. Using syntactic and semantic knowledge as auxiliary objectives.

Text related knowledge can provide valuable complement to the objective of the
deep learning framework. Particularly, we can create auxiliary tasks based on the knowl-
edge to assist the learning of the main objective, which can effectively regularize the
learning of the hidden layers and improve the generalization ability of deep neural
networks so as to achieve high-quality word embedding. Both semantic and syntactic
knowledge can serve as auxiliary objectives, as shown in Figure 4.

Note that this multi-task framework can be applied to any text related deep learning
technique. In this work, we take the continuous bag-of-words model (CBOW) [14] as a
specific example. The main objective of this model is to predict the center word given
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the surrounding context. More formally, given a sequence of training words w1, w2, · · ·,
wX , the main objective of the CBOW model is to maximize the average log probability:

LM =
1

X

X∑
x=1

log p(wx|Wd
x) (1)

where Wd
x = {wx−d, · · · , wx−1, wx+1, · · · , wx+d} denotes a 2d-sized training context

of word wx.
To use semantic and syntactic knowledge to define auxiliary tasks to the CBOW

model, we can leverage the entity vector, POS tag vector, and relation matrix (as shown
in Figure 3) of the center word as the additional objectives. Below, we take entity and
relationship as two examples for illustration. Specifically, we define the objective for
entity knowledge as

LE =
1

X

X∑
x=1

K∑
k=1

1(wx ∈ ek) log p(ek|Wd
x) (2)

where K is the size of entity vector; and 1(·) is an indicator function, 1(wx ∈ ek)
equals 1 if wx belongs to entity ek, otherwise 0; note that the entity ek could be denoted
by either a single word or a phrase. Moreover, assuming there are totally R relations,
i.e., there are R rows in the relation matrix, we define the objective for relation as:

LR =
1

X

X∑
x=1

R∑
r=1

λr

N∑
n=1

r(wx, wn) log p(wn|Wd
x) (3)

where N is vocabulary size; r(wx, wn) equals 1 if wx and wn have relation r, otherwise
0; and λr is an empirical weight of relation r.

3 Experiments

To evaluate the effectiveness of the knowledge-powered deep learning for word embed-
ding, we compare the quality of word embeddings learned with incorporated knowledge
to those without knowledge. In this section, we first introduce the experimental settings,
and then we conduct empirical comparisons on three specific tasks: a public analogical
reasoning task, a word similarity task, and a word completion task.

3.1 Experimental Setup

Baseline Model In our empirical study, we use the continuous bag-of-words model
(CBOW) [14] as the baseline method. The code of this model has been made publicly
available1. We use this model to learn the word embeddings on the above dataset. In
the following, we will study the effects of different methods for adding various types
of knowledge into the CBOW model. To ensure the consistency among our empirical
studies, we set the same number of embedding size, i.e. 600, for both the baseline model
and those with incorporated knowledge.
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Fig. 5. Longman Dictionaries provide several types of morphological, syntactic, and semantic
knowledge.

Table 1. Knowledge corpus used for our experiments (Type: MOR-morphological; SYN-
syntactic; SEM-semantic).

Corpus Type Specific knowledge Size
Morfessor MOR root, affix 200K
Longman MOR/SYN /SEM syllable, POS tagging, synonym, antonym 30K
WordNet SYN/SEM POS tagging, synonym, antonym 20K
Freebase SEM entity, relation 1M

Applied Knowledge For each word in the Wikipedia dataset as described above, we
collect corresponding morphological, syntactic, and semantic knowledge from four data
sources: Morfessor [23], Longman Dictionaries2, WordNet [25], and Freebase3.
Morfessor provides a tool that can automatically split a word into roots, prefixes, and
suffixes. Therefore, this source allows us to collect morphological knowledge for each
word existed in our training data.
Longman Dictionaries is a large corpus of words, phrases, and meaning, consisting of
rich morphological, syntactic, and semantic knowledge. As shown in Figure 5, Long-
man Dictionaries provide word’s syllables as morphological knowledge, word’s syn-
tactic transformations as syntactic knowledge, and word’s synonym and antonym as
semantic knowledge. We collect totally 30K words and their corresponding knowledge
from Longman Dictionaries.
WordNet is a large lexical database of English. Nouns, verbs, adjectives, and adverbs
are grouped into sets of cognitive synonyms (synsets), each expressing a distinct con-
cept. Synsets are interlinked by means of conceptual-semantic and lexical relations.
Note that WordNet interlinks not just word forms (syntactic information) but also spe-
cific senses of words (semantic information). WordNet also labels the semantic relations
among words. Therefore, WordNet provides us with another corpus of rich semantic and
syntactic knowledge. In our experiments, we sample 15K words with 12K synsets, and
there are totally 20K word-senses pairs.
Freebase is an online collection of structured data harvested from many online sources.
It is comprised of important semantic knowledge, especially the entity and relation in-

1 http://code.google.com/p/word2vec/
2 http://www.longmandictionariesonline.com/
3 http://www.freebase.com/
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formation (e.g., categories, belonging-to, is-a). We crawled 1M top frequent words and
corresponding information from Freebase as another semantic knowledge base.
We summarize these four sources in Table 14.

3.2 Evaluation Tasks

We evaluate the quality of word embeddings on three tasks.
1. Analogical Reasoning Task:

The analogical reasoning task was introduced by Mikolov et al [16, 14], which de-
fines a comprehensive test set that contains five types of semantic analogies and nine
types of syntactic analogies5. For example, to solve semantic analogies such as Ger-
many : Berlin = France : ?, we need to find a vector x such that the embedding of x,
denoted as vec(x) is closest to vec(Berlin) - vec(Germany) + vec(France) according to
the cosine distance. This specific example is considered to have been answered correctly
if x is Paris. Another example of syntactic analogies is quick : quickly = slow : ?, the
correct answer of which should be slowly. Overall, there are 8,869 semantic analogies
and 10,675 syntactic analogies.

In our experiments, we trained word embeddings on a publicly available text cor-
pus6, a dataset about the first billion characters from Wikipedia. This text corpus con-
tains totally 123.4 million words, where the number of unique words, i.e., the vocabu-
lary size, is about 220 thousand. We then evaluated the overall accuracy for all analogy
types, and for each analogy type separately (i.e., semantic and syntactic).
2. Word Similarity Task:

A standard dataset for evaluating vector-space models is the WordSim-353 dataset [7],
which consists of 353 pairs of nouns. Each pair is presented without context and associ-
ated with 13 to 16 human judgments on similarity and relatedness on a scale from 0 to
10. For example, (cup, drink) received an average score of 7.25, while (cup, substance)
received an average score of 1.92. Overall speaking, these 353 word pairs reflect more
semantic word relationship than syntactic relationship.

In our experiments, similar to the Analogical Reasoning Task, we also learned the
word embeddings on the same Wikipedia dataset. To evaluate the quality of learned
word embedding, we compute Spearman’s ρ correlation between the similarity scores
computed based on learned word embeddings and human judgments.
3. Sentence Completion Task:

Another advanced language modeling task is Microsoft Sentence Completion Chal-
lenge [27]. This task consists of 1040 sentences, where one word is missing in each
sentence and the goal is to select word that is the most coherent with the rest of the sen-
tence, given a list of five reasonable choices. In general, accurate sentence completion
requires better understanding on both the syntactic and semantics of the context.

In our experiments, we learn the 600-dimensional embeddings on the 50M training
data provided by [27], with and without applied knowledge, respectively. Then, we
compute score of each sentence in the test set by using each of the sliding windows

4 We plan to release all the knowledge corpora we used in this study after the paper is published.
5 http://code.google.com/p/word2vec/source/browse/trunk/ questions-words.txt
6 http://mattmahoney.net/dc/enwik9.zip
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(window size is consistent with the training process) including the unknown word at
the input, and predict the corresponding central word in a sentence. The final sentence
score is then the sum of these individual predictions. Using the sentence scores, we
choose the most likely sentence to answer the question.

3.3 Experimental Results

Effects of Defining Knowledge-Powered Basis for Word Representation As intro-
duced in Section 2.1, we can leverage morphological knowledge to design new basis
for word representation, including root/affix-based and syllable-based bases. In this ex-
periment, we separately leverage these two types of morphological basis, instead of the
conventional 1-of-v word vector and letter n-gram vector, in the CBOW framework
(as shown in Figure 6). Then, we compare the quality of the newly obtained word em-
beddings with those computed by the baseline models. Note that, after using root/affix,
syllable, or letter n-gram as input basis, the deep learning framework will directly gen-
erate the embedding for each root/affix, syllable, or letter n-gram; the new embedding
of a word can be obtained by aggregating the embeddings of this word’s morphological
elements.

Fig. 6. Define morphological elements (root, affix, syllable) as new bases in CBOW.

Table 2. The accuracy of analogical questions by using word embeddings learned with different
bases for word representation.

Representation Dimensionality Semantic Accuracy Syntactic Accuracy Overall Accuracy Overall Relative Gain
Original words 220K 16.62% 34.98% 26.65% -

Root/affix 24K 14.27% 44.15% 30.59% 14.78%
Syllable 10K 2.67% 18.72% 11.44% -57.07%

Letter 3-gram 13K 0.18% 9.12% 5.07% -80.98%
Letter 4-gram 97K 17.29% 32.99% 26.89% 0.90%
Letter 5-gram 289K 16.03% 34.27% 26.00% -2.44%

Table 2 shows the accuracy of analogical questions by using baseline word em-
beddings and by using those learned from morphological knowledge-powered bases,
respectively. As shown in Table 2, different bases yield various dimensionalities; and,
using root/affix to represent words can significantly improve the accuracy with about
14% relative gain, even with a much lower input dimensionality than the original 1-of-v
representation.
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However, syllable and letter 3-gram lead to drastically decreasing accuracy, proba-
bly due to their low dimensionalities and high noise levels. In addition, as the average
word length of the training data is 4.8, using letter 4-gram and 5-gram is very close to
using 1-of-V as basis. Therefore, as shown in Table 2, letter 4-gram and 5-gram can
perform as good as baseline.

Table 3 illustrate the performance for the word similarity task by using word em-
beddings trained from different bases. From the table, we can find that, letter 4-gram
and 5-gram yields similar performances to the baseline; however, none of root/affix,
syllable, and letter tri-gram can benefit word similarity task.

Table 3. Spearman’s ρ correlation on WordSim-353 by using word embeddings learned with
different bases.

Model ρ× 100 Relative Gain
Original words 60.1 -

Root/affix 60.6 0.83%
Syllable 17.9 -70%
3-gram 14.2 -76%
4-gram 60.3 0.33%
5-gram 60.0 -0.17%

For the sentence completion task, Table 4 compares the accuracy by using word
embeddings trained with different bases. Similar to the trend of the first task, except
Root/affix that can raise the accuracy by 3-4%, other bases for word representation
have little or negative influence on the performance.

Table 4. Accuracy of different models on the Microsoft Sentence Completion Challenge.

Model Accuracy Relative gain
Original words 41.2% -

Root/affix 42.7% 3.64%
Syllable 40.0% -2.91%
3-gram 41.3% 0.24%
4-gram 40.8% -0.97%
5-gram 41.0% -0.49%

Effects of Providing Additional Knowledge-Augmented Input Information In this
experiment, by using the method described in Section 2.2, we add syntactic and seman-
tic knowledge of each input word as additional inputs into the CBOW model (as shown
in Figure 7). Then, we compare the quality of the newly obtained word embeddings
with the baseline.

For the analogical reasoning task, Table 5 reports the accuracy by using wording
embeddings learned from the baseline model and that with knowledge-augmented in-
puts, respectively. From the table, we can find that using syntactic knowledge as addi-
tional input can benefit syntactic analogies significantly but drastically hurt the semantic
accuracy, while semantic knowledge gives rise to an opposite result. This table also il-
lustrates that using both semantic and syntactic knowledge as additional inputs can lead
to about 24% performance gain.
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Fig. 7. Add syntactic and semantic knowledge of input word as additional inputs in CBOW.

Table 5. The accuracy of analogical questions by using word embeddings learned with different
additional inputs.

Raw Data Semantic Accuracy Relative Gain Syntactic Accuracy Relative Gain Total Accuracy Relative Gain
Original words 16.62% 34.98% 26.65%

+ Syntactic knowledge 6.12% −63.18% 46.84% 33.90% 28.67% 7.58%
+ Semantic knowledge 49.16% 195.78% 17.96% −48.66% 31.38% 17.74%

+ both knowledge 27.37% 64.68% 36.33% 3.86% 33.22% 24.65%

Furthermore, Table 6 illustrates the performance of the word similarity task on dif-
ferent models. From the table, it is clear to see that using semantic knowledge as addi-
tional inputs can cause a more than 4% relative gain while syntactic knowledge brings
little influence on this task.
Table 6. Spearman’s ρ correlation on WordSim-353 by using word embeddings learned with
different additional input.

Model ρ× 100 Relative Gain
Original words 60.1 -

+ Syntactic knowledge 60.6 0.83%
+ Semantic knowledge 62.6 4.16%

+ both knowledge 60.9 1.33%

Moreover, Table 7 shows the accuracy of the sentence completion task by using
models with different knowledge-augmented inputs. From the table, we can find that
using either semantic or syntactic knowledge as additional inputs can benefit the per-
formance, with more than 6% and 7% relative gains, respectively.

Effects of Serving Knowledge as Auxiliary Supervision As introduced in Section 2.3,
in this experiment, we use either separate or combined syntactic and semantic knowl-
edge as auxiliary tasks to regularize the training of the CBOW framework (as shown in
Figure 8). Then, we compare the quality of the newly obtained word embeddings with
those computed by the baseline model.

Table 8 illustrates the accuracy of analogical questions by using word embeddings
learned from the baseline model and from those with knowledge-regularized objectives,
respectively. From the table, we can find that leveraging either semantic or syntactic
knowledge as auxiliary objectives results in quite little changes to the accuracy, and
using both of them simultaneously can yield 1.39% relative improvement.
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Table 7. Accuracy of different models on the Microsoft Sentence Completion Challenge.

Model Accuracy Relative Gain
Original words 41.2% -

+ Syntactic knowledge 43.7% 6.07%
+ Semantic knowledge 44.1% 7.04%

+ Both knowledge 43.8% 6.31%

Fig. 8. Use syntactic and semantic knowledge as auxiliary objectives in CBOW.

Furthermore, Table 9 compares different models’ performance on the word sim-
ilarity task. From the table, we can find that using semantic knowledge as auxiliary
objective can result in a significant improvement, with about 5.7% relative gain, while
using syntactic knowledge as auxiliary objective cannot benefit this task. And, using
both knowledge can cause more than 3% improvement.

Moreover, for the sentence completion task, Table 10 shows the accuracy of using
different knowledge-regularized models. From the table, we can find that, while syntac-
tic knowledge does not cause much accuracy improvement, using semantic knowledge
as auxiliary objectives can significantly increase the performance, with more than 9%
relative gain. And, using both knowledge as auxiliary objectives can lead to more than
7% improvement.

3.4 Discussions

In a summary, our empirical studies investigate three ways (i.e., new basis, additional
inputs, and auxiliary supervision) of incorporating knowledge into three different text
related tasks (i.e., analogical reasoning, word similarity, and sentence completion), and
we explore three specific types of knowledge (i.e., morphological, syntactic, and se-
mantic). Figure 9 summarizes whether and using which method each certain type of
knowledge can benefit different tasks, in which a tick indicates a relative gain of larger
than 3% and a cross indicates the remaining cases. In the following of this section, we

Table 8. The accuracy of analogical questions by using word embeddings learned from baseline
model and those with knowledge-regularized objectives.

Objective Semantic Accuracy Relative Gain Syntactic Accuracy Relative Gain Total Accuracy Relative Gain
Original words 16.62% 34.98% 26.65%

+ Syntactic knowledge 17.09% 2.83% 34.74% −0.69% 26.73% 0.30%
+ Semantic knowledge 16.43% −1.14% 35.33% 1.00% 26.75% 0.38%

+ both knowledge 17.59% 5.84% 34.86% −0.34% 27.02% 1.39%
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Table 9. Spearman’s ρ correlation on WordSim-353 by using baseline model and the model
trained by knowledge-regularized objectives.

Model ρ× 100 Relative Gain
Original words 60.1 -

+ Syntactic knowledge 59.8 -0.50%
+ Semantic knowledge 63.5 5.66%

+ both knowledge 62.1 3.33%

Table 10. Accuracy of different models on the Microsoft Sentence Completion Challenge.

Model Accuracy Relative Gain
Original words 41.2% -

+ Syntactic knowledge 41.9% 1.70%
+ Semantic knowledge 45.2% 9.71%

+ both knowledge 44.2% 7.28%

will take further discussions to generalize some guidelines for incorporating knowledge
into deep learning.

Different Tasks Seek Different Knowledge According to the task descriptions in Sec-
tion 3.2, it is clear to see that the three text related tasks applied in our empirical studies
are inherently different to each other, and such differences further decide each task’s
sensitivity to different knowledge.

Specifically, the analogical reasoning task consists of both semantic questions and
syntactic questions. As shown in Figure 9, it is beneficial to applying both syntactic
and semantic knowledge as additional input into the learning process. Morphological
knowledge, especially root/affix, can also improve the accuracy of this task, because
root/affix plays a key role in addressing some of the syntactic questions, such as adj
: adv, comparative : superlative, the evidence of which can be found in Table 2 that
illustrates using root/affix as basis can improve syntactic accuracy more than semantic
accuracy.

Fig. 9. A summary of whether and using which method each certain type of knowledge can benefit
different tasks.

As aforementioned, the goal of the word similarity task is to predict the semantic
similarity between two words without any context. Therefore only semantic knowledge
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can enhance the learned word embeddings for this task. As shown in Table 6 and 9,
it is clear to see that using semantic knowledge as either additional input or auxiliary
supervision can improve the word similarity task.

As a sentence is built to represent certain semantics under human defined morpho-
logical and syntactic rules, sentence completion task requires accurate understanding on
the semantics of the context, the syntactic structure of the sentence, and the morpholog-
ical rules for key words in it. Thus, as shown in Figure 9, all three types of knowledge
can improve the accuracy of this task if used appropriately.

Effects of How to Incorporate Different Knowledge According to our empirical
studies, syntactic knowledge is effective to improve analogical reasoning and sentence
completion only when it is employed as additional input into the deep learning frame-
work, which implies that syntactic knowledge can provide valuable input information
but may not be suitable to serve as regularized objectives. Our empirical studies also
demonstrate that, using semantic knowledge as either additional input or regularized
objectives can improve the performance of the word similarity task and sentence com-
pletion tasks. Furthermore, comparing Table 9 and 10 with Table 6 and 7, we can find
that applying semantic knowledge as auxiliary objectives can achieve slightly better
performance than using it as additional input. However, for the analogical reasoning
task, semantic knowledge is effective only when it is applied as additional input.

4 Related Work

Obtaining continious word embedding has been studied for a long time [9]. With the
progress of deep learning, deep neural network models have been applied to obtain
word embeddings. One of popular model architectures for estimating neural network
language model (NNLM) was proposed in [1], where a feed-forward neural network
with a linear projection layer and a non-linear hidden layer was used to learn jointly the
word embedding and a statistical language model. Many studies follow this approach
to improve and simplify text mining and NLP tasks [4–6, 8, 11, 19, 22, 20, 17, 10]. In
these studies, estimation of the word embeddings was performed using different model
architectures and trained on various text corpora.

For example, Collobert et al [5] proposed a unified neural network architecture to
learn adequate internal representations on the basis of vast amounts of mostly unlabeled
training data, to deal with various natural language processing tasks. In order to adapt
the sequential property of language modeling, a recurrent architecture of NNLM was
present in [13], referred as RNNLM, where the hidden layer at current time will be
recurrently used as input to the hidden layer at the next time. Huang et al [11] devel-
oped a deep structure that project queries and documents into a common word embed-
ding space where the query-document similarity is computed as the cosine similarity.
The word embedding model is trained by maximizing the conditional likelihood of the
clicked documents for a given query using the click-through data. Mikolov et al [14, 15]
proposed the continuous bag-of-words model (CBOW) and the continuous skip-gram
model (Skip-gram) for learning distributed representations of words from large amount
of unlabeled text data. Both models can map the semantically or syntactically similar
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words to close positions in the learned embedding space, based on the principal that the
context of the similar words are similar.

Recent studies have explored knowledge related word embedding, the purpose of
of which is though quite different. For example, [3] focused on learning structured
embeddings of knowledge bases; [18] paid attention to knowledge base completion;
and [24] investigated relation extraction from free text. They did not explicitly study
how to use knowledge to enhance word embedding. Besides, Luong et al [12] proposed
to apply morphological information to learn better word embedding. But, it did not
explore other ways to leverage various types of knowledge.

5 Conclusions and Future Work

In this paper, we take an empirical study on using morphological, syntactic, and seman-
tic knowledge to achieve high-quality word embeddings. Our study explores these types
of knowledge to define new basis for word representation, provide additional input in-
formation, and serve as auxiliary supervision in deep learning framework. Evaluations
on three text related tasks demonstrated the effectiveness of knowledge-powered deep
learning to produce high-quality word embeddings in general, and also reveal the best
way of using each type of knowledge for a given task.

For the future work, we plan to explore more types of knowledge and apply them
into the deep learning process. We also plan to study the co-learning of high-quality
word embeddings and large-scale reliable knowledge.
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