
Challenges of the Email Domain for Text Classi�cation

Jake D. Brutlag jakeb@microsoft.com

Christopher Meek meek@microsoft.com

Microsoft Research, One Microsoft Way, Redmond, WA, 98052 USA

Abstract

Interactive classi�cation of email into a user-
de�ned hierarchy of folders is a natural do-
main for application of text classi�cation
methods. This domain presents several chal-
lenges. First, the user's changing mail-
�ling habits mandate classi�cation technol-
ogy adapt in a dynamic environment. Sec-
ond, the classi�cation technology needs to be
able to handle heterogeneity in folder con-
tent and folder size. Performance when there
are only a small number of messages in a
folder is especially important. Third, meth-
ods must meet the processing and memory re-
quirements of a software implementation. We
study three promising methods and present
an analysis of their behavior with respect to
these domain-speci�c challenges.

1. Introduction

Electronic mail is one of the primary applications of
the Internet. Users of electronic mail often organize
their messages into custom hierarchies of folders. A
task routinely performed by users is �ling mail from an
Inbox into this hierarchy. This �ling task may become
tedious if the user has a high volume of mail or the
user has a large number of �ling folders.

In this age of `smart agent' computing, it is natural to
propose an intelligent agent to tackle the email �ling
task. One role for such an agent is that of surrogate. In
this role, an email classi�cation agent processes incom-
ing messages and �les them for the user. The action of
such an agent is automatic, and need not be restricted
to �ling. For example, Re:Agent, developed at Geor-
gia Tech, incorporates the actions of delete, forward,
and autoreply (Boone, 1998).

A second role for a smart agent is that of an assistant.
In this role, the agent interacts with the user, provid-
ing assistance as the user processes messages. For the
�ling task, this interactive agent proposes candidate

folders for a message. This leaves the user in con-
trol of message processing while easing the cognitive
burden of �ling (Boone, 1998; Segal & Kephart, 1999).

In this paper we focus on three challenges of apply-
ing classi�cation technology to the problem of inter-
active email �ling. The challenges are dynamic na-
ture of the email domain, the heterogeneous nature of
folder content and of folder sizes, and practical mem-
ory and CPU limitations of an implementation. We
evaluate three types of text classi�cation methods with
respect to these challenges. In particular, we compare
a batch support vector machine (SVM) to two incre-
mental approaches to text classi�cation. We show that
the incremental algorithms perform competitively for
our classi�cation task. Section 2 describes the email
domain, and speci�c challenges that arise in that do-
main. Section 3 discusses text classi�cation methods
considered, and the motivation for considering those
methods. Section 4 presents the results of an evalu-
ation of the selected methods on data extracted from
user mail stores. Section 5 concludes with a discussion
of the results.

2. Challenges of the Domain

The email domain presents several challenges for an
interactive �ling agent.

An email system is a dynamic environment. In an
email system, \folders and messages are constantly
being created destroyed, and reorganized" (Segal &
Kephart, 1999). For text classi�cation, this has two
rami�cations. First, the number of classes may change
over time. Second, the content associated with class
labels may change over time.

User folder hierarchies contain a large number of

sparse folder. Sparcity refers to the number of mes-
sages �led into a folder. A 1996 user study of 20 users
conducted by Whittaker and Sidner at Lotus found
35% of the average user's folders contain fewer than
three messages (Whittaker & Sidner, 1996). On the
other hand, it is not uncommon for folder hierarchies



to contain one or more dense folders, which contain
hundreds of messages. In general, there is a signi�cant
amount of variance in the sizes of folders in a hierarchy.

User folder hierarchies are heterogeneous. Creating
a set of �ling folders is a diÆcult task (Whittaker &
Sidner, 1996), and the resulting hierarchy is unlikely to
resemble a well-de�ned topical hierarchy. Folders in a
hierarchy may overlap in content, and a subfolder may
not represent a subtopic of the parent folder content.

User folder content is heterogeneous. Heterogeneity
refers to the similarity of text content between mes-
sages �led into the same folder. In the mail stores col-
lected for our evaluation, folder labels included `Per-
sonal' and `Fun'. We can assume the contents of these
folders are as vague as labels. This can be a problem
for both sparse and dense folders. In a dense folder,
the \relationships between di�erent messages in the
folder become tenuous" as more messages accumulate
(Whittaker & Sidner, 1996).

A software implementation must minimize memory

and CPU impact. In both client-side and server-side
implementations, excessive computation or a large in-
memory footprint will adversely impact the user's ex-
perience and limit the scalability of the solution.

3. Text Classi�cation Technologies for

Email

In this section we brie
y describe text classi�cation
as applied to the email domain. We then describe
three broad classes of classi�ers and describe the three
speci�c classi�cation technologies used for our evalua-
tion. The speci�c classi�cation technologies are a sup-
port vector machine (SVM), a TF-IDF classi�er, and
a simple language model called the unigram model.
Previous work has demonstrated that support vector
machines (SVMs) are exceptionally well suited to text
classi�cation. (Dumais, Platt, Heckerman, & Sahami,
1998) Unfortunately, SVMs have several shortcomings
with respect to the challenges of our domain. We de-
scribe each of the methods focusing on issues related
to the challenges of our domain.

3.1 Text Classi�cation

In the email classi�cation problem we have a set of
email documents, the test documents, that are to be
classi�ed into a set of folders (the classes). We are
given a set of folders that contain email documents
that have previously been �led by a user. These docu-
ments are the training documents. Each training doc-
ument has a class label by virtue of the fact that it is
a member of some folder.

We use the term learning to denote the process by
which a set of labeled training examples are used to
create a set of classi�ers for new documents. Batch

learning occurs when a batch of labeled documents is
accumulated and processed simultaneously. The clas-
si�er is �t or updated once for the batch. In con-
trast, incremental learning updates the classi�er for
each document, processed one-by-one. Using an incre-
mental learning system as opposed to a batch system is
one means of addressing the dynamics of the email do-
main. However, some classi�cation technology is not
amenable to incremental learning.

An important choice in designing a text classi�er is the
choice of how to represent or featurize the text docu-
ments. We convert each text document into a vector
representation in which each component of the vector
represents a unique word. In a word-frequency vec-
tor, each component records the number of times the
word occurs in the document. In a word-occurrence
vector, each component indicates the presence or ab-
sence of the word in the document. However, email
messages are more than free-form text. While the
body of a message is unstructured text, a message
also contains a structured header. The header �elds
include the sender (the From �eld), a list of recipi-
ents (the To �eld), and short description (the Subject
�eld). We treat the text in the From, To, Subject, and
Body �eld separately (Cohen, 1996). For example, if a
name `Thomas' appears in the From, Subject and Body
�elds, it is recorded in three separate components of
the word-frequency or word-occurrence vector.

A technique for managing the computational costs as-
sociated with text classi�cation is feature selection.
For our application, feature selection amounts to prun-
ing the word list. A reduced feature set decreases
the CPU and memory demands of an implementation
through reduced featurization costs, decreased train-
ing time, and a smaller footprint for the classi�ers.
There are a variety of computationally inexpensive
methods that can be applied globally across a set of
classi�ers. One such method for the email domain is
to ignore all features associated with the body of the
message. We evaluate using only header information
for classi�cation in section 4.5.

A conventional approach to feature selection is to use a
scoring criteria to choose among the available features.
In the email domain the global feature set (words) is
not static and the relevant features for discrimination
may change over time as folder contents evolve. The
results of feature selection and projection may be in-
validated by a single new example, especially in the
case of a sparse folder with one or two messages. Typ-



ically, feature selection, projection, and retraining are
too CPU-intensive to perform in real time whenever
a single new example is added to a folder. Therefore,
methods that rely on feature selection to control com-
putational cost are often only used in a batch learning
mode. This is a signi�cant drawback in the dynamic
email �ling domain.

3.2 Discriminant Classi�ers

Word-frequency or word-occurrence vectors are points
in a high dimensional space. The discriminant ap-
proach attempts to partition this space into regions
for each class using the labeled examples according to
an optimization criteria.

In our experiments using discriminant methods and in
particular SVMs, we �t a separate (two-way) classi�ers
for each folder where each classi�er distinguishes be-
tween members and non-members for the folder. As-
suming each classi�er assigns a probability of mem-
bership, the classes can be ranked according to prob-
able membership. Some discriminative methods can
be used to construct a single N-way classi�er which
partitions the high dimensional space into N classes
associated with one class for each folder. However,
this is often a computationally expensive optimization
problem, and presupposes the classes are mutually ex-
clusive. In addition to simplifying the optimization
problem, using the approach of building separate clas-
si�ers, one can retrain individual classi�ers as needed
making the approach more incremental.

In a preliminary analysis of discriminative methods,
we compared several methods, including single-layer
(perceptron) neural networks, decision trees, linear
discriminant analysis (LDA), and linear support vector
machines (SVMs). As identi�ed by other researchers
(Dumais et al., 1998; Yang & Liu, 1999), we found lin-
ear SVMs are often the best discriminant classi�ers.
Therefore, we decided to select linear SVMs as a rep-
resentative discriminant classi�er. Our methodology
for application of this method closely follows that of
(Dumais et al., 1998).

A linear SVM is a hyperplane that separates a set of
positive and negative examples with maximum mar-
gin, assuming the points are linearly separable (Platt,
1998). The margin is the distance from the hyperplane
to the nearest of the positive and negative examples.
In the case where points that are not linearly separa-
ble, slack variables are introduced which permit, but
penalizes, points that violate the margin.

The linear SVM optimization criteria is:

min 1

2
kwk2 + C

Pn

i=1
�i

subject to yi(w � xi � b) � 1� �i 8i (1)

where: w denotes the normal vector of the hyperplane
and b is a scalar o�set. The word-frequency or word-
occurrence vector of example i (of n) is denoted by xi,
the �i are the slack variables and yi is the target (+1
for examples belonging to the class, -1 for those that
do not). Finally, C is a tuning parameter that trades
o� the number and magnitude of margin failures with
the margin width.

An e�ective algorithm for optimizing this criteria is Se-
quential Minimal Optimization (SMO) (Platt, 1998).
The eÆciency of this algorithm implies that a sizeable
portion of the CPU cost of applying linear SVMs to the
email classi�cation task is feature selection and featur-
ization. This approach requires that the training ex-
amples be stored in memory during the optimization.
Thus, there is a potentially signi�cant memory cost
associated with training and a possible cost associated
with refeaturization if the implementation chooses not
to store the featurized messages.

The classi�cation function for a linear SVM is w �x�b,
for a incoming feature vector x. This score is trans-
lated via a sigmoid function to the posterior proba-
bility that x belongs to the folder represented by the
class. In our experiments, C was set according to an
empirical scaling rule derived from experiments on in-
dependent data sets.

Following the methodology of Dumais et al. (1998) we
use mutual information for feature selection and word
occurrence vectors. In our preliminary analysis, we
experimented with feature sets of size 500, 1000 and
2000. Our results showed a signi�cant improvement in
accuracy for 1000 features over 500, but an insignif-
icant di�erence between 1000 and 2000 features. In
this paper, we present results for 1000 features.

3.3 TF-IDF Classi�ers

TF-IDF classi�ers, also referred to as Information Re-
trieval (IR) classi�ers, represent each class with a sin-
gle vector in the feature space. This centroid is a
vector of weights and each weight is the product of
term frequency (TF) and inverse document frequency
(IDF). For each folder, a similarity score is computed
between the word-frequency vector of the incoming
message and the folder centroid. The folders can then
be ranked according to the scores.

The term frequency for each word is a measure of the
relevancy of that word within the class (folder). The
document frequency is a measure of the global impor-
tance of the word (across all folders). The TF and



IDF expressions vary with the classi�er, but they are
designed to be simple to compute from a set summary
statistics for features within each folder and across all
folders. The computations are simple enough that they
can be deferred until classi�cation; therefore learning
reduces to collecting and updating the statistics. As
these statistics can be updated incrementally, TF-IDF
classi�ers support incremental learning.

The similarity measure also varies with the classi�er,
but it is usually some form of normalized dot prod-
uct between the class centroid and the message word-
frequency vector.

In this investigation, we focus on the incremental TF-
IDF classi�er applied to interactive email classi�cation
by Segal and Kephart (Segal & Kephart, 1999).

The following expressions de�ne the term frequency
(TF) and inverse document frequency (IDF) compo-
nents of the IR classi�er (Segal & Kephart, 1999):

TF (w; f ) = rate (w; f)/rate(w; corpus) (2)

IDF (w) =
�
#folders/#folders with w

�2
(3)

where rate(w; f) is the number of times w occurs in f

divided by the total number of words in f . In many
IR approaches, the TF component is a function of the
within class frequency alone, not the within class fre-
quency and the global frequency. Note that because
of the computational overhead for feature selection de-
scribed in Section 3.1 we do no feature selection for the
IR method.

For the IR classi�er, the TF-IDF weight selects for
words with a relatively high within folder rate that
occur within very few folders. The square function in
equation 3 drastically increases the weight of special-
ized words; other TF-IDF classi�ers substitute a log
or identify function in the IDF component.

The similarity score for the IR classi�er is SIM4 (Segal
& Kephart, 1999):

Sim (m;f) =

P
w
count(w;m)TF (w; f) IDF (w)

min
�P

w
count(w;m);

P
w
TF (w; f) IDF (w)

�
(4)

The sums in equation 4 are all over the unique words
in the message to be classi�ed. The numerator of the
SIM4 score is the dot-product of the message word-
frequency vector and the classi�er weight vector; SIM4
is a variation of the cosine distance.

The net e�ect of the IR classi�er is to identify special-
ized keywords, preferably keywords unique to a single

class. In a folder hierarchy with a large number of
folders, a unique keyword match between the message
and the folder can dominate the similarity score.

3.4 Language Models

Developed for speech, language models attempt to pre-
dict the probability of the next word in an ordered
sequence (Goodman & Chen, 1996). Language mod-
els attempt to describe the generation of the string of
words in a text document.

Suppose w1; : : : ; wm are the words in-sequence of an
incoming message. Then a natural language model
proposes a likelihood of that sequence given a partic-
ular folder f , i.e. p(w1; : : : ; wmjf).

p(w1; : : : ; wmjf) = p(w1jf)p(w2jw1; f)

: : : p(wmjwm�1; : : : w1; f) (5)

Language models use various approximations of
the terms in the RHS of Equation 5, e.g.,
p(wijw1; : : : ; wi�1; f) � p(wijwi�1; f). To obtain
p(f jw1; : : : ; wn) one simply applies Bayes Rule. Us-
ing a uniform prior over the folders, as we do in our
experiments, leads to a posterior proportional to the
likelihood, p(f jw1; : : : ; wm) / p(w1; : : : ; wmjf). The
folders are ranked according the posterior probabili-
ties to �nd the folders most likely to have generated
the message.

For a variety of language models, simplifying assump-
tions can be made in estimating the probabilities on
the RHS of equation 5 such that the models are
amenable to incremental learning. The unigram lan-
guage model is such a model. In our evaluation, we
evaluate a unigram classi�er.

The Unigram classi�er is a simple language model.
The Unigram model assumes that each word occurs in
a message independently of all others given the folder:

p(wkjwk�1; : : : w1; f) = p(wkjf) 8k (6)

In this case, w1; : : : wm are a sample from a Multino-
mial distribution with a parameter vector �. The max-
imum likelihood estimate of �wk , the component of �
corresponding to the word wk, is simply the within-
folder rate of wk. A smoothed estimate of �wk is ob-
tained using the global rate of occurrence for wk:

�̂wk = p (wkjf) =
count (wk; f) + � (globalrate (wk))

wordcount (f) + �
(7)

Here � is a smoothing parameter. This smoothed es-
timate avoids the pitfall of a zero estimate for words
that do not occur in a speci�c folder. New words in



an incoming message (not yet observed in any folder)
are removed from the message prior to computing the
likelihood. This embodies the assumption that the
likelihood of a new words is the same for each folder.
Note that because of the computational overhead for
feature selection described in Section 3.1 we do no fea-
ture selection for the unigram method.

The Unigram classi�er supports incremental learning
because it only depends on these rates, which are sim-
ple to compute from feature within folder statistics.

This method of estimation for the parameters in the
Unigram classi�er is an approximate empirical Bayes
approach. The prior counts of the Dirichlet prior are
the global rates of each word scaled by �. In our ex-
periments we provide results with � = 1.

3.5 Other Approaches

Classi�cation approaches are not limited to these three
categories and each category admits a wide variety of
alternatives. One class of alternative methods utilize
hierarchical information. As mail store folders are or-
ganized into a hierarchy, this may seem to be a promis-
ing approach. In fact, researchers have illustrated the
bene�ts of hierarchical classi�cation when the hier-
archy of categories represents a hierarchy of content
(Koller & Sahami, 1997). However, a hierarchy of
email folders is not guaranteed to be a hierarchy of
content categories and our preliminary analysis of one
hierarchical method supports this view. Furthermore,
survey data suggests that the folder hierarchies of user
mail stores are often 
at.

4. Evaluation

We conducted an experiment on �ve user mail stores
to address the following goals:

� Compare the accuracy of the three classi�ers to
establish that incremental learning methods o�er
competitive accuracy despite heterogeneous folder
content and size.

� Assess the performance of classi�ers with respect
to sparse folders.

� Compare the accuracy of restricting input to mes-
sage headers versus featurizing the entire message
(including headers).

The characteristics of the user mail stores are summa-
rized in Table 1. The �rst two columns list the number
of non-empty folders and total message count in the

Table 1. Characteristics of User Mail Stores.

Store # f # Mess. % Mess. in % Mess. in Avg Mess.
Folder < 10 Folder < 20 Depth

H 670 10262 15% 28% 3.369
M 144 1427 19% 43% 3.66
T 14 766 1% 10% 1.975
P 23 1783 2% 5% 2.28
D 387 7448 10% 28% 2.97

hierarchy. A folder is considered empty if it has sub-
folders, but does not directly contain any messages.
The third and fourth columns list the percentage of
all messages contained in folders with fewer than 10 or
20 messages. The �fth column lists the average mes-
sage depth for messages in the hierarchy. The message
depth for a message is its depth in the hierarchy where
a depth of one means the message is in the root folder.

These mail stores were not randomly selected, and are
atypical in the context of data available from surveys
(Whittaker & Sidner, 1996). Nevertheless, they rep-
resent a diverse set of stores, which will provide an
accurate picture of the relative behavior of the classi-
�ers considered.

4.1 Experiment Setup

It is diÆcult to collect data directly from a dynamic
email system. Instead, we performed experiments on
static data sets. First, for each mail store, we extracted
and featurized all mail messages. Then a preprocessing
step applied a Zipf �lter to each data set. In our case
this �lter removes common words using a stop word list
and extremely rare words (those words that occurred
only once in the mail store). Note that this �lter does
not have a signi�cant e�ect on the results but reduces
the processing time signi�cantly.

We split each mail store data set into training and test
sets. For each folder in a mail store, the most recent
20% of messages were selected for the test set. Note
for some very sparse folders, no messages were selected
for the test set.

Learning occurred for each of the classi�ers on the
training data. The linear SVMs trained on word-
occurrence vectors for each message. Using the two-
way classi�er approach described in section 3.2, we
trained a separate linear SVM for each folder, with the
positive examples consisting of all messages belonging
to that folder. The negative examples were a sample
of messages from all other folders (in the case of User
H and User D a 25% sample, a 100% sample for the
other users). The IR and Unigram classi�ers trained
with the word-frequency vectors.

We assessed classi�cation accuracy for each classi�er



using the test examples. The incremental classi�ers,
IR and Unigram, were permitted to learn after the
presentation of each test message. The test messages
were presented folder by folder in temporal order (not
in overall time order).

The train/test split does not exactly correspond to
classi�cation problem in the dynamic email environ-
ment. A more realistic split would be to select the
most recent 20% of all messages for the test set, in-
stead of by folder. While more realistic, such a split
penalizes the linear SVMs because they cannot adapt
(without retraining) to new folders and all messages
in such folders would be treated as automatic classi�-
cation failures. Our split also guarantees that we will
have suÆcient data to evaluate the performance of the
methods on various folder sizes.

4.2 Evaluation Criteria

All of the classi�ers yield a ranked list of folders. Given
this list, suppose the agent proposes the �rst M fold-
ers to the user. A natural evaluation criterion is the
percentage of messages in the test for which one of the
top M proposed folders is correct. While Segal and
Kephart (1999) use this criterion for evaluating their
IR classi�er, most comparative studies of text classi-
�cation methods have used other criterion related to
precision and recall or `best guess' accuracy (Yang &
Liu, 1999).

One consequence of the top M criteria is to deempha-
size the single `best guess' accuracy, which is required
for an automatic system. We report results on M = 5.
Although this choice is somewhat arbitrary, our pre-
liminary experiments suggested that di�erences in best
guess accuracy between two classi�ers faded for top 3
or top 5 accuracy. For example, there is a sharp dif-
ference between the single best guess accuracy on the
User D mail store between the linear SVM and IR
methods is 13% (linear SVM: 69%, IR: 56%). For top
3 accuracy the gap is 2% (linear SVM: 81%, IR: 79%)
and for the choice M = 5 accuracy is statistically in-
distinguishable (linear SVM: 85.7%, IR: 85.1%).

4.3 Overall Accuracy

Figure 1 displays the accuracy results for all �ve mail
stores, using complete messages (headers and body) as
input. We draw several conclusions from these results:
� Accuracy varies more between mail stores than
between classi�ers.

� No classi�er is consistently superior to the others.

� Classi�cation accuracy is highest for the two mail
stores with the lowest proportion of sparse folders.

0%

20%

40%

60%

80%

100%

D H M P T

Mail Store

A
c
c
u
r
a
c
y

IR linear SVM Unigram

Figure 1. Top 5 Accuracy by Mail Store and Classi�er: En-
tire Message

Table 2. Top 5 Accuracy by Folder Size: Entire Message.

Store Class 1-5 6-10 11-19 20-49 50-99 100+

H IR 75.8% 76.0% 78.0% 68.8% 65.1% 57.4%
H Uni 28.4% 37.2% 51.4% 66.2% 82.1% 94.4%
H SVM 39.3% 44.8% 65.4% 75.9% 82.7% 89.4%

M IR 78.3% 74.0% 91.2% 77.1% N/A N/A
M Uni 59.4% 62.0% 88.2% 89.6% N/A N/A
M SVM 56.5% 64.0% 86.8% 94.4% N/A N/A
D IR 88.8% 91.1% 89.8% 85.2% 78.9% 84.0%
D Uni 45.6% 70.8% 75.3% 76.4% 91.7% 97.3%
D SVM 56.8% 75.6% 81.8% 87.6% 90.1% 98.0%

4.4 Accuracy by Folder Size

Although overall accuracy for the three classi�ers is
similar, Table 2 indicates striking di�erence in the per-
formance on sparse and dense folders. In Table 2, the
top 5 accuracy is decomposed by the folder size of the
correct classi�cation of each test message. Users P
and T are excluded due to an insuÆcient number of
test messages or folders. Folder size is de�ned as the
number of messages in the training set from the folder.

A number of clear patterns emerge in Table 2:

� The IR classi�er o�ers the best performance for
test messages from sparse folders. This comes at
the cost of a signi�cant reduction of accuracy for
test messages from dense folders.

� The Unigram and linear SVM classi�ers are very

Table 3. Absolute di�erence in Top 5 Accuracy (Headers
only accuracy - Entire Message accuracy).

Store IR linear SVM Unigram
D -0.31% -4.37% 1.11%
H 1.25% -4.91% -1.87%
M 5.44% -4.53% 2.72%
P 2.31% 2.31% -2.31%
T 0.64% -4.46% -2.55%



Table 4. Top 5 Accuracy by Folder Size: Headers Only.

Store Class 1-5 6-10 11-19 20-49 50-99 100+
H IR 65.3% 74.0% 78.0% 73.8% 65.4% 64.5%
H Uni 63.8% 68.0% 70.1% 64.0% 58.5% 65.4%
H SVM 48.0% 55.2% 60.8% 63.8% 63.7% 84.6%
M IR 78.3% 82.0% 89.7% 88.2% N/A N/A
M Uni 79.7% 70.0% 86.8% 81.9% N/A N/A
M SVM 62.3% 62.0% 83.8% 83.3% N/A N/A

D IR 78.1% 88.7% 90.6% 83.2% 84.7% 86.0%
D Uni 76.9% 86.3% 84.0% 76.4% 81.4% 82.5%
D SVM 64.5% 75.6% 79.3% 74.7% 83.1% 94.8%

accurate for test messages from dense folders, but
are signi�cantly worse than the IR method on test
messages from sparse folder.

� To some degree, the accuracy of all three classi-
�ers is a monotonic function of folder size. This
holds strictly for the Unigram and linear SVM
classi�ers, and holds approximately for the IR
classi�er (accuracy of the IR on User M mail store
is the exception).

4.5 Accuracy of Headers Only

Table 3 displays the absolute di�erence between the
top 5 classi�cation accuracy using the entire message
and headers only. These results suggest that message
bodies are largely super
uous for the email classi�ca-
tion task. For the Unigram and linear SVM classi-
�ers, disregarding the message body harms accuracy,
although only slightly. The accuracy of IR improves
slightly. This is likely due to the keyword mechanism
of IR.

By restricting attention to only the headers one can
signi�cantly reduce the number of distinct features.
For example, the number of unique features (post-Zipf
�lter) for the user with the largest mail store, User H,
decreases from approximately 72,000 to 14,000 when
the message bodies are discarded. The decrease is not
as dramatic for other users but, for instance, the mail
store for User P contains approximately 3,000 unique
features restricted to headers only (post-Zipf �lter).

Table 4 displays top 5 accuracy by folder size for head-
ers only input. Many of the same trends noted in sec-
tion 4.4 are evident, although mitigated to some ex-
tent. For example, the gap between the IR classi�er
and the other classi�ers for sparse folders, while still
signi�cant, is less pronounced than in Table 2.

5. Discussion

5.1 Accuracy

The results in Figure 1 and Table 3 illustrate that in-
cremental learning methods o�er competitive accuracy

as compared with the discriminative SVM method.
This is somewhat surprising because previous research
has shown SVMs to be exceptionally good at text clas-
si�cation (Dumais et al., 1998). One might expect dis-
criminant methods to outperform the other methods
in the email domain given the heterogeneity of folder
content. In particular, the TF-IDF models and un-
igram models are essentially centroid based methods
and in our SVM method each of the messages is pre-
served individually and used in the training. These
performance results may be due, in part, to the top 5
evaluation criteria, but we believe this is a better met-
ric for interactive email classi�cation than single `best
guess' accuracy. Of course, it might be possible to im-
prove the performance the SVM or other discriminant
classi�cation technology through incremental adapta-
tion, alternative feature selection methods, or alterna-
tive featurization methods.

5.2 Sparse Folders

Given the data in Table 2, a natural question is
whether any classi�er can o�er consistent accuracy
across all folders sizes. We speculate that the perfor-
mance of classi�ers will vary on test messages from
sparse and dense folders. This speculation is sup-
ported by experimental evidence of Yang on an alter-
native performance criterion (Yang & Liu, 1999). Our
speculation is based on the fact that the ranking of
folders creates a competition between dense and sparse
folders. If the mechanics of a classi�er upweight the
scores of sparse folders, then sparse folders will move
towards the top of the list. For example, the IR looks
for a few keywords that occur in a small number of
folders. The weight of a keyword in the score is the
ratio of the within-folder rate to the global rate. In
a sparse folder, this ratio is likely to be large, simply
because there are fewer words in the folder. A sim-
ilar argument holds for classi�ers that upweight the
scores of dense folders. The Unigram classi�er, for ex-
ample, works by identifying the number of matching
words. It is more signi�cant that a word occurs in a
folder, and less signi�cant that it occurs a large num-
ber of times. Each word that does not match adds a
heavy penalty to the posterior probability. Dense fold-
ers have many more words, and are therefore likely to
generate a higher number of matches.

The speculation that it will be diÆcult to �nd a clas-
si�er that performs consistently across all folder sizes
does not preclude signi�cant improvement over the re-
sults presented in this paper. We experimented with
tuning the C parameter of linear SVMs in an attempt
to improve performance on small folders. By tuning
the C parameter of the SVMs we were able to im-



prove the performance on smaller folders without sig-
ni�cantly degrading the performance on larger folders.
We also experimented with variants of the Unigram
classi�er. Our modi�cations of the unigram actually
perform better in all folder size categories than the
Unigram classi�er when the input consists of entire
messages but not for headers alone . These extensions
will be described in a longer version of this paper.

5.3 Computational Costs

Both of the incremental learning methods require
maintenance of a feature index. This index translates
into a larger in-memory footprint for the smart agent.
In addition, the size of the index is not �xed, but
grows as new features are introduced. The memory
footprint for Linear SVMs is �xed because weights are
only stored for a �xed number of features. However,
this bene�t comes at a cost. Primarily due to feature
selection and featurization, initial training for linear
SVMs is CPU-intensive. Furthermore, the CPU cost
and memory cost must be paid periodically to keep
the classi�er up to date. These costs make SVMs less
amenable to incremental adaptation. Of course the
initial training for the IR and Unigram classi�ers can
be signi�cant; it consists of compiling a feature index,
featurizing each mail message and collecting statistics.
While this is a considerable cost, the ability to do in-
cremental adaptation means that it is a one-time cost.

The computational cost for performing classi�cation
is minimal for all three methods. The score (or prob-
ability) for each folder involves a sum (the Unigram
operates with log probabilities) that is linear in num-
ber of features in the incoming message.

Of course, both the memory and CPU pro�le are im-
proved by restricting input to headers only. Further-
more, our experiments suggest the loss of accuracy
versus featurizing the entire message might be accept-
able with respect to the top 5 evaluation criteria. In
particular, as noted in Section 3.1, restricting input
to messages headers reduces the cost of featurization.
Another consequence is signi�cant reduction of the fea-
ture index, and hence the memory footprint of incre-
mental learning methods. Using only the headers can
also reduce the cost of feature selection and projection
for a discriminative method such as our SVM. In fact,
because linear SVMs can be �t eÆciently when there
are several thousand features it may eliminate the need
for the feature selection altogether. Other memory is-
sues related to training SVMs might be addressed by
sampling the training data. While it may be possible
to address the computational costs of applying dis-
criminative methods such as SVMs to the interactive

email classi�cation problem, our results demonstrate
that one can resort to computationally tractable in-
cremental classi�ers without sacri�cing accuracy.

References

Boone, G. (1998). Concept features in re:agent, an in-
telligent email agent. In Proceedings of the Second

International Conference on Autonomous Agents,
pp. 141{148.

Cohen, W. W. (1996). Learning rules that classify e-
mail. In Proceedings of the American Association

of Arti�cial Intelligence Spring Symposium on Ma-

chine Learning and Information Access.

Dumais, S., Platt, J., Heckerman, D., & Sahami, M.
(1998). Inductive learning algorithms and represen-
tations for text categorization. In Proceedings of

the Seventh International Conference on Informa-

tion and Knowledge Management, pp. 148{155.

Goodman, J., & Chen, S. (1996). An empirical study
of smoothing techniques for language modeling. In
Proceedings Thirty-fourth Annual Meeting of the As-

sociation of Computational Linquistics, pp. 310{318.

Koller, D., & Sahami, M. (1997). Hierarchically clas-
sifying documents using very few words. In Proceed-

ings of the Fourteenth International Conference on

Machine Learning, pp. 170{178.

Platt, J. C. (1998). Msr-tr-98-14: Sequential minimal
optimization: A fast algorithm for training SVMs.
Tech. rep., Microsoft Research, Redmond, WA.

Segal, R. B., & Kephart, J. O. (1999). Mailcat: an
intelligent assistant for organizing e-mail. In Pro-

ceedings of the Third International Conference on

Autonomous Agents, pp. 276{282.

Whittaker, S., & Sidner, C. (1996). Email over-
load: exploring personal information management
of email. In Conference Proceedings on Human Fac-

tors in Computing Systems, pp. 276{283.

Yang, Y., & Liu, X. (1999). A re-examination of text
categorization methods. In Proceedings of the Spe-

cial Interest Group on Information Retrieval, pp.
42{49.


