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ABSTRACT 
Accurate identification of misuse is a key factor in determining 
appropriate ways to protect systems. Modern intrusion detection 
systems often use alerts from different sources such as hosts and 
sub-networks to determine whether and how to respond to an 
attack. However, alerts from different locations should not be 
treated equally. We propose improving and assessing alert 
accuracy by incorporating an algorithm based on the 
exponentially weighted Dempster-Shafer (D-S) Theory of 
Evidence. Our approach uses D-S theory to combine beliefs in 
certain hypotheses under conditions of uncertainty and ignorance, 
and allows quantitative measurement of the belief and plausibility 
in our detection results. Our initial evaluations on the DARPA 
IDS evaluation data set show that our alert fusion algorithm can 
improve alert quality over those from Hidden Colored Petri-Net 
(HCPN) based alert correlation components installed at the 
demilitarized zone (DMZ) and inside network sites. Due to alert 
confidence fusion in our example, the detection rate rises from 
75% to 93.8%, without adversely affecting the false positive rate. 

Categories and Subject Descriptors 
C.2.0 [Computer Systems Organization]: Computer-
Communication Networks – Security and protection 

General Terms 
Algorithms, Experimentation, Security. 

Keywords 
Alert Confidence Fusion, Intrusion Detection System, Dempster-
Shafer Theory of Evidence, Hidden Colored Petri-Net, Alert 
Correlation. 

1. INTRODUCTION 
Accurate identification of misuse activity is a key factor in system 
protection, particularly when appropriate responses need to be 
determined.  Distributed intrusion detection systems (IDS) in 
combination with other system defenses, such as firewalls, are 
often the primary means of misuse identification and response. 
Much of the early IDS research emphasized comprehensive 

identification (low false negatives) over accuracy (low false 
positives).  However, when one considers implementing 
automated response in particular, it can be more important to 
gauge how much confidence to place in a raised alert than to be 
certain that all possible alerts have been received. For instance, 
alerts in which we have high confidence are more suitable for 
driving automated response systems. Our work presents, and 
performs preliminary assessment of, a technique for improving 
the quality of IDS alerts drawing on multiple sources of 
information, through extending the Dempster-Shafer (D-S) 
Theory of Evidence. 
Informally, we refer to an intrusion detection system (IDS) as 
producing “high quality alerts” if the IDS both avoids false 
positives (identifying behavior as misuse when it is acceptable) 
and false negatives (missing misuse behavior).  
Methods for improving the quality of IDS alerts have been a 
subject of considerable study [3][6][11] [12][14][15][18][20]. One 
technique for enhancing alert quality, particularly reducing false 
positives, is correlating information about activities to increase 
confidence that a particular alert set actually signifies a specific 
event. Correlation approaches may operate in either the time or 
space domain [6][11][14]. Our Hidden Colored Petri-Net (HCPN) 
[20] based framework is an example of such an approach. We 
showed in [20] that HCPN-based alert correlation can 
significantly reduce both the total number of alerts and the 
number of false alarms. However, we also determined that alert 
confidence fusion is needed to address the different reliability of 
alerts from alert analyzers, particularly when these are installed at 
different sites, which is a typical scenario. As has been indicated 
elsewhere [9], information from different sites is not equivalent in 
trustworthiness, and this factor should be incorporated into the 
data when one assesses confidence in an alert. 
We propose a method for performing alert confidence fusion 
based on the weighted Dempster-Shafer (D-S) Theory of 
Evidence – our extension to the basic D-S Theory of Evidence. 
Informally, the basic D-S theory combines confidence scores 
directly with individual scores tied to the likelihood that observed 
information supports a given conclusion. In contrast, our extended 
D-S theory first determines weights based on the sources of our 
gathered observations and then combines individual confidence 
scores using these weights.  The weightings can incorporate 
factors such as our level of trust in specific observers, and our 
belief in the capacity of specific observers to make particular 
observations. For example, alerts from remote sites are not 
considered to be as trustworthy as alerts from local sites [9].  If 
we weight our confidence in remote site observations differently 
from local site observations, we should therefore be able to 
produce more accurate results. Our initial observations using 
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Defense Advanced Research Projects Agency (DARPA) IDS 
evaluation data indicate that this is a fruitful approach. 
Clearly, making good decisions about how to weight observers 
and specific categories of observations is a key element in the 
success of alert confidence fusion. As one way of making such 
estimates, we demonstrate that the weights in our extended D-S 
theory can be estimated by using past data points. We applied this 
alert confidence fusion model to our HCPN-based alert 
correlation system and showed further improvement in resolving 
conflicts between alerts from different alert analyzers and in 
reducing false alerts. 
The paper is organized as follows. In section 2, we introduce the 
basic Dempster-Shafer Theory of Evidence and its limitations 
when applied to the alert confidence fusion task in the intrusion 
detection systems. We extend the D-S theory to resolve the 
limitations. In section 3, we introduce how the extended D-S 
theory can be applied to our alert confidence fusion system. 
Specifically, we discuss the architecture and some practical 
considerations related to the alert confidence fusion task. We 
report our experiment results on DARPA IDS evaluation data set 
in section 4, and conclude in section 5. 

2. The Dempster-Shafer Theory of Evidence 
In this section, we first introduce the basic Dempster-Shafer 
Theory of Evidence formally. Then we indicate the limitations of 
the basic D-S theory when it is applied to the alert confidence 
fusion task in intrusion detection systems. We address these 
limitations by proposing an exponentially weighted D-S theory.  

2.1 The Basic Dempster-Shafer Theory 
The basic Dempster-Shafer’s (D-S) Theory of Evidence was first 
formulated by Shafer in 1976 [17]. This theory can be considered 
as a generalized Bayesian theory. It can be interpreted from either 
a probabilistic or an axiomatic point of view [13]. The D-S theory 
has been applied in the fields of statistical inference, diagnostics, 
risk analysis, and decision analysis. 

In a Dempster-Shafer reasoning system, the frame of discernment 
is the set of all possible mutually exclusive and complete facts (or 
events) { }|1i i NθΘ = ≤ ≤ . It consists of all hypotheses for which 
the information sources can provide evidence. A hypothesis H is a 
subset of Θ. Each hypothesis is assigned a value by an observer 
from the mass probability function m, which is defined as: 

[ ]: 2 0,1m Θ →  (1) 

and satisfies the following conditions: 

( ) 0m φ =  (2) 

( ) 0,   m H H≥ ∀ ⊆ Θ  (3) 

( ) 1
H

m H
⊆Θ

=∑  (4) 

The probability that the evidence supports hypothesis H is within 
the interval defined by the belief and plausibility: 

( ) ( ),Bel H Plaus H⎡⎣ ⎤⎦  (5) 

where  

( ) ( )
B H

Bel H m B
⊆

= ∑  (6) 

( ) ( )1
B H

Plaus H m B
φ∩ =

= − ∑  (7) 

The gap ( ) ( )Plaus H Bel H−  indicates the ignorance about the 
hypothesis. Note that the D-S theory calculates the probability 
that the evidence supports a hypothesis rather than the probability 
of the hypothesis itself.  In other words, the probability being 
computed is tied to confidence that a particular suite of evidence 
is being interpreted correctly, rather than that some particular 
hypothesis is correct.  

A powerful feature of the D-S theory in a distributed intrusion 
detection system is its usefulness in combining evidence provided 
by different observers. Assume we have K observers (e.g., 
sensors or analyzers in the IDS). Each observer provides its own 
perceived state (or evidence) to a central information processor 
whose task is to infer the true state of the system by combining 
the evidences from all observers. Also assume that the observer 

 believes that hypothesis H is true with confidence 

iO

1O ( )1m H and 

 believes that hypothesis H is true with confidence2O ( )2m H . 
The D-S theory provides a rule to combine evidences from 
independent observers  and  into a single and more 
informative hint:  

1O 2O

( ) ( ) ( )
( ) ( )

1 2
12

1 2

B C H

B C

m B m C
m H

m B m Cφ

∩ =

∩ ≠

= ∑
∑

 (8) 

A useful property of this combining rule is that it does not rely 
upon a priori probability distributions on the possible system 
states (which is needed in a Bayesian approach [3]) and so it is 
useful even if we don’t have a priori knowledge about the system.  

The combining rule (8) can be generalized by iteration. For 
example, suppose we define  as the evidence provided by 

the combined observer  (  and ); we can then treat this 
evidence as though it came from a single source. By extension, 
we can combine evidences from any number of observers to 
produce a single result. This property also means that we can 
incorporate new evidence and update our beliefs as we acquire 
new knowledge through observations. In other words, we can 
apply this not only to multiple observations taken “at once”, but 
also to multiple observations taken from many places over a 
period of time. 

( )12m H

12O 1O 2O

2.2 The Extended Dempster-Shafer Theory 
The Dempster-Shafer combining rule (8) implies that we trust 
observers  and  equally. This assumption normally does not 
hold in a distributed-sensor intrusion detection system that spans 
domains. There are several reasons for this. First, information 
provided by remote sensors and analyzers is considered less 
trustworthy than that provided by local sensors and analyzers as 
noted earlier 

1O 2O

[9].  Second, even identical sensors (and analyzers) 
installed at different locations may have different detection 
capabilities since the raw events captured by these sensors are 
different. Third, different kinds of sensors and analyzers which 
detect the same type of attack may do so with a different level of 
accuracy. For example, a sensor may detect misuse activities such 
as Distributed Denial of Service (DDoS) attacks with 90% 
accuracy but detect escalation of privilege, such as  Local to Root 
(L2R) attacks with only 50% accuracy. Another, perhaps host-
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based, sensor may not detect DDoS at all, but be quite accurate in 
detecting escalation of privilege. We would therefore expect to 
place greater confidence in DDoS alerts generated by the first 
sensor but have less confidence in its reported L2R alerts.  In 
contrast, we would trust more on the L2R alerts generated by the 
second sensor. 

To address the reality that we cannot trust all observers equally, 
and that a given observer may have different effectiveness in 
identifying individual misuse types, we extend the D-S theory to 
incorporate a weighted view of evidence and propose the 
following modified combining rule: 

( ) ( ) ( )
( ) ( )

1 2

1 2

1 2
12

1 2

w w

B C H
w

B C

m B m C
m H

m B m Cφ

∩ =

∩ ≠

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦=
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

∑
∑

w  (9) 

where  is the weight for the observer . Wheniw iO 1 2 1w w= = , (9) 
is reduced to the basic D-S combining rule. 

The weights can be estimated in several ways. For instance, they 
can be estimated based on the overall estimation correctness rate 
in the past and may be further adjusted based on other available 
information about the source (e.g., local vs. remote) of the 
information. In our system, we estimate the weights based on the 
Maximum Entropy principle [6][15] and the Minimum Mean 
Square Error (MSEE) criteria. We will describe our estimation 
algorithms in section 3.3. 

Wu et al [19] have also proposed a weighted D-S combining rule 
(for other purposes). Our approach is different from theirs. In their 
approach, confidence scores are weighted proportionally; while in 
our approach they are weighted exponentially. With the usage of 
proportional weights in [19], Eq. (4) no longer holds for the 
combined evidence. 

3. Alert Confidence Fusion 
We have just described the exponentially weighted D-S theory to 
perform alert confidence fusion. We now show how it can be used 
to support alert confidence fusion in distributed intrusion 
detection systems.  

3.1 Architectural Consideration 
Our alert confidence fusion approach can be applied at different 
levels. For example, we can directly fuse alerts from sensors. 
However, this simple architecture does not take into account the 
relationships between different alerts.   

A better architecture, albeit more complex, is the one depicted in 
Fig. 1. Here, alerts are first analyzed using alert correlation 
components. This will reduce false positives. The outputs of alert 
correlation components are then fused to further improve the alert 
quality. There are three advantages of using this architecture. 

First, in a sophisticated attack, attackers may perform a series of 
actions with previous steps preparing for the later ones 
[6][14][20]. An alert correlation component which uses this 
prerequisite-consequence relationship can dramatically reduce the 
number of false alerts [20].  

Second, a major challenge for applying alert confidence fusion is 
to determine the mass probability function over the observed 
alarms. We will show in section 3.2 that our alert correlation 
component can provide the probabilities naturally.  
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Fig. 1: Architecture used in our alert confidence fusion system. 

Alerts from different set of sensors are first correlated to reduce 
the number of total alerts and to improve the quality of the 
alerts. Alerts after correlation are then fed into the confidence 
fusion component. 

Third, we have shown [20] that although our original alert 
correlation module could improve the quality of alerts, it is 
necessary to have an approach to combining alerts from alert 
analyzers at different locations. Our exponentially weighted D-S 
theory fulfills this requirement.  

3.2 The Alert Correlation Component 
We used the Hidden Colored Petri-Net (HCPN) [20] based alert 
correlation component in our system. HCPN is our extension to 
Colored Petri-Net. In HCPN, each token element is associated 
with a probability (or confidence), and observations are explicitly 
separated from transitions. In HCPN, colors represent agents; 
places represent resources; observations represent alerts; 
transitions represent actions; input arcs represent prerequisites of 
the action; and output arcs represent consequences of the action as 
shown in Fig. 2. The model is called “hidden” because the 
transitions are not directly observable. Instead, each transition has 
a probability to omit an observation. The true state transitions can 
be inferred through the observations only.   

  

 

Alerts 

Consequence 

Action 

Agent

Resource 

Prerequisites

Fig. 2:  Hidden Colored Petri-Net. In HCPN, colors represent 
agents; places represent resources; observations represent 
alerts; transitions represent actions; input arcs represent 
prerequisites of the action; and output arcs represent 
consequences of the action. 

HCPN is suitable for correlating alerts where attackers’ true 
actions are unknown and we may infer their actions only based on 
partial observations as embodied in alerts. We can indicate the 
situation in Fig. 2. Here, the HCPN model output gives the 
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probability that a resource has been undertaken by an attacker. 
This probability can be directly used in the alert confidence fusion 
component as the mass probability function. 

3.3 The Alert Confidence Fusion Technique 
The alert confidence fusion technique used in our system is based 
on our extended Dempster-Shafer Theory of Evidence as 
described earlier. Since we are interested in whether an alert kA is 
true (a true positive) or false (a false positive), the frame of 
discernment is { },k k kA AΘ = ¬ .  The possible hypotheses are: 

{ } { } { }{ }2 , , , ,k
k k k kA A A AφΘ = ¬ ¬  (10) 

It is clear that: 

{ }( ),i k km A A¬ = 0  (11) 

{ }( ) { }( )1i k i km A m A¬ = −  (12) 

The combining rule then becomes: 

{ }( ) { }( )
{ }( ) { }( )12

k
k

k k

P A
m A

P A P A
=

+ ¬
 (13) 

{ }( ) { }( )
{ }( ) { }( )12

k
k

k k

P A
m A

P A P A
¬

¬ =
+ ¬

 (14) 

where  

( ) ( ) ( )1

1 2

k kw
P X m X m X⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦

2w
 (15) 

We use the probability from the ith HCPN alert correlator as the 
mass probability function ( )i km A .  

Now we illustrate the limitation of the basic Dempster-Shafer 
theory with a concrete example. Assume we have two observers. 
Observer  reports1o { }( )1 0.02km A =  and observer two 

reports
2o

{ }( )2 0.7km A = . According to the basic D-S theory (i.e., 

 in 1 2 1k kw w= = (15)),  

{ }( )12
0.02 0.7 0.05

0.02 0.7 0.98 0.3km A •
=

• + •
=  (16) 

If observer is very bad at detecting attack1o kA , and observer 

detects2o kA with high accuracy, we can see that the result in 
(16) does not give us the correct view of the system state, an 
indication that the basic D-S combining rule is not suitable for 
combining the results of the two observers under this condition.  
Actually, we should weight the report from more than that 

from . Assume and , then, 

2o

1o 1 0.2kw = 2 1kw =

{ }( )
0.2 1

12 0.2 1 0.2 1

0.02 0.7 0.52
0.02 0.7 0.98 0.3km A •

=
• + •

=  (17) 

which is a better combined view of the system.  
The key to the successful use of our approach is the proper 
calibration of the weights. In our prototype system, we have used 
both the Maximum Entropy (MaxEnt) [6][15] based approach and 
the Minimum Mean Square Error (MMSE) based approach to 
estimating the weights. 

 To estimate the weights with the MaxEnt principle, we rewrite 
(13) and (14) to be: 

( ) ( ) ( )(12 1 1 2 2
1| exp , ,k k

i i
k

m H t w f H t w f H t
N

= + )i  (18) 

where indicates the time, it

( ) ( )( ), log |i i i if H t m H t=  (19) 

and kN is the normalization factor so that (4) holds: 

{ } { }{ }
( ) ( )( )1 1 2 2

,
exp , ,

k k

k k
k i

H A A
iN w f H t w f H t

∈ ¬
= +∑  (20) 

(18) can be interpreted as combining features ( )( )log |i im H t with 
the standard exponential model. The Generalized Iterative 
Scaling (GIS) algorithm [8] and Improved Iterative Scaling (IIS) 
algorithm [8] thus can be used to estimate the weights. These 
algorithms have been shown to be able to minimize the Kullback-
Leibler (K-L) distance between and the empirical 

distribution 

( )12m H

( )p H of a set of training samples ( )1, ,is i N= : 

( ) ( ) ( )
( )12

12

log
H

p H
D p m p H

m H
= ∑  (21) 

where ( )p H is defined as: 

( ) ( )c H
p H

N
=  (22) 

and ( )c H is the number of times hypothesis H is true in the 
training samples. 
An alternative way to estimating weights is using the criteria of 
Minimum Mean Square Error (MMSE). The Mean Square Error 
(MSE) is defined as: 

{ }( )( )2

,
1

N

c j k j
j

m A r
MSE

N
=

−
=
∑

 (23) 

where N is the total number of samples in the training set; is 

the jth combined observation score; and 
,c jm

jr is the real (or true) 
value of the jth observation: 

1 f  is true
0 otherwise

k
j

i A
r ⎧
= ⎨
⎩

 (24) 

We used the standard gradient descending algorithm to search for 
the best weights: 

1t t
i i

i

MSEw w
w

λ+ ∂
= −

∂
 (25) 

where λ is the step size.  

The MMSE based approach provides us the same result as the 
MaxEnt based approach in our alert analysis experiments but 
outperforms the MaxEnt based approach in a more broad set of 
experiments. 

Note that for each alert type kA , there is a pair of weights . In 

other words, if observer is good at detecting alert

k
iw

1o kA but is not 

good at detecting alert jA , is large but is small.  1
kw 1

jw
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There are two practical considerations in our implementation: 

First, when ( )im H is close to 0, ( )( )log im H might be very small. 
This may result in computational underflow. To prevent 
underflow from happening, all the probabilities in the system 
have a floor value of 0.01. If the confidence of a hypothesis is less 
than 0.01, we set it to be 0.01. 
Second, an HCPN alert correlator reports to the alert confidence 
fusion component only if the perceived state of a resource has 
been changed, so alert correlators send the state change 
information asynchronously. To deal with this problem, we store 
every correlator’s last reported evidence. When a new report 
regarding alert kA comes in, we update the corresponding 
evidence and re-estimate the combined confidence for the alert 

kA . We thus gauge confidence based on evidence “in hand”, and 
increase or reduce confidence when new information arrives. 

4. Experimental Results 
We have performed off-line experiments using two DARPA 2000 
DDoS intrusion detection evaluation data sets. These are not 
intended to be conclusive examinations of the efficacy of our 
technique – but rather provide some sense of how well our 
approach works.  

In both data sets, an attacker probes and obtains access to the 
internal systems, installs a DDoS daemon, and launches a DDoS 
attack against an off-site server. Each dataset includes the 
network traffic data collected from both the demilitarized zone 
(DMZ) and the inside part of the evaluation network. Alerts are 
generated by RealSecure Network Sensor 6.0 with the maximum 
coverage policy to force the network sensor to save all the 
reported alerts. We use RealSecure network sensors because 
attack signatures are well documented.  

We first trained the HCPN-based alert correlators as in [20], then 
trained the confidence fusion weights based on the outputs from 
the alert correlators. The test was performed on the first dataset. 
We used two alert correlators in the system, one for the DMZ 
traffic and one for the inside network traffic. The correlation 
results from these correlators were combined using our alert 
confidence fusion algorithm. 

Table 1 shows the detection and false positive rates for 
RealSecure Network Sensor 6.0. The top and bottom part of Table 
2 show the results of our HCPN-based system with and without 
alert confidence fusion, respectively. We separated them into two 
tables because we want to compare the performance of the system 
with and without our alert confidence fusion approach. 

Before further discussion, we note that the results listed in the top 
half of Table 2 differ from those in [20] due to the way we count 
the alerts. In [20], we emphasize the performance of individual 
HCPN-based alert analyzers and the number of observable alerts 
is limited to individual sites. In Table 2, we report the number of 
observable alerts from all the sources (e.g., DMZ and inside 
network). 

In our experiments, the detection rate (DR) is defined as: 

Number of True Attacks Reported
Number of Total Observable Attacks

DR =  (26) 

The False Positive Rate (FPR) is defined as: 

Number of True Alerts Reported1
Number of Alerts Reported

FPR = −  (27) 

 

Table 1 
Detection and False Positive Rates for RealSecure Network 

Sensor 6.0 

Setting NOA NA NTAD DR NRA FPR 
DMZ 89 891 51 57.30% 57 93.60%
Inside 60 922 37 61.67% 44 95.23%
NOA=Number of Observable Attacks,  
NA=Number of Alerts,  
NTAD=Number of True Attacks Detected,  
DR=Detection Rate,  
NRA=Number of Real Alerts, 
FPR=False Positive Rate 

  

 
From Table 1 and the top part of Table 2, we see that the number 
of alerts and false positive rates are dramatically reduced by using 
the HCPN-based alert analysis component. The bottom part of 
Table 2 shows that our alert confidence fusion algorithm 
(Extended D-S) further increases the detection rate while keeping 
the false positive rate down by combining information from DMZ 
and inside networks. Without using alert confidence fusion, the 
detection rate for both analyzers is around 75%, and the false 
positive rate at the DMZ site is 20%. Using extended D-S 
algorithm based alert confidence fusion, we increase the detection 
rate to 93.8% while reducing the false positive rate to 0% under 
the experiment setting. Note, however, if only the basic D-S 
combination algorithm is used, the detection rate decreases. The 
extended D-S algorithm provides more than 30% absolute 
detection rate against the basic D-S algorithm in our experiments. 

Table 3 shows details of the alerts processed by the alert 
confidence fusion component. The alert confidence fusion 
component receives 18 alerts from lower level alert analyzers; 9 
are reported by both the correlators installed at the DMZ and 
inside network sites; 6 alerts are from the DMZ alert analyzer 

Table 3 
Alerts Received by the Alert Confidence Fusion Component 

  Total From 
Both 

From 
DMZ 

From 
Inside 

All 18 9 6 3 
True 15 9 3 3 Input 
False 3 0 3 0 

Basic D-S 9 9 0 0 Output 
Ext. D-S 15 9 3 3 

Table 2 
Detection and False Positive Rates of Our HCPN-based 

System with and without Alert Confidence Fusion 

Setting NOA NA NTAD DR NRA FPR
DMZ 16 15 12 75.0% 12 20%
Inside 16 12 12 75.0% 12 0%

Basic D-S 16 9 15 56.3% 9 0%
Ext. D-S 16 15 15 93.8% 15 0%

Acronyms carry the same meaning as that in Table 1. 
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only; 3 alerts are from the inside network analyzer only. The 
exponentially weighted D-S algorithm correctly combines the 
alerts with the estimated weights. 

5. Conclusion 
We expanded the HCPN-based alert correlation and 
understanding system by incorporating our novel alert confidence 
fusion component. The alert confidence fusion algorithm used in 
the system is derived from the exponentially weighted D-S theory 
– our extension to the basic D-S theory by weighing hypothesis 
confidence scores from different sources.  Our experiments on the 
DARPA intrusion data set show that our alert confidence fusion 
model can potentially resolve contradictory information reported 
by different analyzers, and further improve the detection rate and 
reduce the false positive rate. This is particularly important in 
situations where the alerts will be used to drive either automated 
responses, or where they will be used as the primary basis for a 
system administrator’s decisions on how to defend a system from 
a perceived attack. 

As its main advantage, our approach has the ability to quantify 
relative confidence in different alerts. We can use the modeling 
power of D-S theory in expressing beliefs in some hypotheses 
(alert diagnosis), the ability to describe uncertainty and ignorance 
in the system, and the quantitative measurement of belief and 
plausibility in our detection results.  Our ongoing efforts will 
examine this technique in greater depth. 
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