
Chapter 1

Summary and Future Directions

Abstract In this chapter, we summarize the book by �rst listing and ana-
lyzing what we view as major milestone studies in the recent history of de-
veloping the deep learning based ASR techniques and systems. We describe
the motivations of these studies, the innovations they have engendered, the
improvements they have provided, and the impacts they have generated. In
this road map, we will �rst cover the historical context in which the DNN
technology made inroad into ASR around 2009 resulting from academic and
industry collaborations. Then we select seven main themes in which inno-
vations �ourished across-the-board in ASR industry and academic research
after the early debut of DNNs. Finally, our belief is provided on the cur-
rent state of the art of speech recognition systems, and we also discuss our
thoughts and analysis on the future research directions.

1.1 Road Map

There are many exciting advancements in the �eld of automatic speech recog-
nition (ASR) in the past �ve years. However, in this book we are able to
cover only a representative subset of these achievements. Constrained by our
limited knowledge, we have selected the topics we believe are useful for the
readers to understand these progresses that were described with much more
technical detail in many preceding chapters of this book. We feel one way to
reasonably summarize these advancements is to provide an outline of major
milestone studies achieved historically.
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2 1 Introduction

1.1.1 Debut of DNNs for ASR

The application of neural networks on ASR can be dated back to late 1980s.
Notable work includes Waibel et al.'s time delay neural network (TDNN)
[93, 50] and Morgan et al.'s arti�cial neural network (ANN)/hidden Markov
model (HMM) hybrid system [64, 65]

The resurgence of interest in neural network-based ASR started in The
2009 NIPS Workshop on Deep Learning for Speech Recognition and Related
Applications [21], where Mohamed et al. from University of Toronto pre-
sented a primitive version of a deep neural network (DNN)1-HMM hybrid
system for phone recognition [61]. Detailed error analysis and comparisons of
the DNN with other speech recognizers were carefully conducted at Microsoft
Research (MSR) jointly by MSR and University of Toronto researchers and
relative strengths and weaknesses were identi�ed prior to and after the work-
shop. See [20] for discussions and re�ections on this part of early studies that
were carried out with �a lot of intuitive guesses without much evidence to
support the individual decisions.� In [61], the same type of ANN/HMM hy-
brid architecture was adopted as those developed in early 1990s [64, 65] but
it used a DNN to replace the shallow multi-layer perceptron (MLP) often
used in the early ANN/HMM systems. More speci�cally, the DNN was con-
structed to model monophone states and was trained using the frame-level
cross entropy criterion on the conventional MFCC features. They showed that
by just using a deeper model they managed to achieve a 23.0% phone error
rate (PER) on the TIMIT core test set. This result is signi�cantly better
than the 27.7% and 25.6% PER [73] achieved by a monophone and triphone
Gaussian mixture model (GMM)-HMM, respectively, trained with the max-
imum likelihood estimation (MLE) criterion, and is also better than 24.8%
PER achieved by a deep, monophone version of generative models of speech
[30, 27] developed at MSR but with distinct recognition error patterns (not
published). Although their model performs worse than the triphone GMM-
HMM system trained using the sequence-discriminative training (SDT) cri-
terion, which achieved 21.7% PER2 on the same task, and was evaluated
only on the phone recognition task, we at MSR noticed its potential because
in the past the ANN/HMM hybrid system was hard to beat the context-
dependent (CD)-GMM-HMM system trained with the MLE criterion and
more importantly because the DNN and the deep generative models were
observed to produce very di�erent types of recognition errors with explain-
able causes based on aspects of human speech production and perception
mechanisms. In the mean time, collaborations between MSR and University
of Toronto researchers which started in 2009 also looked carefully into the

1 Note that while the model was called deep belief network (DBN) at that time, it is in
fact a deep neural network (DNN) initialized using the DBN pretraining algorithm. See
Chapters ?? and ?? as well as [29] for discussions on the precise di�erences between DNNs
and DBNs.
2 The best GMM-HMM system can achieve 20.0% PER on the TIMIT core test set [73].
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use of raw speech features, one of the fundamental premises of deep learn-
ing advocating not to use human-engineered features such as MFCCs. Deep
autoencoders were �rst explored on speech historically, during 2009-2010 at
MSR for binary feature encoding and bottleneck feature extraction, where
deep architectures were found superior to shallow ones and spectrogram fea-
tures found superior to MFCCs [24]. All the above kind of insightful and
exciting results and progress on speech feature extraction, phone recognition,
and error analysis, etc. had never been seen in the speech research history
before and have pointed to high promise and practical value of deep learn-
ing. This early progress excited MSR researchers to devote more resources to
pursue ASR research using deep learning approaches, the DNN approach in
particular. A series of studies along this line can be found in [22][29].

Our interest at MSR was to improve large vocabulary speech recognition
(LVSR) for real-world applications. In early 2010 we started to collaborate
with the two student authors of the work [61] to investigate DNN-based ASR
techniques. We used the voice search (VS) dataset described in Section ??

to evaluate our new models. We �rst applied the same architecture used by
Mohamed et al. [61], which we refer to as the context-independent (CI)-DNN-
HMM, to the LVSR. Similar to the results on the TIMIT phoneme recognition
task, this CI-DNN-HMM, trained with 24 hours of data, achieved 37.3% word
error rate (WER) on the VS test set. This result sits in between the 39.6%
and 36.2% WER achieved with the CD-GMM-HMM trained using the MLE
and SDT criteria, respectively. The performance breakthrough happened af-
ter we adopted the CD-DNN-HMM architecture described in Chapter ?? in
which the DNN directly models the tied triphone states (also called senones).
The CD-DNN-HMM based on senones achieved 30.1% WER. It was shown
experimentally to cut errors by 17% over the 36.2% WER obtained with
the CD-GMM-HMM trained using the SDT criterion, and to cut errors by
20% over the 37.3% WER obtained using the CI-DNN-HMM in a few papers
published by Yu et al. [98] and Dahl et al. [13] . This is the �rst time the
DNN-HMM system was successfully applied to LVSR tasks. In retrospect, it
may be possible that other researchers have also thought about similar ideas
and even have tried variants of it in the past. However, due to the limited
computing power and training data in early days, no one was able to train
the models with the large size that we use today.

As successful as it was in retrospect, the above early work on CD-DNN-
HMM had not drawn as much attention from speech researchers and prac-
titioners at the time of publications of the studies in 2010 and 2011. This
was understandable as the ANN/HMM hybrid system did not win over the
GMM-HMM system in mid-1990s and was not considered the right way to
go. To turn over this belief researchers were looking for stronger evidence
than that on the Microsoft internal voice search dataset which contains up
to 48 hours of training data in those early experiments.

The CD-DNN-HMM work started to show greater impact after Seide et
al. of MSR published their results in September 2011 [79] on applying the
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same CD-DNN-HMMs as that reported by Yu et al. [98] and Dahl et al.
[13] to the Switchboard benchmark dataset [35] described in Section ??. This
work scaled CD-DNN-HMMs to 309 hours of training data and thousands of
senones. It demonstrated, quite surprisingly to many people, that the CD-
DNN-HMM trained using the frame cross entropy criterion can achieve as low
as 16.1% WER on the HUB5'00 evaluation set � a 1/3 cut of error over the
23.6% WER obtained with the CD-GMM-HMM trained using the SDT cri-
terion. This work also con�rmed and clari�ed the �ndings in [98, 13, 14]: the
three key ingredients to make CD-DNN-HMM perform well are: 1) using deep
models, 2) modeling senones, and 3) using a contextual window of features
as input. It further demonstrated that realignment in training DNN-DMMs
helps improve recognition accuracy and that pretraining of DNNs sometimes
helps but is not critical. Since then, many ASR research groups shifted their
research focus to CD-DNN-HMM and made signi�cant progresses.

1.1.2 Speedup of DNN Training and Decoding

Right after the work [79] was published, many companies started to adopt
it in their commercial systems. The �rst barrier they need to conquer is the
decoding speed. With a naive implementation it takes 3.89 real time on a
single CPU core just to compute the DNN score. In late 2011, just several
months after [79] was published, Vanhoucke et al. from Google published
their work on DNN speedup using engineering optimization techniques [90]3.
They showed that the DNN evaluation time can be reduced to 0.21 real time
on a single CPU core by using quantization, SIMD instructions, batching and
lazy evaluation - a 20 times speedup over the naive implementation. Their
work is a great step ahead since it demonstrated that the CD-DNN-HMM
can be used in real time commercial systems without penalty on the decoding
speed or throughput.

The second barrier they need to overcome is training speed. Although it has
been shown that the CD-DNN-HMM system trained with 309 hours of data
outperforms the CD-GMM-HMM system trained with 2000 hours of data
[79], additional accuracy improvement can be obtained if the DNN system
is trained using the same amount of data as that used to train CD-GMM-
HMMs. To achieve this goal some sort of parallel training algorithm needs to
be developed. At Microsoft, a pipelined GPU training strategy was proposed
and evaluated in 2012. The work [11] done by Chen et al. demonstrated that a
speedup of 3.3 times can be achieved on 4 GPUs with this approach. Google,
on the other hand, adopted the asynchronous stochastic gradient descent
(ASGD) algorithm [67, 51] on the CPU clusters.

3 Microsoft optimized the DNN evaluation in the internal tool using similar techniques
slightly earlier but never published the results.
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A di�erent but notable approach to speeding up DNN training and evalua-
tion is the low-rank approximation described in Section ??. In 2013, Sainath
et al. from IBM and Xue et al. from Microsoft independently proposed to
reduce the model size and training and decoding time by approximating the
large weight matrices with the product of smaller ones [71, 96]. This technique
can reduce 2/3 of the decoding time. Due to its simplicity and e�ectiveness
it has been widely used in commercial ASR systems.

1.1.3 Sequence Discriminative Training

The exciting results reported in [79] was achieved using the frame-level cross
entropy training criterion. Many research groups noticed that an obvious
and low-risk way to further improve ASR accuracy is to use the sequence
discriminative training criterion widely adopted for training the state-of-the-
art GMM systems.

In fact, back in 2009, before the debut of DNN systems, Brian Kings-
bury from IBM Research already proposed a uni�ed framework to train
ANN/HMM hybrid systems with SDT [46]. Although the ANN/HMM sys-
tem he tested in his work performs worse than the CD-GMM-HMM system,
he did show that the ANN/HMM system trained with the SDT criterion
(achieved a 27.7% WER) performs signi�cantly better than that trained with
the frame-level cross entropy criterion (achieved a 34.0% WER on the same
task). Hence this work did not attract strong attention at the time since even
with the SDT the ANN/HMM system still cannot beat the GMM system.

In 2010, in parallel with the LVSR work, we at MSR clearly realized the
importance of sequence training based on the GMM-HMM experience [100,
99, 38] and started the work on sequence discriminative training for CI-DNN-
HMM for phone recognition [60]. Unfortunately we did not �nd the right
approach to control the over�tting problem by then and thus only observed
very small improvement by using SDT (22.2% PER) over the frame cross
entropy training (22.8% PER)

The breakthrough happened in 2012 when Kingsbury et al. from IBM Re-
search successfully applied the technique described in Kingsbury's 2009 work
[46] to the CD-DNN-HMM [47]. Since SDT takes longer time to train than
the frame-level cross entropy training they exploited the Hessian-free train-
ing algorithm [56] on a CPU cluster to speed up the training. With SDT the
CD-DNN-HMM trained on the SWB 309 hour training set obtained a WER
of 13.3% on the Hub5'00 evaluation set. It cuts error by relative 17% over
the already low 16.1% WER achieved using the frame-level cross entropy
criterion. Their work demonstrated that SDT can be e�ectively applied to
the CD-DNN-HMM and result in great accuracy improvement. More impor-
tantly, the 13.3% WER achieved using the single pass speaker independent
CD-DNN-HMM is also much better than the WER of 14.5% achieved using
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the best multi-pass speaker-adaptive GMM system. Thus, there is obviously
no reason not to replace the GMM systems with the DNN systems in the
commercial systems given this result.

However, SDT is tricky and not easy to be implemented correctly. In 2013,
the work done at MSR by Su et al. [86] and the joint work done by Vesel�y
et al. from Brno University, University of Edinburgh, and Johns Hopkins
University [91] proposed a series of practical techniques for making the SDT
e�ective and robust. These techniques, including lattice compensation, frame
dropping, and F-smoothing, are now widely used.

1.1.4 Feature Processing

The feature processing pipeline in the conventional GMM systems involves
many steps because the GMMs themselves cannot transform features. In
2011, Seide et al. conducted research at MSR on the e�ect of feature en-
gineering techniques in the CD-DNN-HMM systems [78, 103]. They found
that many feature processing steps, such as HLDA [49] and fMLLR [33], that
are important in the GMM systems and shallow ANN/HMM hybrid systems
are less important in the DNN systems. They explained their results by con-
sidering all the hidden layers in the DNN as a powerful nonlinear feature
transformation and the softmax layer as a log-linear classi�er. The feature
transformation and the classi�er are jointly optimized. Since DNNs can take
correlated inputs many features that cannot be directly used in the GMM
systems can now be used in the DNN systems. Because DNNs can approx-
imate complicated feature transformation through many layers of nonlinear
operations many of the feature processing steps used in the GMM systems
may be removed without sacri�cing the accuracy.

In 2012, Mohamed et al. from University of Toronto showed that by using
the log Mel-scale �lter bank feature instead of MFCC they can reduce PER
from 23.7% to 22.6% on the TIMIT phone recognition task using a two-layer
network [62]. Around the same time Li et al. at Microsoft demonstrated that
using log Mel-scale �lter bank features improves the accuracy on LVSR [53].
They also showed that by using log Mel-scale �lter bank features tasks such
as mixed-bandwidth speech recognition can be easily implemented in the CD-
DNN-HMM systems. Log Mel-scale �lter bank features are now the standard
in most CD-DNN-HMM systems. Deng et al. reported a series of studies on
the theme of backing to the deep learning premise of using spectrogram-like
speech features [22].

The e�orts to reduce the feature processing pipeline never ceased. For
example, the work done at IBM Research by Sainath et al. in 2013 [70] showed
that the CD-DNN-HMM systems can directly take the FFT spectrum as the
input and learn the Mel-scale �lters automatically. Most recently, the use of
raw time waveform signals of speech by DNNs (i.e., zero feature extraction
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prior to DNN training) was reported in [89]. The study demonstrates the
same advantage of learning truly non-stationary patterns of the speech signal
localized in time across frame boundaries by the DNN as the earlier waveform-
based and HMM-based generative models of speech [82, 32], but very di�erent
kinds of challenges remain to be overcome.

1.1.5 Adaptation

When the CD-DNN-HMM system just showed its e�ectiveness on the Switch-
board task in 2011, one of the concerns back then was the lack of e�ective
adaptation techniques, esp. since DNN systems have much more parameters
than that in the conventional ANN/HMM hybrid systems. To address this
concern, in 2011 in the work done at Microsoft Research by Seide et al. the
feature discriminative linear regression (fDLR) adaptation technique was pro-
posed and evaluated on the Switchboard dataset with small improvement in
the accuracy [78].

In 2013, Yu et al. conducted a study at Microsoft [104], showing that by
using Kullback-Leibler divergence (KLD) regularization they can e�ectively
adapt the CD-DNN-HMM on the short message dictation tasks with 3-20%
relative error reduction over the speaker-independent systems when di�erent
number of adaptation utterances are used. Their work indicates that adap-
tation on CD-DNN-HMM systems can be important and e�ective.

Later in the same year and in 2014, a series of adaptation techniques based
on a similar architecture were developed. In the noise aware training (NaT)
[80] developed at Microsoft by Seltzer et al., a noise code is estimated and used
as part of the input. In this work, they showed that with NaT they can reduce
the WER on the Aurora4 dataset from 13.4% to 12.4%, beating even the most
complicated GMM system on the same task. In speaker aware training (SaT)
[76] developed at IBM by Saon et al., a speaker code is estimated as the i-
vector of the speaker and used as part of the input. They reported the results
on the Switchboard dataset and reduced WER from 14.1% to 12.4% on the
Hub5'00 evaluation set, a 12% error cut. In the speaker code approach [2, 97]
developed at York University by Abdel-Hamid et al., the speaker code is
trained for each speaker jointly with the DNN and used as part of the input.

1.1.6 Multi-task and Transfer Learning

As pointed out in [78, 103, 10, 18] and discussed in Chapter ??, each hid-
den layer in the DNN can be considered a new representation of the input
feature. This interpretation motivated many studies in sharing the same rep-
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resentation across languages and modalities. In 2012-20134 many groups in-
cluding Microsoft, IBM, Johns Hopkins University, University of Edinburgh,
and Google reported results on using the shared hidden-layer architectures for
multi-lingual and cross-lingual ASR [88, 42, 39, 34], multi-modal ASR [41],
and.multi-objective training of DNNs for speech recognition [55, 81, 9]. These
studies indicated that by training the shared hidden layers with data from
multiple languages and modalities or with multiple objectives we can build
DNNs that work better for each language or modality than those trained
speci�cally for the language or modality. This approach often helps ASR
tasks the most for the languages with very limited training data.

1.1.7 Convolution Neural Networks

Using log Mel-scale �lter bank features as the input also opens a door to
apply techniques such as convolution neural networks (CNNs) to exploit the
structure in the features. In 2012 Abdel-Hamid et al. showed for the �rst time
that by using a CNN along the frequency axis they can normalize speaker
di�erences and further reduce the PER from 20.7% to 20.0% on the TIMIT
phone recognition task [4].

These results were later extended to LVSR in 2013 with improved CNN
architectures, pretraining techniques, and pooling strategies in the studies
by Abdel-Hamid et al.[1, 3] and Deng et al. [17] at Microsoft Research and
the study by Sainath et al. [69, 72] at IBM Research. Further studies showed
that the CNN helps mostly for the tasks in which the training set size or
data variability is relatively small. For most other tasks the relative WER
reduction is often in the small range of 2-3%. We believe as the training set
size continues to increase the gap between the systems with and without CNN
will diminish.

1.1.8 Recurrent Neural Networks and LSTM

Since the inroad of the DNN into ASR starting in 2009, perhaps the most
notable new deep architecture is the recurrent neural network (RNN), esp.
its long-short-term-memory (LSTM) version. While the RNN as well as the
related nonlinear neural predictive models saw its early success in small ASR
tasks [68, 19], it was not easy to duplicate due to the intricacy in training, let
alone to scale them up for larger ASR tasks. Learning algorithms for the RNN
have been dramatically improved since these early days, however, and much
stronger and practical results have been obtained recently using the RNN,

4 Some earlier work such as [77] exploited similar ideas but not on the DNN.
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especially when the bidirectional LSTM architecture is exploited [37, 36] or
when the high-level DNN features are used as inputs to the RNN [10, 18].

The LSTM was reported to give the lowest PER on the benchmark TIMIT
phone recognition task in 2013 by Grave et al. at University of Toronto re-
searchers [37, 36]. In 2014, Google researchers published the results using the
LSTM on large-scale tasks with applications to Google Now, voice search,
and mobile dictation with excellent accuracy results [74, 75]. To reduce the
model size, the otherwise very large output vectors of LSTM units are linearly
projected to smaller-dimensional vectors. Asynchronous stochastic gradient
descent (ASGD) algorithm with truncated backpropagation through time
(BPTT) is performed across hundreds of machines in CPU clusters. The
best accuracy is obtained by optimizing the frame-level cross-entropy objec-
tive function followed by sequence discriminative training. With one LSTM
stacking on top of another, this deep and recurrent LSTM model produced
9.7% WER on a large voice search task trained with 3 million utterances.
This result is better than 10.7% WER achieved with frame-level cross en-
tropy training criterion alone. It is also signi�cantly better than the 10.4%
WER obtained with the best DNN-HMM system using recti�ed linear units.
Furthermore, this better accuracy is achieved while the total number of pa-
rameters is drastically reduced from 85 millions in the DNN system to 13
millions in the LSTM system. Some recent publications also showed that
deep LSTMs are e�ective in ASR in reverberant mutltisource acoustic envi-
ronments, as indicated by the strong results achieved by LSTMs in a recent
ChiME Challenge task involving ASR in such di�cult environments [95].

1.1.9 Other Deep Models

A number of other deep learning architectures have been developed for ASR.
These include the deep tensor neural networks [101][102], deep stacking net-
works and their kernel version [28, 26, 31], tensor deep stacking networks
[44, 45], recursive perceptual models [92], sequential deep belief networks[5],
and ensemble deep learning architectures [23]. However, although these mod-
els have superior theoretical and computational properties over most of the
basic deep models discussed above, they have not been explored with as much
depth and scope, and are not mainstream methods in ASR so far.
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1.2 State of the Art and Future Directions

1.2.1 State of the Art � A Brief Analysis

By combining CNN, DNN, and i-vector based adaptation techniques IBM
researchers showed in 2014 that they can reduce the WER on the Switch-
board Hub5'00 evaluation set to 10.4%. Compared to the best possible WER
of 14.5% on the same evaluation set achieved using the GMM systems, DNN
systems cut the error by 30%. This improvement is achieved solely through
the acoustic model (AM) improvement. Recent advancements in neural net-
work based language model (LM) and large-scale n-gram LM can further cut
the error by 10-15%. Together the WER on the Switchboard task can be
reduced to below 10%. Also, the LSTM-RNN model developed by Google re-
searchers also demonstrated in 2014 dramatic error reduction in voice search
tasks compared with other methods including those based on the feedforward
DNN.

In fact, in many commercial systems the word (or character) error rates
for the tasks such as mobile short message dictation and voice search are way
below 10%. Some companies are even aiming at reducing the sentence error
rate to below 10%. From the practical usage point of view we can reasonably
regard that deep learning has largely solved the close-talk single-speaker ASR
problem.

As we relax the constraints we impose on the tasks we are working on, how-
ever, we can quickly realize that the ASR systems still perform poorly under
the following conditions even given the recent technology advancements:

• ASR with far �eld microphones; e.g., when the microphone is back-
grounded in a living room, meeting room, or �eld video recordings;

• ASR under very noisy conditions; e.g., when loud music is playing and
captured by the microphone;

• ASR with accented speech;
• ASR with multi-talker speech or side talks; e.g., in a meeting or in multi-

party chatting;
• ASR with spontaneous speech in which the speech is not �uent, with vari-

able speed or with emotions;

For these tasks, the WER of the current best systems is often in the range of
20%. New technological advances or clever engineering are needed to bring the
errors down much further in order to make ASR useful under these di�cult
yet practical and realistic conditions.
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1.2.2 Future Directions

We believe the ASR accuracy under some (not all) of the above conditions
may be increased even without substantially new technologies in acoustic
modeling for ASR. For example, by using more advanced microphone array
techniques we can signi�cantly reduce noise and side-talks and thus improve
the recognition accuracy under these conditions. We may also generate or
collect more training data for far �eld microphones and thus improve the
performance when similar microphones are used.

However, to ultimately solve the ASR problem so that the ASR system's
performance can match or even exceed that of human's under all conditions5,
new techniques and paradigms in acoustic modeling are needed. We perceive
that the next-generation ASR systems can be solely described as a dynamic
system that involves many connected components and recurrent feedbacks
and can constantly make predictions, corrections, and adaptation. For exam-
ple, the future ASR system will be able to automatically identify multiple
talkers in the mixed speech or resolve speech and noise in noisy speech. The
system will then be able to focus on and trace a speci�c speaker by ignor-
ing other speakers and noises. This is a cognitive function of attention that
humans e�ortlessly equipped with yet conspicuously lacking in today's ASR
systems. The future ASR system will also need to be able to learn the key
speech characteristics from the training set and generalize well to unseen
speakers, accents, noisy conditions.

In order to move towards building such new ASR systems, it is highly
desirable to �rst build powerful tools such as computational network (CN)
and computational network toolkit (CNTK) we described in Chapter ??. Such
tools would allow large-scale and systematic experimentation on many more
advanced deep architectures and algorithms, some of which are outlined in
the preceding section, than the basic DNN and RNN. Further, as we discussed
in the RNN chapter, new learning algorithms will need to be developed that
can integrate the strengths of discriminative dynamic models (e.g., the RNN)
with bottom-up information �ow and of generative dynamic models with top-
down information �ow while overcoming their respective weaknesses. Recent
progresses in stochastic and neural variational inference shown to be e�ective
for learning deep generative models [59, 15, 40, 7] have moved us one step

5 Under some constrained conditions, ASR systems can already perform better than hu-
mans. For example, in 2008 ASR systems can already beat the human performance on
clean digit recognition with a 0.2% error rate [100]. In 2006, IBM researchers Kristjansson
et al. reported their results on single-channel multi-talker speech recognition [48]. Their
improved system [12] in 2010 can achieve 21.6% WER on the challenge task with very
constrained language model and closed speaker set. This result is better than 22.3% WER
achieved by humans. In 2014, the DNN-based system developed at Microsoft Research by
Weng et al. achieved a WER of 18.8% [94] on the same task and generated far less errors
than humans did.
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closer to the desired bottom-up and top-down learning algorithms with multi-
passes.

We speculate that the next-generation ASR systems may also seamlessly
integrate semantic understanding, for example, to constrain the search space
and correct semantically inconsistent hypotheses and thus bene�t from re-
search work in semantic understanding. In this direction, one needs to develop
better semantic representations for word sequences, which are the output of
ASR systems. Recent advances in continuous vector-space distributed rep-
resentations of words and phrases [58, 85, 43, 83, 84], also known as word
embedding or phrase embedding, have moved us one step closer to this goal.

Most recently, the concept of word embedding (i.e., with distributed rep-
resentations of words) is introduced as an alternative to the traditional,
phonetic-state-based pronunciation model in ASR, giving improvement in
ASR accuracy [6]. This exempli�es an interesting new approach, based on
distributed representations in continuous vector space, to modeling the lin-
guistic symbols as the ASR output. It appears to be more powerful than
several earlier approaches to distributed representations of word sequences in
symbolic vector space - articulatory or phonetic-attribute based phonological
models [87, 16, 25, 8, 52, 54]. Further research along this direction may exploit
multiple modalities - speech acoustics and the associated image, gesture, and
text - all embedded into the same �semantic� space of phonological nature -
to support weakly supervised or even unsupervised learning for ASR.

For a longer term, we believe ASR research can bene�t from human brain
research projects and research in the areas of representation encoding and
learning, recurrent networks with long-range dependency and conditional
state switching, multi-task and unsupervised learning, and prediction-based
methods for temporal/sequential information processing. As examples, ef-
fective computational models of attention and of phonetic feature encoding
in cortical areas of the human auditory system [57, 66] are expected to help
bridge the performance gap between human and computer speech recognition.
Modeling perceptual control and interactions between speaker and listener
has also been proposed to help improve ASR and spoken language process-
ing performance and its practical use [63]. These capabilities are so far not
reachable by current deep learning technology, and require �looking outside�
into other �elds such as cognitive science, computational linguistics, knowl-
edge representation and management, arti�cial intelligence, neuroscience, and
bio-inspired machine learning.
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