Real-time Human Action Search using Random Forest
based Hough Voting

Gang Yu,

ABSTRACT

Many existing techniques in content based video retrieval
treat a video sequence as a whole to match it against a query
video or to assign a text label. Such an approach has serious
limitations when applied to human action retrieval because
an action may occur only in a sub-region and last for a small
portion of the video length. In situations like this, we essen-
tially need to match the subvolumes of the video sequences
against the query video. A naive exhaustive search is im-
practical due to large number of possible subvolumes for each
video sequence. In this paper, we propose a novel framework
for action retrieval which performs pattern matching at sub-
volume level and is very efficient in handling large corpus of
videos. We construct an unsupervised random forest to in-
dex the video database, generate a score volume with Hough
voting and then employ a max sub-path strategy to quickly
search for the temporal and spatial positions of all the video
sequences in the database. We present action search experi-
ments on challenging datasets to validate the efficiency and
effectiveness of our system.

Categories and Subject Descriptors

H.3.3 [[Information Search and Retrieval]: Retrieval
models

General Terms

Algorithms, Experimentation, Theory

Keywords

Action Search, Hough Voting, Random Forest Indexing, Max
Sub-path Search

1. INTRODUCTION

Human action search aims to search similar action seg-
ments from large database given a query action. It has a lot

Area chair: Qi Tian

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MM’11, November 28—-December 1, 2011, Scottsdale, Arizona, USA.
Copyright 2011 ACM 978-1-4503-0616-4/11/11 ...$10.00.

Junsong Yuan
School of Electrical and Electronic Engineering
Nanyang Technological University, Singapore

gyul@e.ntu.edu.sg, jsyuan@ntu.edu.sg

Zicheng Liu
Microsoft Research
Redmond, WA, USA

zliu@microsoft.com

of practical uses in our daily lives, e.g., human computer in-
terface, video surveillance, and medical diagnosis. However,
this topic has been much less exploited than human action
classification [3] and action detection [2] [9] [7].

[8] proposed a framework for action search which has promis-
ing experimental results on some existing benchmark datasets.
With the help of random forest indexing, the problem that
the limited query samples cannot model the large intra-
class variations can be alleviated. Besides, by coarse-to-fine
branch and bound search, the algorithm [8] can finish a one-
hour database search in 26 seconds. Despite great speed
advantage and superior performance, the algorithm [8] has
two major drawbacks. First, it is still not acceptable to
search one action in 26 seconds. For online applications,
fast response is the inevitable property otherwise the user
experiences would suffer. Second, there is one implicit as-
sumption in [8]: the actions should be spatially fixed. For
instance, it cannot handle the moving actions, e.g., walk-
ing. This is primarily due to the sliding window (branch
and bound search) approach. If we relax the search space to
include the moving volumes, it would be extremely compu-
tational prohibited.

To handle the two challenges in [8], we propose a novel ac-
tion search system that can search and crop similar actions
from a large corpus of video clips given an exemplar video
clip. Videos are represented with spatio-temporal interest
points [3]. To support fast search, we build a random forest
to index all the STIP points in the database. Given a query
video, we match each STIP in the query with the database
based on the random forest. Given the matches, Hough vot-
ing is performed to generate a 3D score volume. The value
of each element in the score volume refers to the likelihood
of the region belonging to the same action type as query. By
searching a sub-path within the volume, we can obtain an
optimal sub-volume which is the most similar to the query
action. There are three major contributions of our paper.

e We propose to use Hough voting to vote for candidate
action centers, which integrates the spatial structure
of interest points.

e The search problem is solved with the max sub-path
search algorithm rather than the branch and bound
search in [8] so that we can handle the moving actions.

e According to the experiments, we algorithm outper-
forms the state-of-the-art method [8] on both the ac-
curacy and the speed.

Experiments on the benchmark MSR II [9] database and a
drinking database validate the efficiency and effectiveness of
our algorithm.

2. ALGORITHM

Our action search system mainly constitutes two compo-
nents, Hough voting and max sub-path searching. Given a
video database, D = {V1 UVoU---UVn}, where V; refers to
a video clip and N is the number of videos. Each video can
be represented by a set of spatio-temporal interest points
(STIP) [3], V = {d;}. For each STIP point d; = [fi,li], fi
refers to the feature description and I; refers to its spatial-
temporal location, I; = [x;,t;]. We use HOG (Histogram of
Gradient) and HOF (Histogram of Flow) to describe f; with
feature dimension of 162. For action retrieval, our objective
is to crop all the sub-volumes which are similar to the given
query video Q.

For simplicity, we denote D = {d;,i = 1,2,--- ,Np} as
the database, where Np is the total number of STIP points.
Given a query Q = {dq,q =1,2,--- , N}, we want to crop
the sub-volumes with the maximum similarity score:

S(V*7 Q) - mamte[a,b],x,ps(‘/te[a,b] (X7 p)7 Q), (1)

where Vig(q,5 (%, p) refers to the sub-volume with temporal
duration from frame a to frame b and spatial center at posi-
tion x and spatial size at pth level. For simplicity, we assume
the spatial scale (p will be omitted in later discussion so that
only s(Vieja,p)(x), Q) is considered) and the spatial center
does not change over time in the returned sub-volume. In
the later discussion, we will show that our algorithm can be
easily extended to handle different spatial scales and moving
actions.

2.1 Random Forest Indexing

To index the database for fast STIP matches, we employ
the unsupervised random forest structure [8]. In the off-line
phase, we construct N; trees independently and each tree
is a partition over the feature space. Once a new query
STIP arrives, we consider all the STIPs from the database
which fall on the same leaf as the query STIP, and use those
STIPs as the matches of the query STIP. There are sev-
eral benefits of random forest based indexing. First of all,
the trees are constructed in an unsupervised way so that
they are class-independent. This is of great significance for
action retrieval since we cannot determine ahead of time
what kind of action a user is going to retrieve. Second, ran-
dom forest based indexing is fast to evaluate. As shown
in [8], it is over 300 times faster than the LSH (Local Sen-
sitive Hashing)-accelerated nearest neighbor search scheme.
Third, by adding more trees in the forest, we can make our
matches more accurate. The outliers caused by the trees
have little impact due to the robustness of Hough voting
which will be discussed in the next section.

2.2 Hough Voting

To define the similarity function, we employ the frame
based Hough voting score [4]:

S(We[a,b] (X), Q) = Zte[a,b] qugg p([X: tL fq» ltl)

= Zte[a,b] quegp([x7ﬂ|fm ZQ)p(fq7 lq)7

)

where f; and I, refer to the feature description and loca-
tion of the gth STIP point in the query video, respectively.
p([x,t], fq,1q) is the probability that there exists a demanded
action in position [x,] and a matched STIP point dg in the
query. Since it is reasonable to assume a uniform prior over

fq and lg, we have

s(Vieta1 (%), Q) o< > > p([x,8]1fqs la)- ®3)

tcla,b] dgeQ

In order to compute p([x, t]|fq, lq), the query STIP d, should
be first matched with the STIPs in D. Although nearest
neighbor search and its approximated algorithms, e.g. Local
Sensitive Hashing (LSH), can give good match results, it is
extremely time consuming. Thus, a random forest indexing
is used here to improve the matching speed. Suppose we use
N trees to partition the feature space, every query STIP dq
will fall into one of the leaves in tree T; (T; C D) based on
fq- All the database STIPs that fall on the same leave as dq
are considered as the matches of d;. Then we have

S(We[a,b] (X y Q)

o< > Eip([xatHTivfqvlq)p(Tqu,lq)

t€la,bl dg€Q

= > 2 2 > pxtd|T, fo, la)p(Ti| fa, lg)
tela,b] dgeQ d; €D,d;€T;

(4)
where p(Ti|fq,lq) = N% Denote N7, to be the number
of points on the same leaf as d, in tree T;. For point
j, denote its spatio-temporal location as [X?Ti)’tZTi)}’j =
1,2,-+-, Nr,. Then p([x,t]|T3, fq,1q) can be computed with
kernel density estimation:

No. . N
1§ |I[%q — x, &5 — t]|I”
p([xatHTian7lq) = Z],Zlexp(i

), (5)

o2

where Z is a normalization constant and o2 is a bandwidth
parameter. Suppose lq = [Xgq,tq]. Denote cq to be the spa-
tial center position of query action. Consider the video se-
quence from which the jth STIP point is extracted at po-
sition [x{,,,t{,)]- This point casts a vote for the action
position in this video sequence. The voted action position,
(%], 7], is computed as

{‘é =).{{Ti) —p(xq — cq) (6)
=t ..
q (T3)

By setting different p, we can handle action sub-volumes
with different scales.

Although Hough voting is widely used in image analysis,
it is much less exploited in the action retrieval literature.
Our Hough voting strategy has the following advantages.
First, its computational complexity is much lower than that
of branch and bound search. Suppose the number of trees in
a forest is N, the tree depth is t4, the total number of STIPs
in the database is Np, and the number of STIPs in the query
video is Ng. Let us assume the STIPs in the database are
unformly distributed over different leaves of each tree. Then
the computational complexity of our Hough voting step is
in average O(NitaNg + Ny [%U\TQ)' In comparison, the
complexity of branch and bound is at least proportional to
the size of the spacetime volume, which is much larger than
the number of interest points Ng. As shown in Table. 2,
the computational cost for Hough voting step is very small.
Second, the Hough voting algorithm integrates the spatial
context of different STIP into consideration. This enables us
to have a more accurate search results compared with point
based branch and bound search [7]. Third, the Hough vot-
ing step can be seamlessly integrated into our action search

framework. In [7] Hough voting is utilized to refine the spa-
tial locations of detections in the optional refine step. This
is different from our work where Hough voting is to vote for
the candidate action centers.

2.3 Sub-volume Search

After Hough voting, we have a 3D score volume (if we
want to handle spatial scale changes of actions, it should
be 4D score volume). What we need to do is to locate the
temporal location a,b and spatial center x in Eq. 2. This
problem is traditionally known as Mazimum Subarray Prob-
lem [1]. Since the elements of our score volume are always
non-negative, we constrain the size of the sub-volume by
adding a regularization term. The score function Eq. 4 is
further defined as:

8(Vicjap) (%), Q) = s(Vigla,p) (%), Q) + (b —a+ 1)AS, (7)

where A is a small negative constant and S is spatial size
of the action. Alg. 1 gives an illustration of our algorithm.
We perform 1D sub-array search over different spatial posi-
tion and locate a subarray with the maximum summation
(Line 1 - 15). Based on the maximum summation, we can
back-travel to locate the sub-path (Line 16 - 19). From the
searched subarray, we can get the location of the retrieved
sub-volume, i.e. a,b and x.

In order to handle multiple scale action search, we can sim-
ply extend 3D score volume to 4D score volume with several
scale levels and add another loop over different scales. Sup-
pose our database is of spatial extent M x N and temporal
duration 7' and further assume we consider the number of
scale levels as S, the computational complexity of our sub-
volume search is O(MNT'S). In our experiments below, S
is fixed as 3. Hence, our sub-volume search is superior to
branch and bound search in [7, 9] whose worst complexity
is O(M2N?T).

So far, we have assumed that the spatial position of an
action does not change over time. We can relax this as-
sumption by using the method of [6] to handle the moving
actions, e.g., walking.

2.4 Implementation details

Since speed is an important aspect for action search sys-
tem, we employ several methods to reduce the computa-
tional cost. Similar to [7], we down-sample the 3D score
volume, both spatially and temporally. The difference be-
tween [7] and our Hough voting framework is that in [7], an
interest point votes for any sub-volume that contains this
point while in our framework, an interest point votes for a
particular sub-volume whose center is specified. In other
words, the relative spatial information is thrown away in [7]
while we take advantage of the relative spatial information.

By spatial down-sampling of score volume, it is possible
for us to handle high-resolution videos, e.g. 720p and 1080p,
which are quite popular nowadays. Besides, with the help of
temporal down-sampling, we can deal with extremely large

datasets. In our experiments, we set the spatial-downsampling

factor as 8 and temporal-downsampling factor as 2. As
shown in Table. 1 and Table. 2, our action search system
is superior to [8] not only on the precision but also on the
speed.

3. EXPERIMENTS

Although action retrieval is extensively exploited before,

Algorithm 1 Maximum Sub-array Search

Input:
3D score volume F € RM*NxT
Output:
Location of sub-volume Vi¢[q 4 (2), i.e. a,b,z = (x,y)

1: fori=1to M do

2 for j =1to N do

3 Set ¢:=0, g := —inf
4 fort=1to T do

5: Set ¢ :=c+ F(i,j,t)
6: if ¢<0 then

7 Set ¢c:=0

8: end if

9: if ¢>g then

10: Set g:=c

11: Set b:=t,x:=1i,y:=7
12: end if

13: end for

14: end for

15: end for

16: Set a :=b

17: whilea >1and g >0 do
18: Set g:=g— F(i,j,t),a:=a—1
19: end while

action search with localization is little discussed in the liter-
ature. In order to evaluate our system, we compare with the
recent work [8] and action detection [2]. Since they reported
quantitative experiment results on MSR II dataset [9], it is
easier for us to compare our results with theirs.

3.1 Experiments on MSRII

To give a quantitative results of our action retrieval sys-
tem, MSR II is employed as a database for search. Three
actions, handclapping, handwaving and boxing, are tested.
The query videos are randomly drawn from KTH [5]. The

evaluation measure is the same as [8]. To compute the preci-

Volume(VNG) 1
Volume(G) > 87 where

G is the annotated ground truth subvolume, and V is the
detected subvolume. On the other hand, to compute the
£ Volume(VNG) > l.
Volume(V') 8

Three algorithms are evaluated. They are (i) branch &
bound action retrieval [8], (ii) cross-dataset action detec-
tion [2] and (iii) our Hough voting based retrieval system.
Since (ii) is a detection algorithm, it utilized all the available
data (around 256 video clips) for training. Average preci-
sions for handclapping, handwaving and boxing actions are
listed in Table. 1. In order to handle boxing action with
different directions, (i) flipped the query video and provide
both clips as query. However, in our system (iii), we do
not flip the query video, and only use the original clip as
the query. According to the quantitative results, our algo-
rithm outperforms the state-of-the-art action retrieval sys-
tem. Due to the space limitation, we only give one illus-
trating example of handwaving action with top-7 retrieved
results in Fig. 1. The regions marked with blue color indi-
cate the retrieved spatial location of the action.

sion we consider a true detection if:

recall we consider a hit i

3.2 Experiments on wild videos
Another illustrating example is shown here with a wild

video database. The database is downloaded from the Youtube

Figure 2: Action retrieval results on a Hollywood movie segment. A three second long query video with drinking
action is shown in the first column where the images on the three rows in this column are its sample frames. The
second to fifth column list the top-4 retrieved results, respectively.

Action Type | B&B Search [8] | Action Detection [2] | Our Method
handclapping 0.2397 0.1316 0.3609
handwaving 0.4301 0.3671 0.5415
boxing 0.3029 0.1748 0.3166

Table 1: Average precisions for action retrieval and
action detection on MSR II database. The second
and fourth columns are for action retrieval. The
third column is for action detection.

and comes from one part of the movie called “Coffee and
Cigarettes”. 1t contains 3415 frames and includes several
drinking actions. We choose a query video with drinking
action around 3 seconds long and 99 frames. Fig. 2 shows
the top 4 retrieved results. The first column are the query
video where the three rows in the column are the example
frames from the video. The second to fifth columns are the
top 4 retrieved videos. The second column and the fifth col-
umn are false detections. The reason for the false detections
is that the motions in the two instances are similar to the
drinking motion.

3.3 Computational Cost

Table. 2 shows the total computation cost (CPU time
only) for branch and bound search system [8] and our sys-
tem. We use a single PC with 2.6GHz CPU and 3G memory,
which is almost the same environment as in [8]. We can see
that our max sub-path search algorithm is 30 times faster
than branch and bound action search. Overall, our system
is over 10 times faster than [8].

4. CONCLUSION

We proposed an action search system which is superior
to the state-of-the-art methods in terms of both the pre-
cision and the computational cost. By indexing the video
database with a random forest, our frame-based Hough vot-
ing obtains a 3D score volume very efficiently. The compu-

Method B&B Search (8] | Our Method
Voting time (s) 0.6 1.5
Search time (s) 24.1 0.8
Total Time (s) 24.7 2.3

Table 2: Comparison of the total computation time of
two action retrieval systems. The query video is 20 sec-
onds long and the database consists of 54 high resolution
videos with a total length of one hour. The task is to re-
trieve the 7 best matches from the database.

tational cost can be further reduced by spatial and temporal
down-sampling of the score volume. With the max sub-path
search, our algorithm quickly detects the spatio-temporal
positions of the action instances in the video database. The
experiments validate the effectiveness and efficiency of our
proposed system.

5. REFERENCES

[1] J. Bentley. Programming pearls: algorithm design techniques.
Communications of the ACM, 27(9):865-873, 1984.

[2] L. Cao, Z. Liu, and T. S. Huang. Cross-dataset action detection.
In CVPR, pages 1998-2005, 2010.

[3] I. Laptev. On space-time interest points. International Journal
of Computer Vision, 64(2):107-123, 2005.

[4] B. Leibe, A. Leonardis, and B. Schiele. Robust object detection
with interleaved categorization and segmentation. International
Journal of Computer Vision, 77(1-3):259-289, 2008.

[5] C. Schiildt, I. Laptev, and B. Caputo. Recognizing human
actions: A local svm approach. In ICPR (3), pages 32-36, 2004.

[6] D. Tran and J. Yuan. Optimal Spatio-Temporal Path Discovery
for Video Event Detection. IEEE CVPR, 2011.

[7] G. Yu, N. Goussies, J. Yuan, and Z. Liu. Fast action detection
via discriminative random forest voting and top-k subvolume
search. Multimedia, IEEE Transactions on, 13(3):507-517,
2011.

[8] G. Yu, J. Yuan, and Z. Liu. Unsupervised Random Forest
Indexing for Fast Action Search. IEEE CVPR, 2011.

[9] J. Yuan, Z. Liu, and Y. Wu. Discriminative subvolume search for
efficient action detection. IEEE CVPR, 2009.

