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The Smartphone As a Platform for
Wearable Cameras in Health Research

Cathal Gurrin, PhD, Zhengwei Qiu, MSc, Mark Hughes, PhD, Niamh Caprani, MSc,
Aiden R. Doherty, PhD, Steve E. Hodges, PhD, Alan F. Smeaton, PhD

Background: The Microsoft SenseCam, a small camera that is worn on the chest via a lanyard,
increasingly is being deployed in health research. However, the SenseCam and other wearable
cameras are not yet inwidespread use because of a variety of factors. It is proposed that the ubiquitous
smartphones can provide a more accessible alternative to SenseCam and similar devices.

Purpose: To perform an initial evaluation of the potential of smartphones to become an alternative
to a wearable camera such as the SenseCam.

Methods: In 2012, adults were supplied with a smartphone, which they wore on a lanyard, that ran
life-logging software. Participants wore the smartphone for up to 1 day and the resulting life-log data
were both manually annotated and automatically analyzed for the presence of visual concepts. The
results were compared to prior work using the SenseCam.

Results: In total, 166,000 smartphone photos were gathered from 47 individuals, along with
associated sensor readings. The average time spent wearing the device across all users was 5 hours 39
minutes (SD�4 hours 11minutes). A subset of 36,698 photos was selected for manual annotation by
fıve researchers. Software analysis of these photos supports the automatic identifıcation of activities
to a similar level of accuracy as for SenseCam images in a previous study.

Conclusions: Many aspects of the functionality of a SenseCam largely can be replicated, and in
some cases enhanced, by the ubiquitous smartphone platform. This makes smartphones good
candidates for a new generation of wearable sensing devices in health research, because of their
widespread use acrossmany populations. It is envisioned that smartphoneswill provide a compelling
alternative to the dedicated SenseCamhardware for a number of users and application areas. Thiswill
be achieved by integrating new types of sensor data, leveraging the smartphone’s real-time connec-
tivity and rich user interface, and providing support for a range of relatively sophisticated
applications.
(Am J Prev Med 2013;44(3):308–313) © 2013 American Journal of Preventive Medicine
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s
Introduction

As highlighted elsewhere1–5 in this special issue,
the Microsoft SenseCam6 increasingly is being
deployed in a preventive medicine context and

arly results are promising. However, despite its poten-
ial, it is not yet in widespread use at the population level.
ne hurdle to adoption of the SenseCam may be the
ecessity for users to purchase, maintain, and operate a
edicated hardware device. Although the benefıts for
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ome users may make this effort worthwhile,7 it is pro-
posed that adoption at scale would be facilitated greatly if
the SenseCam functionality largely could be integrated
with a device that users already own and are accustomed
to charging and maintaining. An obvious avenue is the
increasingly ubiquitous smartphone.
Previous research has shown that smartphones can be

usedas aplatform for lifestylemonitoring.8,9However, until
recently, smartphones have not been able to passively sam-
ple a broad range of lifestyle health-related behaviors as
effectivelyasSenseCambecauseofanumberof issues.These
include battery lifetime while capturing photos, limited
built-in sensing, limited fıeld-of-view, and form factor.
In particular, using a smartphone for sampling life

activities naturally poses a challenge in terms of battery
usage.10 To be an effective life-sampling tool, a smart-

hone needs to operate all daywithout requiring recharg-
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ing, in a manner similar to the SenseCam. Fortunately, a
number of recent explorations of power-effıcient sensing
and communication with smartphones can be leve-
raged to provide all-day operation. Examples include the
ACQUA(AcquisitionCost-AwareQueryAdaption) frame-
work,11 power-optimized scheduling of data transfer,12 and
the life-sampling tool of Qiu et al.13

There potentially would be several benefıts to using a
smartphone as a SenseCam replacement. Automatic up-
load of sensed data to a cloud-based server for processing
could open up a number of possibilities for real-time data
analysis and intervention. The smartphone’s networking
hardware also could be used to record the user’s proxim-
ity to WiFi networks and other users’ Bluetooth devices
throughout the day. Such data could provide valuable
information on the whereabouts of the wearer and their
interactions with other people.14 GPS sensing, now com-
onplace in smartphones, provides additional location

nformation that could be utilized.
In this work, a smartphone application was developed

hat operates in a manner similar to a SenseCam, and it is
hown that the smartphone can capture accurate and
eaningful life activities over a full day. Data were sam-
led constantly from the full gamut of built-in sensors:
ccelerometer, compass, camera, GPS, Bluetooth, micro-
hone and WiFi, as well as from external sensors via
luetooth.13 Although some SenseCam sensing modali-
ies such as temperature and light level are missing, for
any applications the smartphone provides a substan-

ially richer sensor set than the SenseCam. It also has the
bility to support a larger suite of lifestyle and behavior
nalysis tools.
Although the SenseCam was designed especially as a
earable device, the smartphone is, of course, primarily a
ommunications device optimized for handheld interac-
ion. However, with the gradual size and weight reduc-
ion of smartphones, the authors believe that in many
ases the smartphone can approach the “wearability” of
enseCam. Figure 1 shows a comparison between an
ndividual wearing a SenseCam (left) and a smartphone
right).
A wearable camera/sensor platform, such as the

martphone implementation that is envisaged in this
ork, must be able to gather data from all on-board
ensors continually during the day. A secondary aim is
o automatically identify specifıed daily activities using
he passively captured image and sensor data. To this
nd, this article addresses the following two research
uestions:

. How much wear-time can be achieved using smart-

phones intended to mimic SenseCam functionality?

March 2013
. Can the automated detection of lifestyle-related activities
fromsmartphonesbeasaccurateasthatfromtheSenseCam?
It is expected that the results of the present studywill be
f benefıt to researchers who want to exploit the ubiquity
f smartphones to investigate human behavior. In partic-
lar, the aim here is to enable researchers to leverage
martphones to automatically capture lifestyle behaviors.

Methods
Recruitment of Participants

To evaluate the potential of smartphones as wearable cameras, 47
participants were recruited in 2012. These users were chosen from
a broad spectrum of user groups, from students to retired individ-
uals, with varying incomes, age ranges, and education levels. Each
participant gave consent for this study, and all study procedures
were approved by the research ethics board of Dublin City
University.
Each participant was asked to wear the smartphone for up to 8

hours in a given day, so as to capture an entire range of everyday
activities. The smartphonewasworn on a lanyard around the neck, as
is the case with a SenseCam (Figure 1). Participants were given the
phonewith the software already installed and ready to run; the phone
was returned after the data-gathering session was complete. The
smartphone was provided in addition to the participant’s normal
phone; thus, it was not used as a phone during the experiment.

Data Collection

The smartphone includes sensors that can capture a rich life-
experience archive. Using an Android (OS version 2.1) mobile
phone, life-logging software was developed that captured photos at
a confıgurable rate along with data gathering from all the available
on-board sensors.Unlikewith the SenseCam, automatic analysis of
the user context was carried out in real time directly on the smart-
phone. This allows a power-effıcient sampling algorithm to be
used, frequently resulting in a full day’s operation.11

Smart upload of contentmeans that aminimal representation of
a new activity—important image and sensor data—can be
streamed to a server. The remaining data are uploaded via WiFi to
a remote server when charging the device. The server contains a
database to store references to the image and sensor data. In addi-
tion, the server stores the images, which are then available for
viewing from any PC/TV/mobile device. Formore details of imple-

Figure 1. An individual wearing a Microsoft SenseCam
(left) and a smartphone (right)
mentation, please refer to Qiu et al.13
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To evaluate the effectiveness of the smartphone as a wearable
sensing tool for lifestyle behaviors, participants were supplied
with the smartphone confıgured to automatically capture location-
stamped photos every 6 seconds (around three to four times
the SenseCam rate, but this is confıgurable). Other sensors were
sampled at the following rates: accelerometer 5 times per sec-
ond, compass 10 times perminute, GPS every 20meters, Bluetooth
and WiFi every 2 minutes, microphone once per minute, and
communication/media activities as they occurred. Participants
were asked to wear the smartphone for up to 8 hours in the day,
during 2012, and were asked to go about their everyday free-living
activities. This period has been used in prior accelerometer-based
studies15 and is comparable to theusageof SenseCaminmanycases.16

Automated Annotation of Daily Activities

Certain objects or concepts inherent in smartphone images can be
classifıed automatically by visually analyzing the photo streams,
with or without the mining of additional sensors. In this way, it is
possible to identify activities that the user is involved in. For exam-
ple, the presence of cups and plates in a photo stream can indicate
that the wearer is eating.
For this experiment, all photos were processed automatically using

well-developed computer vision techniques based on speeded-up ro-
bust features (SURF)17 combined with the raw sensor streams (e.g.,
PS). The colors of each image (ColorStructure and ScalableColor
romtheMPEG-7computervision libraries18) alsowereextractedand
sed as input for automatic identifıcation of visual objects using an
ptimized SVMlight implementation of the Support Vector Ma-
hine19 with crossfold validation. This image analysis technique com-

Table 1. Distribution and density of daily activities with th

Daily activities

User
distribution

(%)
Density

(%) Precision Recall

Bar (interior) 26 2.5 0.90 0.70

Bottle 64 1.2 0.74 0.59

Bus (exterior) 57 0.4 0.64 0.61

Bus (interior) 19 1.2 0.69 0.55

Cafe/restaurant
(interior)

17 1.7 0.60 0.33

Car (interior) 55 16.9 0.88 0.83

Crowd 11 0.3 0.68 0.49

Cup 30 0.4 0.77 0.42

Food 32 0.4 0.78 0.50

Glass 43 1.7 0.70 0.43

Hand 81 7.7 0.67 0.38

Indoor 81 37.8 0.87 0.82

Note: For each visually identifiable concept associated with an activity
hat activity and Density refers to the percentage of the image co
ccepted measures of accuracy.
only is used in the image and video search domains.20
Selection and Coding of Visual Concepts

An exemplar set of 24 visual concepts was selected for initial explo-
ration. These concepts, and their frequency of identifıcation by
users and in aggregate, are shown in Table 1. For each feature, the
ser Distribution refers to the percentage of users that encoun-
ered that visual concept, and density refers to the percentage of the
mage collection that contained that concept. Using a subsample of
emporally selected photos, each image was annotated for the pres-
nce of each of the concepts listed in Table 1. To ensure accuracy,
ach photo was annotated by multiple annotators.

Data Analysis

Summary statistics on the number of images and total wear time
across all users were gathered. The software parameter tuning for
each lifestyle concept was trained using the annotated training
images. The performance of concept identifıcation was then eval-
uated on the annotated test collection. For this evaluation, k-fold
cross-validation was used. This is a technique in which the training
set is split into k disjoint subsets of equal sizes and a model is
trained for each subset, with the overall performance of the classi-
fıer being calculated as the mean accuracy of each subset. In this
way, the optimization of the software for a single set of training and
test data can be avoided.
In this work, a value of 5 is chosen for k, which has been deter-

mined empirically to provide a reasonable balance between pro-
cessing time required to train each model and the accuracy of the
validation. In addition, the datawere subsampled to ensure that the
same number of positive and negative examples were used when

curacy of performance of concept detectors

aily activities

User
distribution

(%)
Density

(%) Precision Recall

oor 83 19.3 0.83 0.86

on 85 6.6 0.66 0.65

d/path 81 10.7 0.82 0.86

p (interior) 62 4.2 0.83 0.86

pping center
terior)

36 0.7 0.72 0.73

ll/mobile digital
reen (handheld)

38 0.5 0.66 0.53

e 9 0.4 0.76 0.74

ring wheel 40 8.0 0.86 0.79

(interior) 9 0.5 0.92 0.52

omputer screen 47 5.4 0.81 0.41

ten media
ook/magazine/
wspaper)

47 0.8 0.81 0.68

g/snacking 47 1.8 0.68 0.61

User Distribution refers to the percentage of users that encountered
n that contained that concept. Precision and Recall are generally
e ac
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training. As this is a machine-vision classifıcation challenge, stan-
dard information retrieval metrics were used: precision (a positive
predictive value); recall (same as sensitivity); and F1 score, a single
value that reflects both precision and recall.

Results

1. How much wear-time can be achieved using smart-
phones that mimic SenseCam functionality?
In total, 166,000 photos were gathered from the 47 indi-

viduals, along with the associated GPS readings during the
experiment in 2012. The average time spent wearing the
device across all users was 5 hours 39minutes (SD�4 hours
11 minutes), ranging from 11 minutes to more than 18.5
hours. The higher end of the scale of time spent wearing the
device clearly shows that under the right conditions the
smartphone can last for awhole day on a single charge. This
is discussed further in the Discussion section.

2. Can the automated detection of lifestyle-related activ-
ities from smartphones be as accurate as that from the
SenseCam?
A subset of 36,698 photos were selected for manual

annotation by fıve researchers in 2012. A total of 873,552
annotation judgments were carried out on this subset.
The results from the annotation process are shown in
Table 1. Thereafter, the subset of photos was processed
automatically using state-of-the-art computer-vision
techniques, producing the set of life activity–detection
accuracy fıgures.

Discussion
This experiment has shown that it is possible to replicate
the functionality of a passive image-capture device (such
as the SenseCam) on a smartphone and that smartphones
provide an effective platform for implementingwearable-
camera technology. The current study has found that
across 47 participants, the average time towear the device
was 5 hours 39 minutes, which is less than that observed
in other SenseCam-related studies (e.g., 8 hours 45 min-
utes in Doherty et al.16). The large SD of 4 hours 11
inutes appears to be due to both user and technical

ssues. Some participants may have recharged their de-
ice in the middle of the day; thus, a stricter protocol
hould be developed for future studies.
In addition, there are variations in power consumption

hat occur as a result of the real-time sensor data process-
ng. For example, the power-hungry GPS sensor is only
sed if other sensors such as WiFi and Bluetooth are
nable to detect location. It is expected that disabling
ocation sensingwould reduce this variation substantially
nd result in consistently longer operating times. In this
tudy, the smartphones were confıgured to capture an

mage every 5 seconds, in contrast to the rate of once

March 2013
very 15–20 seconds for the SenseCam.6 Setting a lower
capture rate would further increase battery lifetime.
The automated machine-vision technique used to an-

alyze the images was able to identify a range of lifestyle
concepts with an average F1 score of 0.67. Although they
are on a slightly different set of visual concepts, the results
of this Android-based smartphone study are very similar
to previously reported identifıcation of SenseCam im-
ages. Using SenseCam images, a mean F1 score of 0.65
was calculated on the basis of a set of 95,000 manually
annotated images.16 This shows comparable perfor-
mance for the two devices as wearable-camera platforms.
Smartphones are a suitable lifestyle and behavioral

concept monitoring device for the following reasons:

1. All-day operation is possible if images and other sensor-
logging is not done too aggressively.

2. Thepresenceof a full suiteofon-boardsensors suchas the
accelerometer, compass, camera, GPS, Bluetooth, micro-
phone,WiFi and communication/media activity sensors,
as well as the ability to sense from external sensors via
Bluetooth can be useful for many applications.

3. The ubiquity, cost, and familiarity of the smartphone
are better compared to those for a SenseCam.

4. The smartphone can support real-time analysis of sam-
pled life experiences, enabling applications requiring
immediate intervention or prospective memory cues.

5. The ability to act as both the data-gathering device
and the data-display and feedback device, allowing
for ubiquitous access to the sampled life activities,
are an essential aspect of supporting real-time health
behavior interventions.

6. The ability to update the software to support new
methods of sampling or interaction in a proven and
easy-to-achieve manner is valuable.

Limitations
This work has highlighted some limitations associated
with using a smartphone for visual life-logging. One
slight drawback is that some current smartphones are
slightly bulkier than the SenseCam, which may have
ergonomic implications. In addition, typical smart-
phones are not equipped with a fısh-eye (wide-angle)
lens to capture a wide fıeld of view, whereas a Sense-
Cam does have such a lens.
For activities that typically happen in front of the

individual, this should not pose a problem, although
for more general life-logging applications, a narrow
(conventional) fıeld of view is not ideal. However, it is
possible to buy and fıt a fısh-eye lens onto a smart-
phone to offset this limitation. The orientation of the
smartphone camera typically results in a portrait view,
although the addition of a fısh-eye lens will help to

offset any negative impact of this narrower view.
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Figure 2 provides a com-
parison of the fısh-eye
lens on a SenseCam
(left) with the normal
fıeld-of-view lens of a
smartphone (right).
The choice was made

to limit the study to a
single day for each par-
ticipant because it was
felt that this would gen-
erate suitably represen-
tative data for an initial
analysis. Having vali-
dated the basic principle
of a worn smartphone as
a SenseCam replace-
ment, the authors would
like to refıne under-
standing of the relative
merits of the two tech-
nologies through further studies, gathering evidence
across a wider range of activities by way of more users
and longer periods of use. In addition, the sample of
volunteer users had to carry an additional smartphone
at all times and in future studies, the authors would like
to move to a single-smartphone solution in order to
evaluate any issues this introduces; it is felt that this is
the most realistic scenario for a long-term, real-world
deployment.
The 24-exemplar visual concepts selected for analysis

in this article do not necessarily reflect an optimum selec-
tion of health-related behaviors. They were selected in
part on the basis of saliency for robust analysis. Although
they were appropriate for the purposes of an exploratory
study to investigate whether the current method can be a
tool for behavioral scientists, the authors plan to develop
an improved set in future work. The learning process for
any newly selected concepts is the same as that for the 24
used in this exploration.

Conclusion
Wearable cameras can provide invaluable information
relating to the behavior of an individual throughout the
course of the day. This work demonstrates that smart-
phones can now be considered an alternative platform to
dedicated devices such as the SenseCam for future stud-
ies. Although smartphones have some drawbacks, they
also exhibit a number of advantages when compared to
SenseCam. This will be benefıcial for a number of re-
searchers working in this domain. In particular, future
preventive medicine research, both observation and inter-

Figure 2. Comparing a Mic
with a conventional lens (r
Note: Take note of the absence of
vention, may leverage wearable cameras using the smart-
hone. In the longer term, platforms such as smart-
hones will make it more feasible to use wearable camera
echnologies in a wider range of populations.
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