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ABSTRACT

Accurate identification of misuse is a key factor in determining
appropriate ways to protect systems. Modern intrusion detection
systems often use alerts from different sources such as hosts and
sub-networks to determine whether and how to respond to an
attack. However, alerts from different locations should not be
treated equally. We propose improving and assessing alert
accuracy by incorporating an algorithm based on the
exponentially weighted Dempster-Shafer (D-S) Theory of
Evidence. Our approach uses D-S theory to combine beliefs in
certain hypotheses under conditions of uncertainty and ignorance,
and allows quantitative measurement of the belief and plausibility
in our detection results. Our initial evaluations on the DARPA
IDS evaluation data set show that our alert fusion algorithm can
improve alert quality over those from Hidden Colored Petri-Net
(HCPN) based alert correlation components installed at the
demilitarized zone (DMZ) and inside network sites. Due to alert
confidence fusion in our example, the detection rate rises from
75% to 93.8%, without adversely affecting the false positive rate.

Categories and Subject Descriptors
C.2.0 [Computer Systems Organization]:
Communication Networks — Security and protection

Computer-

General Terms
Algorithms, Experimentation, Security.

Keywords

Alert Confidence Fusion, Intrusion Detection System, Dempster-
Shafer Theory of Evidence, Hidden Colored Petri-Net, Alert
Correlation.

1. INTRODUCTION

Accurate identification of misuse activity is a key factor in system
protection, particularly when appropriate responses need to be
determined. Distributed intrusion detection systems (IDS) in
combination with other system defenses, such as firewalls, are
often the primary means of misuse identification and response.
Much of the early IDS research emphasized comprehensive
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identification (low false negatives) over accuracy (low false
positives). However, when one considers implementing
automated response in particular, it can be more important to
gauge how much confidence to place in a raised alert than to be
certain that all possible alerts have been received. For instance,
alerts in which we have high confidence are more suitable for
driving automated response systems. Our work presents, and
performs preliminary assessment of, a technique for improving
the quality of IDS alerts drawing on multiple sources of
information, through extending the Dempster-Shafer (D-S)
Theory of Evidence.

Informally, we refer to an intrusion detection system (IDS) as
producing “high quality alerts” if the IDS both avoids false
positives (identifying behavior as misuse when it is acceptable)
and false negatives (missing misuse behavior).

Methods for improving the quality of IDS alerts have been a
subject of considerable study [3][6][11] [12][14][15][18][20]. One
technique for enhancing alert quality, particularly reducing false
positives, is correlating information about activities to increase
confidence that a particular alert set actually signifies a specific
event. Correlation approaches may operate in either the time or
space domain [6][11][14]. Our Hidden Colored Petri-Net (HCPN)
[20] based framework is an example of such an approach. We
showed in [20] that HCPN-based alert correlation can
significantly reduce both the total number of alerts and the
number of false alarms. However, we also determined that alert
confidence fusion is needed to address the different reliability of
alerts from alert analyzers, particularly when these are installed at
different sites, which is a typical scenario. As has been indicated
elsewhere [9], information from different sites is not equivalent in
trustworthiness, and this factor should be incorporated into the
data when one assesses confidence in an alert.

We propose a method for performing alert confidence fusion
based on the weighted Dempster-Shafer (D-S) Theory of
Evidence — our extension to the basic D-S Theory of Evidence.
Informally, the basic D-S theory combines confidence scores
directly with individual scores tied to the likelihood that observed
information supports a given conclusion. In contrast, our extended
D-S theory first determines weights based on the sources of our
gathered observations and then combines individual confidence
scores using these weights. The weightings can incorporate
factors such as our level of trust in specific observers, and our
belief in the capacity of specific observers to make particular
observations. For example, alerts from remote sites are not
considered to be as trustworthy as alerts from local sites [9]. If
we weight our confidence in remote site observations differently
from local site observations, we should therefore be able to
produce more accurate results. Our initial observations using
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Defense Advanced Research Projects Agency (DARPA) IDS
evaluation data indicate that this is a fruitful approach.

Clearly, making good decisions about how to weight observers
and specific categories of observations is a key element in the
success of alert confidence fusion. As one way of making such
estimates, we demonstrate that the weights in our extended D-S
theory can be estimated by using past data points. We applied this
alert confidence fusion model to our HCPN-based alert
correlation system and showed further improvement in resolving
conflicts between alerts from different alert analyzers and in
reducing false alerts.

The paper is organized as follows. In section 2, we introduce the
basic Dempster-Shafer Theory of Evidence and its limitations
when applied to the alert confidence fusion task in the intrusion
detection systems. We extend the D-S theory to resolve the
limitations. In section 3, we introduce how the extended D-S
theory can be applied to our alert confidence fusion system.
Specifically, we discuss the architecture and some practical
considerations related to the alert confidence fusion task. We
report our experiment results on DARPA IDS evaluation data set
in section 4, and conclude in section 5.

2. The Dempster-Shafer Theory of Evidence
In this section, we first introduce the basic Dempster-Shafer
Theory of Evidence formally. Then we indicate the limitations of
the basic D-S theory when it is applied to the alert confidence
fusion task in intrusion detection systems. We address these
limitations by proposing an exponentially weighted D-S theory.

2.1 The Basic Dempster-Shafer Theory

The basic Dempster-Shafer’s (D-S) Theory of Evidence was first
formulated by Shafer in 1976 [17]. This theory can be considered
as a generalized Bayesian theory. It can be interpreted from either
a probabilistic or an axiomatic point of view [13]. The D-S theory
has been applied in the fields of statistical inference, diagnostics,
risk analysis, and decision analysis.

In a Dempster-Shafer reasoning system, the frame of discernment
is the set of all possible mutually exclusive and complete facts (or

events) © = {6, |1<i < N}. It consists of all hypotheses for which
the information sources can provide evidence. A hypothesis H is a

subset of ®. Each hypothesis is assigned a value by an observer
from the mass probability function m, which is defined as:

m:2° —[0,1] (1)
and satisfies the following conditions:

m(¢)=0 ¥

m(H)>0, VHc©® (3)

> m(H)=1 )

Hco

The probability that the evidence supports hypothesis H is within
the interval defined by the belief and plausibility:

[Bel(H),Plaus(H)] ()
where
Bel(H)= Y m(B) (6)

BcH

Plaus(H)=1- 3 m(B) @

BAH=¢
The gap |Plaus(H)—-Bel(H )| indicates the ignorance about the

hypothesis. Note that the D-S theory calculates the probability
that the evidence supports a hypothesis rather than the probability
of the hypothesis itself. In other words, the probability being
computed is tied to confidence that a particular suite of evidence
is being interpreted correctly, rather than that some particular
hypothesis is correct.

A powerful feature of the D-S theory in a distributed intrusion
detection system is its usefulness in combining evidence provided
by different observers. Assume we have K observers O, (e.g.,

sensors or analyzers in the IDS). Each observer provides its own
perceived state (or evidence) to a central information processor
whose task is to infer the true state of the system by combining
the evidences from all observers. Also assume that the observer

O, believes that hypothesis H is true with confidence m (H ) and

O, believes that hypothesis H is true with confidence m,(H) .
The D-S theory provides a rule to combine evidences from
independent observers O, and O, into a single and more
informative hint:

H _ ZBmC=H ml(B)mz(C)
m,(H)=

ZBmc;tgﬁml(B)mZ(C)
A useful property of this combining rule is that it does not rely
upon a priori probability distributions on the possible system
states (which is needed in a Bayesian approach [3]) and so it is
useful even if we don’t have a priori knowledge about the system.

®)

The combining rule (8) can be generalized by iteration. For
example, suppose we define mlz(H) as the evidence provided by

the combined observer O,, (O, and O, ); we can then treat this

evidence as though it came from a single source. By extension,
we can combine evidences from any number of observers to
produce a single result. This property also means that we can
incorporate new evidence and update our beliefs as we acquire
new knowledge through observations. In other words, we can
apply this not only to multiple observations taken “at once”, but
also to multiple observations taken from many places over a
period of time.

2.2 The Extended Dempster-Shafer Theory
The Dempster-Shafer combining rule (8) implies that we trust
observers O, and O, equally. This assumption normally does not

hold in a distributed-sensor intrusion detection system that spans
domains. There are several reasons for this. First, information
provided by remote sensors and analyzers is considered less
trustworthy than that provided by local sensors and analyzers as
noted earlier [9]. Second, even identical sensors (and analyzers)
installed at different locations may have different detection
capabilities since the raw events captured by these sensors are
different. Third, different kinds of sensors and analyzers which
detect the same type of attack may do so with a different level of
accuracy. For example, a sensor may detect misuse activities such
as Distributed Denial of Service (DDoS) attacks with 90%
accuracy but detect escalation of privilege, such as Local to Root
(L2R) attacks with only 50% accuracy. Another, perhaps host-
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based, sensor may not detect DDoS at all, but be quite accurate in
detecting escalation of privilege. We would therefore expect to
place greater confidence in DDoS alerts generated by the first
sensor but have less confidence in its reported L2R alerts. In
contrast, we would trust more on the L2R alerts generated by the
second sensor.

To address the reality that we cannot trust all observers equally,
and that a given observer may have different effectiveness in
identifying individual misuse types, we extend the D-S theory to
incorporate a weighted view of evidence and propose the
following modified combining rule:

m (H ) _ ZBMC=H |:rnl(B)j|W1 |:m2 (C)]WZ
12 - W,
ZBmCtrﬁ[ml ( B):|W1 [mZ (C)]
where w; is the weight for the observer O,. Whenw, =w, =1, (9)
is reduced to the basic D-S combining rule.

©9)

The weights can be estimated in several ways. For instance, they
can be estimated based on the overall estimation correctness rate
in the past and may be further adjusted based on other available
information about the source (e.g., local vs. remote) of the
information. In our system, we estimate the weights based on the
Maximum Entropy principle [6][15] and the Minimum Mean
Square Error (MSEE) criteria. We will describe our estimation
algorithms in section 3.3.

Wu et al [19] have also proposed a weighted D-S combining rule
(for other purposes). Our approach is different from theirs. In their
approach, confidence scores are weighted proportionally; while in
our approach they are weighted exponentially. With the usage of
proportional weights in [19], Eq. (4) no longer holds for the
combined evidence.

3. Alert Confidence Fusion

We have just described the exponentially weighted D-S theory to
perform alert confidence fusion. We now show how it can be used
to support alert confidence fusion in distributed intrusion
detection systems.

3.1 Architectural Consideration

Our alert confidence fusion approach can be applied at different
levels. For example, we can directly fuse alerts from sensors.
However, this simple architecture does not take into account the
relationships between different alerts.

A better architecture, albeit more complex, is the one depicted in
Fig. 1. Here, alerts are first analyzed using alert correlation
components. This will reduce false positives. The outputs of alert
correlation components are then fused to further improve the alert
quality. There are three advantages of using this architecture.

First, in a sophisticated attack, attackers may perform a series of
actions with previous steps preparing for the later ones
[6]1[14][20]. An alert correlation component which uses this
prerequisite-consequence relationship can dramatically reduce the
number of false alerts [20].

Second, a major challenge for applying alert confidence fusion is
to determine the mass probability function over the observed
alarms. We will show in section 3.2 that our alert correlation
component can provide the probabilities naturally.
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Fig. 1: Architecture used in our alert confidence fusion system.
Alerts from different set of sensors are first correlated to reduce
the number of total alerts and to improve the quality of the
alerts. Alerts after correlation are then fed into the confidence
fusion component.

Third, we have shown [20] that although our original alert
correlation module could improve the quality of alerts, it is
necessary to have an approach to combining alerts from alert
analyzers at different locations. Our exponentially weighted D-S
theory fulfills this requirement.

3.2 The Alert Correlation Component

We used the Hidden Colored Petri-Net (HCPN) [20] based alert
correlation component in our system. HCPN is our extension to
Colored Petri-Net. In HCPN, each token element is associated
with a probability (or confidence), and observations are explicitly
separated from transitions. In HCPN, colors represent agents;
places represent resources; observations represent alerts;
transitions represent actions; input arcs represent prerequisites of
the action; and output arcs represent consequences of the action as
shown in Fig. 2. The model is called “hidden” because the
transitions are not directly observable. Instead, each transition has
a probability to omit an observation. The true state transitions can
be inferred through the observations only.

Fig. 2: Hidden Colored Petri-Net. In HCPN, colors represent
agents; places represent resources; observations represent
alerts; transitions represent actions; input arcs represent
prerequisites of the action; and output arcs represent
consequences of the action.

HCPN is suitable for correlating alerts where attackers’ true
actions are unknown and we may infer their actions only based on
partial observations as embodied in alerts. We can indicate the
situation in Fig. 2. Here, the HCPN model output gives the
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probability that a resource has been undertaken by an attacker.
This probability can be directly used in the alert confidence fusion
component as the mass probability function.

3.3 The Alert Confidence Fusion Technique
The alert confidence fusion technique used in our system is based
on our extended Dempster-Shafer Theory of Evidence as
described earlier. Since we are interested in whether an alert A, is
true (a true positive) or false (a false positive), the frame of
discernment is ®, ={A,—A} . The possible hypotheses are:

2% = {4 (A} AL A LAY (10)
It is clear that:

m, ({Ac—A})=0 (11)

m({-A})=1-m({A}) (12)
The combining rule then becomes:

n ____P({A)

12({)6\(})_P({A<})+P({_‘A(}) (13)
___PU=A))

A =B AT (AT 4
where

P(X)=[m (X)]" [m,(x)]" (15)

We use the probability from the ith HCPN alert correlator as the
mass probability function m, (A, ) .

Now we illustrate the limitation of the basic Dempster-Shafer
theory with a concrete example. Assume we have two observers.

Observer O, reports m,({A})=0.02 and observer O, two
reports m, ({A })=0.7. According to the basic D-S theory (i.e.,
w =wk =1 in (15)),
0.02¢0.7
m = =
2({A) 0.02¢0.7+0.98¢0.3
If observer O, is very bad at detecting attack A, and observer

0.05 (16)

0, detects A with high accuracy, we can see that the result in

(16) does not give us the correct view of the system state, an
indication that the basic D-S combining rule is not suitable for
combining the results of the two observers under this condition.

Actually, we should weight the report from O, more than that

from O, . Assume w} =0.2andwj =1, then,

0.02°? 0.7
m =
2 ({A) 0.02°2  0.7* +0.98°2 ¢ 0.3!
which is a better combined view of the system.

=052 17

The key to the successful use of our approach is the proper
calibration of the weights. In our prototype system, we have used
both the Maximum Entropy (MaxEnt) [6][15] based approach and
the Minimum Mean Square Error (MMSE) based approach to
estimating the weights.

To estimate the weights with the MaxEnt principle, we rewrite
(13) and (14) to be:

1
m,, (H |ti)=—N exp(wlk f,(H,t)+wj fz(H,ti)) (18)
k
where t; indicates the time,

f.(H.t)=log(m(H |t)) (19)
and N, is the normalization factor so that (4) holds:
Ne= ¥ exp(wf(Ht)+wf,(Ht)) (20)
Hel{Ad A

(18) can be interpreted as combining features Iog(mi (H |ti)) with

the standard exponential model. The Generalized Iterative
Scaling (GIS) algorithm [8] and Improved Iterative Scaling (I1S)
algorithm [8] thus can be used to estimate the weights. These
algorithms have been shown to be able to minimize the Kullback-

Leibler (K-L) distance between my,(H) and the empirical
distribution p(H) of a set of training samples's; (i =1,---,N):

D(pim,) -3 p(H)oo P @
where p(H ) is defined as:
p(H) _oH) (22)

N
and c(H) is the number of times hypothesis H is true in the
training samples.

An alternative way to estimating weights is using the criteria of
Minimum Mean Square Error (MMSE). The Mean Square Error
(MSE) is defined as:

N

> (m., ((a})-n)
MSE =32 N (23)

where N is the total number of samples in the training set; m ; is

the jth combined observation score; and r;is the real (or true)

value of the jth observation:
1 if A istrue

r, = A ) (24)

0 otherwise

We used the standard gradient descending algorithm to search for

the best weights:

e OMSE

W, wW—A— 25
. i ow (25)

where A is the step size.

The MMSE based approach provides us the same result as the
MaxEnt based approach in our alert analysis experiments but
outperforms the MaxEnt based approach in a more broad set of
experiments.

Note that for each alert type A, , there is a pair of weights Wik .In
other words, if observer O, is good at detecting alert A but is not

good at detecting alert A, W, is large but w; is small.
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There are two practical considerations in our implementation:

First, when m, (H )is close to 0, log(m, (H )) might be very small.

This may result in computational underflow. To prevent
underflow from happening, all the probabilities in the system
have a floor value of 0.01. If the confidence of a hypothesis is less
than 0.01, we set it to be 0.01.

Second, an HCPN alert correlator reports to the alert confidence
fusion component only if the perceived state of a resource has
been changed, so alert correlators send the state change
information asynchronously. To deal with this problem, we store
every correlator’s last reported evidence. When a new report
regarding alert A comes in, we update the corresponding

evidence and re-estimate the combined confidence for the alert
A, . We thus gauge confidence based on evidence “in hand”, and

increase or reduce confidence when new information arrives.

4. Experimental Results

We have performed off-line experiments using two DARPA 2000
DDoS intrusion detection evaluation data sets. These are not
intended to be conclusive examinations of the efficacy of our
technique — but rather provide some sense of how well our
approach works.

In both data sets, an attacker probes and obtains access to the
internal systems, installs a DDoS daemon, and launches a DDoS
attack against an off-site server. Each dataset includes the
network traffic data collected from both the demilitarized zone
(DMZ) and the inside part of the evaluation network. Alerts are
generated by RealSecure Network Sensor 6.0 with the maximum
coverage policy to force the network sensor to save all the
reported alerts. We use RealSecure network sensors because
attack signatures are well documented.

We first trained the HCPN-based alert correlators as in [20], then
trained the confidence fusion weights based on the outputs from
the alert correlators. The test was performed on the first dataset.
We used two alert correlators in the system, one for the DMZ
traffic and one for the inside network traffic. The correlation
results from these correlators were combined using our alert
confidence fusion algorithm.

Table 1 shows the detection and false positive rates for
RealSecure Network Sensor 6.0. The top and bottom part of Table
2 show the results of our HCPN-based system with and without
alert confidence fusion, respectively. We separated them into two
tables because we want to compare the performance of the system
with and without our alert confidence fusion approach.

Before further discussion, we note that the results listed in the top
half of Table 2 differ from those in [20] due to the way we count
the alerts. In [20], we emphasize the performance of individual
HCPN-based alert analyzers and the number of observable alerts
is limited to individual sites. In Table 2, we report the number of
observable alerts from all the sources (e.g., DMZ and inside
network).

In our experiments, the detection rate (DR) is defined as:

_ Number of True Attacks Reported
Number of Total Observable Attacks
The False Positive Rate (FPR) is defined as:

(26)

Number of True Alerts Reported

FPR=1- (27
Number of Alerts Reported
Table 1
Detection and False Positive Rates for RealSecure Network
Sensor 6.0
Setting| NOA| NA |NTAD DR NRA| FPR
DMZ | 89 891 51 57.30% 57 | 93.60%
Inside | 60 | 922 37 61.67% | 44 | 95.23%

NOA=Number of Observable Attacks,
NA=Number of Alerts,

NTAD=Number of True Attacks Detected,
DR=Detection Rate,

NRA=Number of Real Alerts,

FPR=False Positive Rate

Table 2

Detection and False Positive Rates of Our HCPN-based
System with and without Alert Confidence Fusion

Setting NOA | NA | NTAD DR NRA |FPR
DMZ 16 15 12 75.0% 12 [20%
Inside 16 12 12 75.0% 12 | 0%

Basic D-S 16 9 15 56.3% 9 0%

Ext. D-S 16 15 15 93.8% 15 | 0%

Acronyms carry the same meaning as that in Table 1.

Table 3
Alerts Received by the Alert Confidence Fusion Component

Total From From Frqm
Both DMZ | Inside
All 18 9 6 3
Input True 15 9 3 3
False 3 0 3 0
Basic D-S 9 9 0 0
output |2 b5 | 15 9 3 3

From Table 1 and the top part of Table 2, we see that the number
of alerts and false positive rates are dramatically reduced by using
the HCPN-based alert analysis component. The bottom part of
Table 2 shows that our alert confidence fusion algorithm
(Extended D-S) further increases the detection rate while keeping
the false positive rate down by combining information from DMZ
and inside networks. Without using alert confidence fusion, the
detection rate for both analyzers is around 75%, and the false
positive rate at the DMZ site is 20%. Using extended D-S
algorithm based alert confidence fusion, we increase the detection
rate to 93.8% while reducing the false positive rate to 0% under
the experiment setting. Note, however, if only the basic D-S
combination algorithm is used, the detection rate decreases. The
extended D-S algorithm provides more than 30% absolute
detection rate against the basic D-S algorithm in our experiments.

Table 3 shows details of the alerts processed by the alert
confidence fusion component. The alert confidence fusion
component receives 18 alerts from lower level alert analyzers; 9
are reported by both the correlators installed at the DMZ and
inside network sites; 6 alerts are from the DMZ alert analyzer
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only; 3 alerts are from the inside network analyzer only. The
exponentially weighted D-S algorithm correctly combines the
alerts with the estimated weights.

5. Conclusion

We expanded the HCPN-based alert correlation and
understanding system by incorporating our novel alert confidence
fusion component. The alert confidence fusion algorithm used in
the system is derived from the exponentially weighted D-S theory
— our extension to the basic D-S theory by weighing hypothesis
confidence scores from different sources. Our experiments on the
DARPA intrusion data set show that our alert confidence fusion
model can potentially resolve contradictory information reported
by different analyzers, and further improve the detection rate and
reduce the false positive rate. This is particularly important in
situations where the alerts will be used to drive either automated
responses, or where they will be used as the primary basis for a
system administrator’s decisions on how to defend a system from
a perceived attack.

As its main advantage, our approach has the ability to quantify
relative confidence in different alerts. We can use the modeling
power of D-S theory in expressing beliefs in some hypotheses
(alert diagnosis), the ability to describe uncertainty and ignorance
in the system, and the quantitative measurement of belief and
plausibility in our detection results. Our ongoing efforts will
examine this technique in greater depth.
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