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Abstract—We consider the problem of a bidder with limited
budget competing in a series of second-price auctions. A mo-
tivating example is that of sponsored search auctions, where
advertisers bid in a sequence of repeated generalized second
price auctions. To characterize the optimal bidding strategy, we
formulate the problem as a discounted Markov Decision Process,
and provide explicit solutions when the bidder is involved in a
large number of auctions.

I. INTRODUCTION

In on-line advertisement systems, such as sponsored search
auction systems, advertisers are repeatedly involved in auc-
tions to acquire advertisement spaces. We analyze the problem
faced by a single advertiser with limited budget competing
in a series of second-price auctions, and assume that the
highest bids of the opponents are independent and identically
distributed over different auctions. Under this assumption, we
characterize the optimal bidding strategy. The i.i.d. assumption
is motivated by recent analysis of real-world data traces
[1], and can be theoretically justified when the number of
competing bidders grows large [2].

II. A DISCRETE TIME CONTINUOUS STATE MARKOV
DECISION MODEL

Time. Time is discrete and indexed by i = 0, 1, 2, . . .
Random environment. The pay-offs and payments are deter-
mined by the random realizations of the competing bid and
the user’s own valuation in each time slot. The valuation is
observable prior to bidding, but the competing bid is unob-
servable. This environment is assumed to be i.i.d. over time.
Two generic random variables (v, w) represent the valuation
and competing bid, i.e. they have the same distribution as
v(i), w(i) for any i.
Actions. At each time, the bidder selects a bid u from a set
U .
Utility. The instantaneous utility from bidding u when the
competing bid is w is defined to be 1u>w(v−w). The bidder
wishes to maximize the infinite horizon discounted utility,∑∞
i=0 e

−βiE[1u(i)>w(i)(v(i)− w(i))].
Budget Constraint. Initially the bidder’s budget is b(0) = b.
At each time slot, the remaining budget is decreased by the
payment and incremented by a fixed amount a. The balance
b(i) available at the beginning of slot i evolves as follows:

b(i+ 1) = b(i) + a− 1u(i)>w(i)w(i), b(0) = b. (1)

The bidder is forbidden from taking any sequence of actions
that lead to a negative balance at any point.
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The MDP. Consider a discrete time Markov Decision Process
(MDP) on the continuous state space, R+ representing the
budget balance. Let U represent the collection of all admissible
Markov Policies (i.e. U represents all sequences of Markov
bids with the additional restriction that any sequence of bids
u(i) which lead to a strictly positive probability on the event
b(i + 1) < 0 is forbidden). Then, the value function for an
initial balance b(0) = b is given by:

vβ(b) = sup
U

(
E[
∞∑
i=0

e−βi1u(i)>w(i)w(i)]

)
(2)

III. ASYMPTOTICALLY OPTIMAL BIDDING

We are interested in analyzing scenarios where the bidder
is optimizing over a large number of auctions, and where in
each auction, potential payments only consume a very small
fraction of the budget. To do so, we let β → 0 and rescale
value function and budget as follows: Vβ(B) , βvβ(b) =
βvβ(B/β), where vβ(b) is defined in (2). The following
theorem characterizes the limiting value function when β → 0.

Theorem 1. Consider the MDP defined in Section II. Let φ :
R+ 7→ R be defined as:

φ(x) = ax+ E
[
(v − b(1 + x))+

]
(3)

then φ is a convex Lipschitz function with a minimum denoted
η∗ , minx≥0 φ(x). Let f : R 7→ R+ be an inverse function
to φ defined as:f(y) = min{x ≥ 0 : φ(x) = y}. Then, for all
B ≥ 0, V (B) = limβ→0 βVβ(B) is well defined, and satisfies
the ODE:

dV

dB
= f(V ), V (0) = η∗. (4)

When β ≈ 0, the approximately optimal bidding strategy
can be written using the theorem as:

u∗(v,B) =
v

1 + V ′(B)
. (5)

Therefore, when the scaled balance is B, the optimal bid is
obtained by shading down the true valuation by a factor equal
to 1

1+V ′(B) .
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