Research

Employing Topic Models for Pattern-based Semantic Class Discovery

Huibin Zhang², Mingjie Zhu³, <u>Shuming Shi¹</u>, Ji-Rong Wen¹

¹ Microsoft Research Asia ² Nankai University ³ University of Science and Technology of China

Send feedback to: shumings@microsoft.com

Outline

- Problem statement
- Approach
 - Topic models + Postprocessing
- Experiments
- Related work
- Conclusion

Semantic Class

- A set of terms or phrases with the peer or sibling relationship among them
 - {white, black, red, blue, green, orange, brown...}
 - {first, second, third, fourth, fifth...}
- Extract <u>Raw</u> Semantic Classes (RASCs)
 - Data sources
 - Document collection
 - The search results of search engines
 - Extraction techniques
 - Parsing
 - Pattern matching

Pattern-based Semantic Class Extraction

• Sample patterns:

Туре	Pattern		
SENT	NP {, NP}*{,} (and or) {other} NP		
TAG	<pre> item item </pre>		
TAG	<select> <option>item<opti< td=""><td colspan="2">ON>item </td></opti<></option></select>	ON>item	
Example RASCs		RASCs should not be the final semantic classes 1. Noisy	
R_1 : {gold, silver, copper, coal, iron, uranium}			
R_2 : {red, yellow, <i>color</i> , gold, silver, copper}			
R_3 : {red, g	green, blue, yellow}		

*R*₄: {HTML, Text, PDF, MS Word, *Any file type*}

*R*₅: {*Today*, *Tomorrow*, Wednesday, Thursday, Friday, Saturday, Sunday}

*R*₆: {*Bush*, Iraq, *Photos*, USA, *War*}

Our Problem

- Source data: A collection of RASCs
- Input: A term or a phrase as the query
- Required output: Semantic class<u>es</u> the query belongs to
 - **Multi-membership**: A term/phrase belongs to multiple semantic classes
 - "Singapore" is both a <u>county</u> and a <u>city</u>.
 - Multi-membership is popular: Lots of English words are borrowed as company names, places, product names...
- Online research prototype:

http://needleseek.msra.cn

Our Approach: Main Ideas

- Main Idea: Employing topic models
- Topic modeling: Every "document" is modeled as a mixture of hidden "topics"
 - pLSI (Hofmann, 1999); LDA (Blei et al., 2003)...

Our Approach: Main Ideas (cont.)

- Why topic modeling? Observations:
 - In our problem
 - 1) One item may belong to multiple semantic classes
 - 2) Some RASCs are comprised of items in multiple semantic classes
 - In (the typical application of) topic modeling
 - 1) A word can appear in multiple topics
 - 2) One document could be related to multiple topics
- Mapping of concepts

Topic modeling	Semantic class construction	
word	item (word or phrase)	
document	RASC	
topic	semantic class	

Our Approach: Main Ideas (cont.)

- Challenges of adopting topic models here
 - Computation is intractable
 - 2.7 million unique RASCs extracted from 40 million web pages
 - Typical topic models require the number of topics (k) to be given
- Our solutions
 - Making computation feasible
 - Apply topic models to $C_R(q)$ rather than C_R
 - Preprocessing: Remove low frequency items
 - Set *k*: the number of topics
 - Set (for all items q) the topic number to be a fixed value (k=5).
 - A post-processing step to merge "topics" (very important!)

Main Phases of our Approach

Research

Preprocessing

- Discard from all RASCs the items with frequency less than a threshold *h*
- Objective
 - Reduce the topic model training time without sacrificing results quality too much
- Effects
 - For some small *h* values, the results quality becomes *higher* after preprocessing is performed

Adopting Topic Models

- For a query q, process the RASCs in $C_R(q)$
- Parameters
 - Topic number k is fixed (=5) for all queries
- Results
 - k topics (semantic classes) for query q
- Remarks
 - Inference is not needed
 - Why are the words/phrases within a resultant topic in peer relationship?

Post-Processing

- Operations
 - Opr-1: Merge the "topics" yielded at the previous phase
 - Opr-2: Sort the items in each semantic class
- Operation-1: Merge topics (or semantic classes)
 - Repeatedly merge the two topics with the highest similarity until the similarity is under a threshold

$$sim(C_1, C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}$$

$$sim(C_1, C_2) = \frac{\sum_{a \in C_1} \sum_{b \in C_2} sim(a, b)}{|C_1| \cdot |C_2|}$$
?

Post-Processing (cont.)

- Operation-2: Sort items in a semantic class
 - Two factors
 - Average similarity between the item and the other items in the semantic class
 - Similarity between the item and the query item q
 - Define the importance of item *a* in semantic class *C*

$$g(a|C) = \lambda \cdot sim(a,C) + (1-\lambda) sim(a,q)$$
?

where

$$sim(a,C) = \frac{\sum_{b \in C} sim(a,b)}{|C|}?$$

Post-Processing (cont.)

• Item similarity calculation

$$sim(a,b) = \sum_{i=1}^{m} \log(1 + \sum_{j=1}^{k_i} w(P(C_{i,j})))$$

- $C_{i,j}$: RASC *j* in domain *i*
- P(C): The pattern by which RASC C is extracted
- w(P): The weight of pattern P
- *m*: The RASCs belong to *m* domains

- Datasets
 - Crawled 40 million English web pages
 - 2.7 million unique RASCs extracted (1 million distinct items)
- Query set
 - 55 queries provided by volunteers

- Labeling
 - Manually determine the *standard semantic classes* (SSCs) for the query
 - Query: "Georgia"
 - The ideal/standard semantic classes may include Countries, and U.S. states
 - Each item is assigned a label of "Good", "Fair", or "Bad", w.r.t. each SSC
 - "silver" is labeled "Good" with respect to "colors" and "chemical elements"
 - Term "color" is "Bad" w.r.t. "colors"

- Evaluation
 - Each resultant semantic class is an **ordered** item list
 - Adopting information retrieval (IR) metrics to evaluate it
 - Mean Average Precision (MAP)
 - Normalized Discounted Cumulative Gain (**nDCG**)
 - ...
 - Evaluate multiple semantic classes
 - Extend existing IR metrics to support multiple ordered lists
 - nDCG \rightarrow MnDCG

- Approaches for comparison
 - LDA: Our approach with LDA as the topic model
 - pLSI: Our approach with pLSI as the topic model
 - KMedoids-RASC: RASC clustering using K-Medoids
 - DBSCAN-RASC: RASC clustering using DBSCAN
 - KMedoids-Item: Item clustering using K-Medoids
 - DBSCAN-Item: Item clustering using DBSCAN

Quality comparison

- Frequency threshold h = 4 in preprocessing
- k = 5 in topic models
- Metrics: MnDCG@k

Preprocessing

- LDA approaches
- Different preprocessing thresholds ($0 \le h \le 10$)

h	Avg. Query Proc. Time (seconds)	Quality (MnDCG@10)
1	0.414	0.281
2	0.375	0.294
3	0.320	0.322
4	0.268	0.331
5	0.232	0.328
6	0.210	0.315
7	0.197	0.315
8	0.184	0.313
9	0.173	0.288

Post-Processing Results

- Topic modeling approaches with and without post-processing
- Metric: MnDCG@10

Related work

- Semantic class discovery
 - Set expansion
 - Hindle (1990; Ruge (1992); Lin (1998); Google sets; Ghahramani and Heller (2005); Wang and Cohen (2007); Kozareva (2008)
 - Pattern-based approaches
 - Shinzato and Torisawa (2004); Shinzato and Torisawa (2005)
 - Pasca (2004); Shi et al. (2008)
 - Distributional similarity approaches
 - Harris (1985); Lin and Pantel (2001); Pantel and Lin (2002)
- Topic modeling applications
 - Lots of document clustering applications
 - Word Sense Disambiguation (WSD)
 - Cai et al (2007); Boyd-Graber et al. (2007)

Summary

- Employ topic models to construct semantic classes
 - Query $q \rightarrow$ Retrieve $C_R(q) \rightarrow$ Preprocessing \rightarrow Topic modeling \rightarrow Post-processing (merge topics)
- Propose an evaluation methodology
- Contributions:
 - Find an effective way of constructing high-quality semantic classes with **multi-membership** support, in the pattern-based category
 - For the first time, demonstrate the effectiveness of topic modeling in semantic class construction

Thank you Questions?

Welcome to try our online research prototype: <u>http://needleseek.msra.cn/</u>

➢ Visit <u>http://needleseek.msra.cn/rascsearch/</u> to search and download raw semantic classes (RASCs) for your research work.

