
Quantum binary field inversion: improved circuit
depth via choice of basis representation

Brittanney Amento
Florida Atlantic University

Department of Mathematical Sciences
Boca Raton, FL 33431
bferoz@fau.edu

Martin Rötteler
NEC Laboratories America

4 Independence Way, Suite 200
Princeton, NJ 08540, U.S.A.

mroetteler@nec-labs.com

Rainer Steinwandt
Florida Atlantic University

Department of Mathematical Sciences
Boca Raton, FL 33431
rsteinwa@fau.edu

September 26, 2012

Abstract

Finite fields of the form F2m play an important role in coding theory and cryptography. We show that the choice of
how to represent the elements of these fields can have a significant impact on the resource requirements for quantum
arithmetic. In particular, we show how the use of Gaussian normal basis representations and of ‘ghost-bit basis’
representations can be used to implement inverters with a quantum circuit of depth O(m log(m)). To the best of our
knowledge, this is the first construction with subquadratic depth reported in the literature. Our quantum circuit for
the computation of multiplicative inverses is based on the Itoh-Tsujii algorithm which exploits that in normal basis
representation squaring corresponds to a permutation of the coefficients. We give resource estimates for the resulting
quantum circuit for inversion over binary fields F2m based on an elementary gate set that is useful for fault-tolerant
implementation.

1 Introduction
In quantum computing, arithmetic operations occur in a plurality of contexts [2,5,7,11,16,21,29]. Having good quan-
tum circuits for arithmetic is indispensable for obtaining good resource estimates and efficient circuit implementations
of more complex quantum algorithms. In view of the cryptographic significance, it is not surprising that a number
of publications have already explored quantum circuits to implement finite field arithmetic, including [3, 15, 17, 18].
Important special cases are arithmetic operations in finite prime fields and finite binary fields (cf., for instance, [22]).
While there is some common ground between the prime-field case and the characteristic-two case, there are also im-
portant differences. In this paper we focus entirely on quantum circuits to implement arithmetic in fields of the form
F2m .

Interestingly, thus far the literature on quantum circuits for F2m -arithmetic focuses completely on polynomial
basis representations, and computing multiplicative inverses by implementing the extended Euclidean algorithm as
discussed in [15] appears to be the common choice. The cost of implementing inversion this way is significant as
the resulting circuit has a size that is cubic in m. When realizing the group law on a binary elliptic curve as quantum
circuit, the cost of this operation becomes apparent: in an earlier issue of this journal, Maslov et al. presented a solution
to the discrete logarithm problem on binary elliptic curves [17]. An important technique for achieving quadratic depth
with their solution was to bring down the number of finite field inversions to one. For the asymptotic analysis, the

1

ar
X

iv
:1

20
9.

54
91

v1
 [

qu
an

t-
ph

]
 2

5
Se

p
20

12

quadratic depth of this single inversion is still as expensive as all other arithmetic operations combined. So when
trying to improve on the discrete logarithm circuit presented in [17]—which from a cryptanalytic point of view is
desirable—reducing the complexity of binary finite field inversion is a natural first step.

Our contribution. This paper presents linear-depth multipliers using a so-called ghost-bit basis and using Gaussian
normal bases. Building on these multipliers, we describe an inverter for F∗2m of depth O(m log(m)) derived from a
classical inversion algorithm by Itoh and Tsujii [12], using O(m log(m)) qubits. We hope that our work stimulates
follow-up work on using different representations of finite fields in quantum circuits, and we expect that the circuits
presented in this paper will be useful for speeding up the arithmetic for quantum algorithms for computing discrete log-
arithms on elliptic curves, but also for other algebraic problems that can be tackled on a quantum computer, including
hidden polynomial equations [5], hidden shift problems [7, 24, 28], and certain period finding tasks [11, 16, 29].

For the fault-tolerant implementation of quantum circuits on several error-correcting codes [8, 25] the elementary
gate set consisting of all Clifford gates and the so-called T -gate is a preferable one. The T -gate is the local unitary
diag(1, exp(2πi/8)). The actual complexity of a fault-tolerant implementation of T -gates is extremely high, hence it
is preferable to reduce their number as much as possible. We show that in a Gaussian normal basis or a ghost-bit basis
representation, an inversion over F2m can be computed in a T -depth of O(m log(m)) and using at most O(m2 log(m))
many T -gates.

2 Preliminaries: finite fields F2m

Perhaps the most popular representation of finite fields F2m is the use of a polynomial basis. In the following, we
briefly review some basic facts about this representation as well as two alternatives—the use of a ghost-bit basis and
of a Gaussian normal basis. All of these representations are known, and we claim no originality for this section.

2.1 Polynomial basis representation
Denoting by f = xm +

∑m−1
i=0 xi ∈ F2[x] an irreducible polynomial of degree m over the prime field F2, we can

identify F2m with the quotient ring F2[x]/(f), and this identification forms the basis of a popular representation of
binary finite fields.

Definition 2.1 (Polynomial basis representation)
With the above notation, let x0 + (f), x1 + (f), . . . , xn−1 + (f) be the canonical F2-vector space basis of F2[x]/(f).
In the polynomial basis representation, each α ∈ F2m is represented by the unique tuple (α0, . . . , αm−1) ∈ Fm2 such
that α =

∑m−1
i=0 αi · (xi + (f)).

Example 2.1 The polynomial x4 + x3 + x2 + x+ 1 ∈ F2[x] is irreducible, and so the field with 16 elements can be
identified with F2[x]/(x

4 + x3 + x2 + x + 1). Choosing f = x4 + x3 + x2 + x + 1 in the above definition, in the
polynomial basis representation, the tuple (1, 0, 1, 0) ∈ F4

2 represents the field element x2 + 1 + (f).

In the current literature on quantum arithmetic for binary finite fields, the representation from Definition 2.1 seems to
be the only one considered. Beauregard et al. [3], Maslov et al. [18], and Kaye and Zalka [15] provide circuits for
addition, multiplication and inversion using a polynomial basis.

• Using one qubit per coefficient of α =
∑m−1
i=0 αi · (xi+(f)), adding |α〉 to an m-qubit input |β〉 can be done in

the obvious way with m CNOT gates, each conditioned on one of the αi. These CNOT gates operate on disjoint
wires, and hence this adder can be realized in depth 1.

• Building on a classical Mastrovito multiplier [19, 20, 26], the multiplication of two m-qubit inputs |α〉 and |β〉
can be realized in depth 9m+O(1) using Toffoli gates. If the irreducible polynomial f is the all-one polynomial
or a trinomial, m2 −m− 1 gates suffice [18].

• Computing the inverse of a non-zero α ∈ F2m , using the extended Euclidean algorithm, can be implemented in
depth O(m2) and 2m+O(log(m)) qubits [15, 17].

2

In this paper, we will look at two different representations of binary fields which—from an algorithmic point of
view—suggest an interesting alternative to the use of a polynomial basis.

2.2 Ghost-bit basis representation
Keeping the notation from above, suppose the irreducible polynomial f we use is the all-one polynomial xm+ · · ·+1.
In this case, m + 1 is prime and 2 is a generator of the cyclic group F∗2m+1 (cf. [12]). Then f divides xm+1 + 1 =
(x+ 1) · (xm + · · ·+ 1) ∈ F2[x], and we can define the map

φ : F2[x]/(f) −→ F2[x]/(x
m+1 + 1)∑m−1

i=0 αi · xi + (f) 7−→ ∑m−1
i=0 αi · xi + (xm+1 + 1)

.

The map φ may be seen as appending an extra (zero) bit to the coefficient vector of a polynomial basis representation
of α ∈ F2[x]/(f). As detailed by Silverman [30] (who suggests to attribute the construction to Itoh and Tsujii [12]),
instead of adding, multiplying, and inverting elements in F2[x]/(f) directly, we can apply φ to the operands, perform
the needed additions, multiplications, and inversions in F2[x]/(x

m+1+1), and then map the result back into F2[x]/(f)
by applying

F2[x]/(f) ←− F2[x]/(x
m+1 + 1)∑m−1

i=0 (αi + αm) · xi + (f) ←− [
∑m
i=0 αi · xi + (xm+1 + 1)

. (1)

Definition 2.2 (Ghost-bit basis representation)
With the above notation, assume that 1 + · · · + xm is irreducible. In the ghost-bit basis representation, each α
is represented by a tuple (α0, . . . , αm) ∈ Fm+1

2 such that (α0 + αm, . . . , αm−1 + αm) is the polynomial basis
representation of α using the irreducible polynomial 1 + · · ·+ xm.

Thence, a conversion from the ghost-bit basis representation to a polynomial basis representation boils down to
dropping the ghost bit and adding (XOR) it to the remaining m bits. In a quantum circuit, this translates into a single
CNOT with multiple fan-out at the very end, provided we do not have to restore the initial |0〉-value of the ghost
(qu)bit. We note that for adding field elements alone, applying the map φ has no advantage—but also no dramatic
drawback.

• Using one qubit per coefficient of α =
∑m
i=0 αi · xi + (xm+1 + 1), adding |α〉 to an (m + 1)-qubit input |β〉

can be done in the obvious way with m+ 1 CNOT gates, conditioned on the individual αi. These CNOT gates
operate on disjoint wires, and hence this adder can be realized in depth 1.

To realize quantum circuits for multiplying and inverting field elements, we are interested in exploiting the following
properties of F2[x]/(x

m+1 + 1):

• Squaring corresponds to a shuffle of the coefficient vector:(
m∑
i=0

αi · xi + (xm+1 + 1)

)2

=

m∑
i=0

απ−1(i) · xi + (xm+1 + 1), (2)

where π(i) = 2 · i mod (m+ 1) for i = 0, . . . ,m.

Example 2.2 As noted in Example 2.1, the polynomial x4 + x3 + x2 + x + 1 ∈ F2[x] is irreducible, and so
F24 affords a ghost-bit basis representation: the above map φ translates operations in F24 into operations in
F2[x]/(x

5 + 1). Applying φ to x2 + 1 + (x4 + x3 + x2 + x + 1), we obtain x2 + 1 + (x5 + 1), i. e., the
polynomial basis representation (1, 0, 1, 0) from Example 2.1 translates into the ghost-bit basis representation
(1, 0, 1, 0, 0).

Form = 4, the permutation π in Equation (2) is (0)(1, 2, 4, 3), so the ghost-bit basis representation of (x2+1+
(x5+1))2 is (1, 0, 0, 0, 1)—corresponding to x4+1+(x5+1). Applying the map from Equation (1), we obtain
the corresponding polynomial basis representation (1, 1, 1, 0) respectively x3+x2+x+(x4+x3+x2+x+1).

3

• To multiply two elements α =
∑m
i=0 αi · xi + (xm+1 + 1) and β =

∑m
i=0 βi · xi + (xm+1 + 1), the following

formula for the coefficients of their product γ =
∑m
i=0 γi · xi + (xm+1 + 1) can be used:

γi =

m∑
j=0

αjβ(i−j) mod (m+1) (3)

As explained in Section 3.1 below, in combination with an observation in [18], Equation (3) yields a linear-depth
circuit for multiplication in F2[x]/(x

m+1 + 1).

Remark 2.1 The idea of a ghost-bit basis can be generalized to a representation with more redundancy—whenever
the polynomial xn + 1 ∈ F2[x] has an irreducible factor f of degree m, then we can define a map φ analogously as
above, using n −m ‘ghost bits.’ Geiselmann and Lukhaub [9] discuss the implementation of F2m -multiplication in
such a representation with a classical reversible circuit.

2.3 Normal basis representation
The possibility of an inexpensive squaring operation will be of great benefit for the inversion algorithm below, and a
natural type of field representation to be considered in this context is a normal basis representation.

Definition 2.3 (Normal basis representation)
Let η ∈ F2m be such that {η, η2, η22 , . . . , η2m−1} is an F2-vector space basis of F2m . In a normal basis representation
of F2m , we represent each α ∈ F2m by the unique tuple (α0, α1, · · · , αm−1) ∈ Fm2 with α =

∑m−1
i=0 αi · (η2

i

).

A normal basis representation exists for every field F2m of degree m ≥ 1, and more background information on
normal bases can be found in [14], for instance. By construction, squaring in such a representation is just a cyclic
shift, and addition can be implemented as bit-wise addition—just as in the case of a polynomial or ghost-bit basis
representation. To ensure the availability of an efficient multiplication procedure, one often restricts to a particular
type of normal basis, which exists whenever 8 - m. In this paper we focus entirely on these so-called Gaussian normal
bases; see also [6, 13] for further background and proofs of the properties that are relevant for our purposes.

Definition 2.4 (Gaussian normal basis)
Assume that t ≥ 1 such that p = tm+ 1 is prime and the index of the subgroup generated by 2 ∈ F∗p is coprime to m.
Let α ∈ F2mt be a primitive p-th root of unity, and let u ∈ F∗p have order t. Then

t−1∑
j=0

αu
j

,

t−1∑
j=0

αu
j

21

, . . . ,

t−1∑
j=0

αu
j

2m−1
is a normal basis of F2m , commonly referred to as type t Gaussian normal basis.1

The complexity of multiplication with respect to a Gaussian normal basis representation is reflected by its type t.
The Digital Signature Standard [22, Appendix D.1.3] offers several practical examples for (extension degree, type)-
pairs of binary fields F2m : (163, 4), (233, 2), (283, 6), (409, 4), and (571, 10). For cryptographic applications, one is
interested in situations where the type t is small. Hence, in our analysis we regard t as a (small) constant.

• Using one qubit per coefficient of α, adding |α〉 to an m-qubit input |β〉 can be done in the obvious way with
m CNOT gates, conditioned on the individual αi. These CNOT gates operate on disjoint wires, and hence this
adder can be realized in depth 1.

• Squaring corresponds to a cyclic (right-)shift of the coefficient vector:

F2m −→ F2m∑m−1
i=0 αiη

2i 7−→ ∑m−1
i=0 αi−1(mod m)η

2i

1The basis elements are known as Gauss periods of type (m, t), but we do not need this terminology here.

4

• With the notation from Definition 2.4, define F (1), F (2), . . . , F (p − 1) through F (2iuj mod p) = i for 0 ≤
i < m and 0 ≤ j < t. Then the representation (γ0, . . . , γm−1) of the product γ = α · β can be computed as
γi =

tm−1∑
k=1

αF (k+1)+iβF (p−k)+i , if 2 | t
tm−1∑
k=1

αF (k+1)+iβF (p−k)+i +
m/2∑
k=1

(αk−1+iβk−1+m
2 +i + αk−1+m

2 +iβk−1+i), if 2 - t
(4)

for i = 0, . . . ,m− 1 (with all indices being understood modulo m).

Example 2.3 (Gaussian normal basis) For F25 there exists a Gaussian normal basis of type t = 2 : we have
p = 2 · 5 + 1 = 11, and 2 is a generator of F∗p, so the index of the subgroup generated by 2 ∈ F∗p is certainly
coprime to m = 5. Choosing u = 10 ∈ F∗11 as an element of order t = 2, we compute

F (1) F (2) F (3) F (4) F (5) F (6) F (7) F (8) F (9) F (10)
0 1 3 2 4 4 2 3 1 0

.

Now, from Equation (4) for the general multiplication γ = α · β, we obtain

γi = α1+iβi + α3+iβ1+i + α2+iβ3+i + α4+iβ2+i + α4+iβ4+i +

α2+iβ4+i + α3+iβ2+i + α1+iβ3+i + αiβ1+i (5)

for i = 0, . . . ,m− 1.

2.4 Computing multiplicative inverses with the Itoh-Tsujii algorithm
With a field representation where squaring is inexpensive, looking at an exponentiation-based alternative to Euclid’s
algorithm for computing multiplicative inverses becomes worthwhile. For any α ∈ F∗2m , we have α2m−1 = 1, and
hence α−1 = α2m−2 can be found by raising α to the power 2m − 2. The almost maximal Hamming weight of the
latter makes a naive square-and-multiply implementation problematic. Happily, a technique by Itoh and Tsujii [12]
enables an efficient implementation of this exponentiation (see, e. g., [10, 12, 27, 31]). We begin by writing

m− 1 =

HW(m−1)∑
i=1

2ki , where blog2(m− 1)c = k1 > k2 > · · · > kHW(m−1) ≥ 0,

and HW(·) denotes the Hamming weight. Now, for fixed α ∈ F∗2m and for i ≥ 0, we define βi = α2i−1. In particular,
β0 = 1, β1 = α, and the inverse of α can be obtained as α−1 = (βm−1)

2. So once we know βm−1, only one final
squaring is needed—which for a ghost-bit or a normal basis representation is just a permutation. To compute βm−1,
we exploit the fact that for all non-negative integers i, j the relation

βi+j = βi · β2i

j (6)

holds. By repeatedly applying Equation (6) with i = j, we see that computing all of β20 , β21 , . . . , β2k1 requires no
more than blog2(m − 1)c multiplications in F∗2m and blog2(m − 1)c exponentiations by a power of 2. In a ghost-bit
or a Gaussian normal basis representation, all occurring exponentiations are (α-independent) permutations, and as the
multiplications are of the form βj · (βj)2

j

, to save resources we will exploit that (βj)2
j

can be derived from β—there
is no need to implement a general multiplier.

Beginning with β2k1 , we use Equation (6) to calculate β2k1+2k2 and then iterate this process to obtain β2k1+2k2+2k3 ,
etc., until we finally reach βm−1 = β

2k1+2k2+···+2
kHW(m−1) . Hence, with β2k1 , . . . , β2kHW(m−1) being available,

HW(m− 1)− 1 multiplications in F∗2m and HW(m− 1)− 1 exponentiations by a power of 2 suffice to derive βm−1.

Example 2.4 (Itoh-Tsujii inversion) For m = 7, we have m− 1 = 6 = 22 + 21, so given an input α = β20 ∈ F∗27 ,
with 2 ≤ blog2(6)c applications of Equation (6) we can find β21 and β22 . Then, with 1 = HW(6) − 1 additional
application of Equation (6), we obtain β22+21 . After a final squaring—which in the case of a ghost-bit or a Gaussian
normal basis representation is just a permutation of coefficients—yields α−1 = β2

22+21 .

5

3 Multiplying in linear depth using ghost-bit and Gaussian normal basis
representations

For implementing the inverter discussed in the sequel, the multiplication of field elements plays a crucial role. As we
are interested in Gaussian normal basis and ghost-bit basis representations, we begin by detailing linear-depth circuits
for multiplication in each of these representations.

3.1 Linear depth multiplication using a ghost-bit basis
To multiply two (m + 1)-bit inputs |α〉 and |β〉 which represent field elements α, β ∈ F2m in a ghost-bit basis, For-
mula (3) immediately yields a circuit consisting of (m+1)2 Toffoli gates: each individual product αjβ(i−j) mod (m+1)

corresponds to a single Toffoli gate. Adopting an observation from [18], we recognize that these (m + 1)2 Toffoli
gates can be evaluated in linear depth: for fixed (i−2j) mod (m+1), the Toffoli gates to compute them+1 products
αjβ(i−j) mod (m+1) (j = 0, . . . ,m) operate on disjoint wires. Consequently, we can evaluate these m + 1 Toffoli
gates in parallel, and iterating over allm+1 possible values for (i−2j) mod (m+1), we obtain a multiplier of depth
m+ 1. This establishes the following result, which for the special case |ξ〉 = |0〉 yields a basic multiplier.

Proposition 3.1 If a ghost-bit basis representation of F2m is available, the multiplication |α〉 |β〉 |ξ〉 7→ |α〉 |β〉 |ξ + αβ〉
with α, β, ξ ∈ F2m can be realized in depth m+ 1 with m2 + 2m+ 1 Toffoli gates.

As a concrete example of a ghost-bit basis multiplier, let us apply the above proposition to the field with 16
elements.

Example 3.1 Consider the ghost-bit basis representation of F24 from Example 2.2. In this case, evaluating all terms
αjβ(i−j) mod 5 in order for (i− 2j) mod 5 = 0, 1, 2, 3, 4 yields a multiplier of depth 5, consisting of 5 · 5 = 25 Toffoli
gates, as shown in Figure 1.

Figure 1: A ghost-bit basis multiplier for α · β ∈ F24

|q0〉 = |α0〉 • • • • •

|q1〉 = |α1〉 • • • • •

|q2〉 = |α2〉 • • • • •

|q3〉 = |α3〉 • • • • •

|q4〉 = |α4〉 • • • • •

|q5〉 = |β0〉 • • • • •

|q6〉 = |β1〉 • • • • •

|q7〉 = |β2〉 • • • • •

|q8〉 = |β3〉 • • • • •

|q9〉 = |β4〉 • • • • •

|q10〉 = |γ0〉 ⊕ ⊕ ⊕ ⊕ ⊕

|q11〉 = |γ1〉 ⊕ ⊕ ⊕ ⊕ ⊕

|q12〉 = |γ2〉 ⊕ ⊕ ⊕ ⊕ ⊕

|q13〉 = |γ3〉 ⊕ ⊕ ⊕ ⊕ ⊕

|q14〉 = |γ4〉 ⊕ ⊕ ⊕ ⊕ ⊕

6

Next, we consider the special case of computing products α · α2j with a fixed j, as occurring in the Itoh-Tsujii
algorithm described in Section 2.4. This variant of our multiplier takes as input the ghost-bit basis representation
(α0, . . . , αm) ∈ Fm+1

2 of some α ∈ F2m and a |0〉-initialized m + 1-bit register, in which the ghost-bit basis rep-
resentation (γ0, γ1, . . . , γm) of γ = α · α2j will be stored. The total number of wires required is only 2 · (m + 1).
As we are using a ghost-bit basis representation, squaring is a simple permutation, and more generally exponentia-
tion by 2r corresponds to a permutation. In particular, we can obtain the ghost-bit basis representation of α2r from
(α0, α1, . . . , αm) by reading out the individual entries in a different order. Hence, the following result confirms that
the saving of m wires can be done without sacrificing the property of having linear depth.

Proposition 3.2 If a ghost-bit basis for F2m is available, then for any fixed r ∈ {0, . . . ,m} the multiplication
|α〉 |ξ〉 7→ |α〉 |ξ + α · α2r 〉 with α, ξ ∈ F2m can be realized in depth 2m + 2 using m2 + m Toffoli and m + 1
CNOT gates.

Proof: Let α =
∑m
i=0 αix

i + (xm+1 + 1) be a ghost-bit basis representation for α ∈ F2m . Then Equation (2)
yields α2r =

∑m
i=0 απ−r(i)x

i + (xm+1 + 1), and with Equation (3) we recognize the ith coefficient of α · α2r as

γi =

m∑
j=0

αjαπ−r((i−j) mod (m+1)) (i = 0, . . . ,m).

As applying π can be seen as doubling modulo m+1, applying π−r translates into division by 2r modulo m+1. We
may assume that 2r 6= 1 mod (m+ 1), as otherwise r ∈ {0,m}, and exponentiation with 2r becomes the identity on
F2m . Then, for any fixed ‘index sum’ σ ∈ {0, . . . ,m}, there are exactly m+ 1 pairs (i, j) ∈ {0, . . . ,m}2 satisfying

π−r((i− j) mod (m+ 1)) + j = σ mod (m+ 1). (7)

Namely, for each i ∈ {0, . . . ,m} we obtain a unique corresponding j ∈ {0, . . . ,m} by solving the linear equation

2−r · (i− j) + j = σ mod (m+ 1)

for j—at this we divide by 1− 2−r (mod m+ 1) which is possible as 2r 6= 1. The subsequent argument shows that
we can compute the m + 1 products αjαπ−r((i−j) mod (m+1)) for those (i, j)-pairs satisfying Equation (7) in depth
2. By arranging our circuit such that the values σ = 0, . . . ,m are processed in order, we achieve the claimed overall
depth of 2m+ 2.

Suppose we have two products αjαπ−r((i−j) mod (m+1)) and αj′απ−r((i′−j′) mod (m+1)) satisfying

π−r((i− j) mod (m+ 1)) + j = σ = π−r((i′ − j′) mod (m+ 1)) + j′,

then we may assume j 6= j′, as otherwise

π−r((i− j) mod (m+ 1)) = π−r((i′ − j′) mod (m+ 1)),

and there is nothing to show. Consequently, the two gates evaluating the two terms

αjαπ−r((i−j) mod (m+1)) and αj′απ−r((i′−j′) mod (m+1))

have different target bits. We can evaluate these two terms in parallel whenever the intersection

{j, π−r((i− j) mod (m+ 1))} ∩ {j′, π−r((i′ − j′) mod (m+ 1)}

is empty—in this case the corresponding gates operate on disjoint wires. To better understand the situation, let us define
an undirected graph G with vertex set Z/(m+ 1), so that vertex i+ (m+ 1) corresponds to the wire representing αi.
We connect two vertices, whenever they serve as control bits for the same gate, i. e., we include the edges

{j mod (m+ 1), π−r((i− j) mod (m+ 1)) mod (m+ 1)}

7

for all i, j ∈ Z/(m+1) with π−r((i− j) mod (m+ 1))+ j = σ mod (m+ 1). In particular, we obtain exactly one
self-loop (j = σ/2 mod (m+ 1)). Instead of using the above description of the edges, we can equivalently include
all edges

{j mod (m+ 1), σ − j mod (m+ 1)}
for j ∈ Z/(m + 1). Because σ − (σ − j) = j mod (m+ 1), we see that the resulting graph G consists of m/2
vertex pairs, each connected by two parallel edges, and one isolated point (namely σ/2 mod (m + 1)) with a self-
loop, corresponding to a CNOT. Consequently, two colors suffice to color the edges in such a way, that no neighboring
edges share a color. Now all gates corresponding to an edge with the same color operate on disjoint wires and hence
can be evaluated in parallel. �

To illustrate the ‘wire saving’ offered by Proposition 3.2, let us again consider the field with 16 elements.

Example 3.2 For r = 2, the permutation π−r corresponds to a multiplication with 2−2 = −1 mod 5, i. e., we have
to find

γi=α0α−i mod 5 + α1α(1−i) mod 5 + α2α(2−i) mod 5 + α3α(3−i) mod 5 + α4α(4−i) mod 5 (i=0, . . . , 4).

Using the condition 2 · j − i = σ mod 5, each of the occurring 25 terms can be associated with a particular value
of σ:

σ = 0: α0α0, α1α4, α2α3, α3α2, α4α1

σ = 1: α0α1, α1α0, α2α4, α3α3, α4α2

σ = 2: α0α2, α1α1, α2α0, α3α4, α4α3

σ = 3: α0α3, α1α2, α2α1, α3α0, α4α4

σ = 4: α0α4, α1α3, α2α2, α3α1, α4α0

The resulting graph for σ = 0 is shown in Figure 2.

Figure 2: Graph representing the term for σ = 0 as described in Example 3.2. The 2-coloring of the edges—where
the different line styles indicate the colors—translates into a depth 2 circuit for this term.

0

1

2 3

4

Each edge corresponds to one gate, and with the 2-coloring of the edges we obtain a depth 2 circuit for evaluating
the terms associated with σ = 0 (and add them to the respective input/partial result γi). Applying a similar reasoning
to the other σ-values, we obtain a circuit of depth 10 for implementing the map |α〉 |ξ〉 7→ |α〉

∣∣ξ + α · α4
〉

for α, ξ ∈
F24 , as seen in Figure 3.

8

Figure 3: A ghost-bit basis multiplier for α · α22 ∈ F24

|q0〉 = |α0〉 • • • • • • • • •

|q1〉 = |α1〉 • • • • • • • • •

|q2〉 = |α2〉 • • • • • • • • •

|q3〉 = |α3〉 • • • • • • • • •

|q4〉 = |α4〉 • • • • • • • • •

|q5〉 = |γ0〉 ⊕ ⊕ ⊕ ⊕ ⊕

|q6〉 = |γ1〉 ⊕ ⊕ ⊕ ⊕ ⊕

|q7〉 = |γ2〉 ⊕ ⊕ ⊕ ⊕ ⊕

|q8〉 = |γ3〉 ⊕ ⊕ ⊕ ⊕ ⊕

|q9〉 = |γ4〉 ⊕ ⊕ ⊕ ⊕ ⊕

3.2 Linear depth multiplication using a Gaussian normal basis
Assume F2m has a Gaussian normal basis of type t. Our multiplier takes as input the normal basis representations
(α0, α1, . . . , αm−1) ∈ Fm2 and (β0, β1, . . . , βm−1) ∈ Fm2 of two elements α, β ∈ F2m , along with a |0〉-initialized
m-bit register, in which the normal basis representation (γ0, γ1, . . . , γm−1) of γ = α · β will be stored. Consequently,
the total number of wires is 3m. Each coefficient product αjβk in Equation (4) can be realized with a Toffoli gate, and
so for a fixed i ∈ {0, . . . ,m− 1} we can compute γi with at most{

tm− 1 consecutive Toffoli gates , if t is even
tm− 1 + 2 · (m/2) = (t+ 1)m− 1 consecutive Toffoli gates , if t is odd .

From this we immediately obtain an overall gate count of (t+ (t mod 2)) ·m2−m Toffoli gates for our normal basis
multiplier. This multiplier can be realized in linear depth: fix an arbitrary k ∈ {1, . . . , tm − 1} and two different
positions i, i′ ∈ {0, . . . ,m − 1} in the normal basis representation of the product γ = α · β. Then the Toffoli gates
computing αF (k+1)+iβF (p−k)+i and αF (k+1)+i′βF (p−k)+i′ operate on disjoint wire sets, as obviously

F (k + 1) + i 6= F (k + 1) + i′ (mod m) and
F (p− k) + i 6= F (p− k) + i′ (mod m).

For odd t, we see analogously that αk−1+iβk−1+m
2 +i can be calculated in parallel with αk−1+i′βk−1+m

2 +i′ for all
i 6= i′, and αk−1+m

2 +iβk−1+i can be calculated in parallel with αk−1+m
2 +i′βk−1+i′ for all i 6= i′, as summarized in

the following result.

Proposition 3.3 If a Gaussian normal basis of type t is available for F2m , the multiplication |α〉 |β〉 |ξ〉 7→ |α〉 |β〉 |ξ + αβ〉
of two field elements α, β ∈ F2m can be realized in depth (t + (t mod 2)) ·m − 1 using (t + (t mod 2)) ·m2 −m
Toffoli gates.

As a concrete example of a Gaussian normal basis multiplier, let us apply the above proposition to the field with 32
elements.

Example 3.3 Consider the type 2 Gaussian normal basis from Example 2.3. Here the product γ = α ·β of α, β ∈ F25 ,
is represented by (γ0, . . . , γm−1) with

γi = α1+iβi + α3+iβ1+i + α2+iβ3+i + α4+iβ2+i + α4+iβ4+i +

α2+iβ4+i + α3+iβ2+i + α1+iβ3+i + αiβ1+i.

Implementing this summation term by term yields a normal basis multiplier for F25 comprised of 9 · 5 = 45 Toffoli
gates and of total depth 9 (each term of the summation can be evaluated in parallel for i = 0, . . . , 4), as seen in
Figure 4.

9

Figure 4: A Gaussian normal basis multiplier for α · β ∈ F25

|q0〉 = |α0〉 • • • • • • • • •

|q1〉 = |α1〉 • • • • • • • • •

|q2〉 = |α2〉 • • • • • • • • •

|q3〉 = |α3〉 • • • • • • • • •

|q4〉 = |α4〉 • • • • • • • • •

|q5〉 = |β0〉 • • • • • • • • •

|q6〉 = |β1〉 • • • • • • • • •

|q7〉 = |β2〉 • • • • • • • • •

|q8〉 = |β3〉 • • • • • • • • •

|q9〉 = |β4〉 • • • • • • • • •

|q10〉 = |γ0〉 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

|q11〉 = |γ1〉 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

|q12〉 = |γ2〉 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

|q13〉 = |γ3〉 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

|q14〉 = |γ4〉 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Similarly, as in the case of a ghost-bit basis representation, it is possible to compute products of the form α · α2r

in linear depth without having α2r represented as a separate input. Hence, the following result shows that the saving
of m wires can be done without sacrificing the property of having linear depth.

Proposition 3.4 If a Gaussian normal basis of type t is available for F2m , for any fixed r ∈ {0, . . . ,m} the mul-
tiplication |α〉 |ξ〉 7→ |α〉 |ξ + α · α2r 〉 for α ∈ F2m can be realized in depth 3 · (t + (t mod 2)) · m − 3 using
(t+ (t mod 2)) ·m2 −m gates (CNOT or Toffoli).

Proof: Using Equation (4) to calculate the product α · α2j again, the upper bound for the total number of gates
remains unchanged. It could happen, however, that the control bits of a Toffoli gate end up on the same wire, so that
instead of a Toffoli we obtain a CNOT gate.

To argue that the circuit depth grows at most by a factor of 3, we fix k ∈ {1, . . . , tm − 1} arbitrary. Then
βk = αk−r, and we claim that all m terms

αF (k+1)+iβF (p−k)+i = αF (k+1)+iαF (p−k)−r+i (i = 0, . . . ,m− 1) (8)

can be calculated in parallel using depth at most 3.

Case F (k + 1) = F (p− k)− r (modm): Here, instead of Toffoli gates, we have only CNOT gates operating on
disjoint wires. Hence, all m terms can be computed at the same time, i., e., in depth 1.

Case F (k + 1) 6= F (p− k)− r (modm): For i 6= i′, we can evaluate the terms

αF (k+1)+iαF (p−k)−r+i and αF (k+1)+i′αF (p−k)−r+i′

in parallel whenever the two sets

{F (k + 1) + i, F (p− k)− r + i} and {F (k + 1) + i′, F (p− k)− r + i′}

10

have an empty intersection, meaning the two Toffoli gates operate on disjoint wires. We define an undirected
graph G with vertex set Z/(m)—so vertex i+ (m) corresponds to the wire representing αi (mod m)—and edge
set

E := {{F (k + 1) + i (modm), F (p− k)− r + i (modm)} : i = 0, . . . ,m− 1} ,

i. e., each edge corresponds to one Toffoli gate. If we can find an edge coloring of this graph such that neighboring
edges always have different colors, then all Toffoli gates corresponding to the same color can be calculated in parallel.
We show that 3 colors will be sufficient, and hence a depth 3 circuit suffices to compute all the products in (8). For
δ = F (p− k)− r − F (k + 1), let 〈δ〉 be the cyclic subgroup generated by δ + (m) in Z/(m), and let

Z/(m) = G1] · · ·]Gt (9)

be the decomposition of Z/(m) into 〈δ〉-cosets. Rewriting the edge set E as

E = {{i (modm), i+ δ (modm)}|i ∈ {0, . . . ,m− 1}} ,

we see that the decompositon (9) actually yields a decomposition of the graph G—there are no edges between vertices
in Gj and Gj′ if j 6= j′. Moreover, 〈δ〉 is cyclic with generator δ + (m), so for each Gj , the subgraph of G with
vertex setGj is a closed cycle on ord(δ + (m)) vertices. As such, we may alternatively color the edges in such a cycle
red and blue. Then neighboring edges can only obtain the same color at the very last step when we try to close the
cycle—this happens whenever ord(δ + (m)) is odd. Hence, for the last edge in a cycle, a third color may be needed.
As there are no edges between the individual cycles, we have found the desired 3-coloring of E.

The above argument takes care of all even t-values, and for odd t-values the first of the summations in Equa-
tion (4) is taken care of as well.2 To argue that for fixed k the terms αk−1+iαk−1+m

2 −r+i (i = 1, . . . ,m) and
αk−1+m

2 +iαk−1−r+i (i = 1, . . . ,m) can be computed in depth 3, we can use an analogous argument as above,
replacing δ with (m/2)− r and (m/2) + r, respectively. �

Example 3.4 Sticking with the Gaussian normal basis representation of F25 from Example 3.3, let us consider the
special case of a multiplication γ = α · β where β = α21 , i. e., r = 1. Then we have βk = αk−1 and Equation (5) can
be rewritten as γi =

α1+iα4+i + α3+iαi + α2+iα2+i + α4+iα1+i + α4+iα3+i + α2+iα3+i + α3+iα1+i + α1+iα2+i + αiαi.

In particular, the addition of the terms α2+iα2+i and αiαi can be implemented with CNOT instead of Toffoli gates,
fulfilling the condition F (k + 1) = F (11 − k) − 1 as in the first case of the above proof. We also note that the
underlined terms cancel each other, which yields a simplification of our circuit that is not reflected by the upper
bounds in Proposition 3.4.

Going through the remaining values for k (for which F (k + 1) 6= F (11− k)− 1 and no cancellation occurs), we
obtain the following values δ = F (11− k)− 1− F (k + 1):

k 2 5 6 7 8
δ −3 −1 1 −2 1

As m = 5 is prime, each δ + (5) generates the complete additive group Z/(5), and so the graph G is simply a closed
cycle. For instance, consider k = 5 such that δ = −1. Then the graph in Figure 5 is obtained, where a vertex labeled
i (i = 0, . . . , 4) represents the residue class i+ (5), and different line styles indicate different colors.

As shown in Figure 6, this 3-coloring translates into a quantum circuit of depth 3 to compute the terms α4+iα3+i

(i = 0, . . . , 4) (and add them to the respective input/partial result γi).

2For ord(δ + (m)) = 2 the sets Gj consist of two vertices, and we actually face graphs with a 2-coloring of the edges.

11

Figure 5: Graph corresponding to the cosets δ + (5) for δ = −1 as described in Example 3.4. The 3-coloring of
the edges—where the different line styles in the pentagon indicate the three different colors—translates into a depth 3
circuit.

0

1

2 3

4

Figure 6: Part of a Gaussian normal basis multiplier for α · α21 ∈ F25 : computing the terms α4+iα3+i

|q0〉 = |α0〉 • •

|q1〉 = |α1〉 • •

|q2〉 = |α2〉 • •

|q3〉 = |α3〉 • •

|q4〉 = |α4〉 • •

|q5〉 = |γ0〉 ⊕

|q6〉 = |γ1〉 ⊕

|q7〉 = |γ2〉 ⊕

|q8〉 = |γ3〉 ⊕

|q9〉 = |γ4〉 ⊕

4 Inversion in depth O(m log(m)) using the Itoh-Tsujii algorithm
With the linear depth multipliers from the previous section, we can now implement a depth O(m log(m)) algorithm
to invert field elements α ∈ F∗2m , if a Gaussian normal basis or ghost-bit basis representation is available.

The first part of the input is, respectively, an m or (m + 1)-bit representation |α〉 of the element α ∈ F∗2m to be
inverted.3 Now, providing blog2(m− 1)c auxiliary registers that are initialized with |0〉, a sequence of blog2(m− 1)c
consecutive multipliers can be used to calculate the values β20 , β21 , . . . , β2k1 from Section 2.4—recall that β20 =
α. From Proposition 3.2 and Proposition 3.4, we obtain the following resource counts for this part of the inverter
computation:

• If a ghost-bit basis representation of F2m is available, we can find all of β20 , β21 , . . . , β2k1 in depth blog2(m−
1)c · (2m+2) using blog2(m− 1)c · (m2 +m) Toffoli and blog2(m− 1)c · (m+1) CNOT gates. In doing so,
(1 + blog2(m− 1)c) · (m+ 1) qubits suffice.

• Assume that a Gaussian normal basis representation of F2m is available. Then we can find all of β20 , β21 , . . . , β2k1

in depth blog2(m− 1)c · (3 · (t+ (t mod 2)) ·m− 3) using blog2(m− 1)c · ((t+ (t mod 2)) ·m2 −m) gates
(CNOT or Toffoli). In doing so, (1 + blog2(m− 1)c) ·m qubits suffice.

3The input |0〉 for |α〉 results in the output |0〉 as ‘inverse.’

12

At this point, our inverter has computed all of β20 , β21 , . . . , β2k1 and stored each of these values in a separate set of
wires. Next, we can use a sequence of HW(m− 1)− 1 (general) multipliers, each obtaining an auxiliary input |0〉, to
gather the actually needed values β2k1 , . . . , β2kHW(m−1) and form their product using Equation (6). All exponentiations
of the form β2i

j are for free, in that a multiplier can just read out the coefficients of the respective βj in permuted order
to obtain the required input value. This is simply a permutation of the control bit positions. Consequently, we have the
following resource counts:

• If a ghost-bit basis of F2m is available and given |β2k1 〉, . . . , |β2kHW(m−1) 〉, we can compute |βm−1〉 in depth
(HW(m− 1)− 1) · (m+ 1) using (HW(m− 1)− 1) · (m2 + 2m+ 1) Toffoli gates. For the auxiliary inputs
|0〉 respectively storing some intermediate results, (HW(m− 1)− 1) · (m+ 1) qubits suffice.

• If a Gaussian normal basis of F2m is available and given |β2k1 〉, . . . , |β2kHW(m−1) 〉, we can compute |βm−1〉 in
depth (HW(m−1)−1) · ((t+(t mod 2)) ·m−1) using (HW(m−1)−1) · ((t+(t mod 2)) ·m2−m) Toffoli
gates. For the auxiliary inputs |0〉 respectively storing some intermediate results, (HW(m− 1)− 1) ·m qubits
are needed.

The final squaring operation in the Itoh-Tsujii algorithm is again for free, in that the last multiplier can simply write
out the result in permuted order. In summary, we obtain the following estimate for a ghost-bit basis, where we double
depth and gate count to account for the resources to ‘uncompute’ auxiliary values—this is an upper bound, as the last
multiplication actually does not have to be ‘undone.’

Proposition 4.1 If a ghost-bit basis for F2m is available, the inversion |α〉 |0〉 7→ |α−1〉 |0〉 can be implemented in
depth 2 · blog2(m− 1)c · (2m+2)+ 2 · (HW(m− 1)− 1) · (m+1) = O(m log2(m)) and using 2 · blog2(m− 1)c ·
(m2+m)+2 · (HW(m− 1)− 1) · (m2+2m+1) Toffoli and 2 · blog2(m− 1)c · (m+1) CNOT gates. The inversion
can be implemented with (1 + blog2(m− 1)c) · (m+ 1) + (HW(m− 1)− 1) · (m+ 1) = O(m log2(m)) qubits.

Analogously, adding the respective bounds for the case of a Gaussian normal basis of type t yields the following
estimate. If we consider t as constant, the depth of the resulting circuit is again in O(m log2(m)).

Proposition 4.2 If a Gaussian normal basis of type t for F2m is available, the inversion |α〉 |0〉 7→ |α−1〉 |0〉 can be
implemented in depth blog2(m−1)c · (6 · (t+(t mod 2)) ·m−6)+2 · (HW(m−1)−1) · ((t+(t mod 2)) ·m−1) =
O(m log2(m)) using 2 ·blog2(m−1)c·((t+(t mod 2)) ·m2−m)+2 ·(HW(m−1)−1) ·((t+(t mod 2)) ·m2−m)
gates (CNOT or Toffoli). The inversion can be implemented with (1+ blog2(m− 1)c) ·m+ (HW(m− 1)− 1) ·m =
O(m log2(m)) qubits.

It is worth noting that if our extension degree m has the form m = 2n + 1, e. g., for m being a Fermat prime,
the Hamming weight of m − 1 is one, i. e., we can restrict to special multipliers as described in Proposition 3.2 and
Proposition 3.4 entirely. As in the general case, the last multiplier can output the result β2m−1 in permuted order, so
that the correct inverse (βm−1)

2 is obtained without the need to implement a squaring operation.
Avoiding such a special case, the following example illustrates the structure of the discussed inverter with an

extension of degree 7, where a general multiplier with two arguments is brought to use.

Example 4.1 Consider the field F27 we discussed in Example 2.4, and assume a Gaussian normal basis representation
is used. Then, to compute α−1 from an input α = β20 ∈ F∗27 , we can use two special multipliers as described in
Proposition 3.4 to compute β21 and β22 . Interpreting the input wires in appropriately permuted order, one general
multiplier suffices to compute β22+21 . In addition, writing the output in appropriately permuted order, the output of
this multiplier is actually β2

22+21 .
Representing an m-qubit input by a single wire, the structure of the resulting inverter in F∗27 is summarized below

in Figure 7.

Finally, we obtain as direct consequence of Propositions 4.1 and 4.2 the following corollary which gives an upper
bound on the number of T -gates to perform inversion in a binary finite field where a ghost-bit basis or a Gaussian
normal basis representation is available. This is a straightforward consequence of a realization [23, Chapter 4.2] of a
Toffoli gate using 7 T -gates (or T †-gates which we assume to have the same cost) in a circuit of overall T -depth of 6.

13

Figure 7: A ghost-bit or Gaussian normal basis inverter for α ∈ F∗27

|q0〉 = |α〉
β1 · β21

|q1〉 = |0〉
β2 · β222

β2 · β2222|q2〉 = |0〉

|q3〉 = |0〉

Corollary 4.1 If a ghost-bit basis for F2m is available, an inverter can be implemented with a T -depth of at most
12 · blog2(m− 1)c · (2m+2)+ 12 · (HW(m− 1)− 1) · (m+1) and using no more than 14 · blog2(m− 1)c · (m2 +
m) + 14 · (HW(m− 1)− 1) · (m2 + 2m+ 1) many T -gates.

If a Gaussian normal basis of type t for F2m is available, an inverter can be implemented with a T -depth of at
most 6 · blog2(m− 1)c · (6 · (t+ (t mod 2)) ·m− 6) + (12 ·HW(m− 1)− 6) · ((t+ (t mod 2)) ·m− 1) using at
most 14 · blog2(m− 1)c · ((t+ (t mod 2)) ·m2 −m) + 14 · (HW(m− 1)− 1) · ((t+ (t mod 2)) ·m2 −m) many
T -gates.

5 Comparison and conclusions
The above discussion demonstrates that the use of representations of finite fields other than a polynomial basis, can en-
able efficient and elegant quantum circuits for realizing binary finite field arithmetic. Table 1 gives a brief asymptotic
comparison of the circuit depth of the representations discussed here in comparison to a polynomial basis represen-
tation. For a Gaussian normal basis representation the exact depth increases when the type t gets larger, but for
cryptographic purposes already a value of t = 10 is unusually high, and small values like t = 2 or t = 4 are more
typical; here, we consider t as a (small) constant.

Table 1: Circuit depth of F2m -operations for different representations
Addition Multiplication Inversion

polynomial basis [3, 15, 18] O(1) O(m) ext. Euclidean alg.: O(m2)
ghost-bit basis O(1) O(m) Itoh-Tsujii alg.: O(m log(m))

Gaussian normal basis O(1) O(m) Itoh-Tsujii alg.: O(m log(m))

Table 2 gives an asymptotic comparison for the number of gates involved. Again, for Gaussian normal bases we
consider the type t as a (small) constant.

Table 2: Number of gates when implementing F2m -operations for different representations
Addition Multiplication Inversion

polynomial basis [3, 15, 18] O(m) O(m2) O(m3)
ghost-bit basis O(m) O(m2) O(m2 log(m))

Gaussian normal basis O(m) O(m2) O(m2 log(m))

Overall, a main feature of the presentations considered here is the convenient implementation of inversion in F2m :
having available a ‘free’ squaring operation, the discussed technique by Itoh and Tsujii offers a viable alternative to
Euclid’s algorithm. It appears worthwhile to further explore the potential of different finite field representations for
deriving quantum circuits that can, e. g., be used in connection with Shor’s algorithm. From a cryptographic point of
view, binary fields certainly play a prominent role, but, e.g., the discussion of Optimal Extension Fields by Bailey and

14

Paar [1] illustrates that finite fields of larger characteristic are of cryptographic interest as well, as they can facilitate
efficient (classical) implementations. Exploring different representations of finite fields with odd characteristic appears
to be a worthwhile endeavor for future work.

Acknowledgments
BA and RS acknowledge support by NSF grant No. 1049296 (Small-scale Quantum Circuits with Applications in
Cryptanalysis). MR acknowledges support by the Intelligence Advanced Research Projects Activity (IARPA) via
Department of Interior National Business Center contract No. D11PC20166. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon.
Disclaimer: The views and conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or the
U.S. Government. The authors also would like to thank the anonymous reviewers for helpful comments.

References
[1] D. V. Bailey and C. Paar. Optimal Extension Fields for Fast Arithmetic in Public-Key Algorithms. In Hugo

Krawczyk, editor, Advances in Cryptology – CRYPTO ’98, volume 1462 of Lecture Notes in Computer Science,
pages 472–485. Springer, 1998.

[2] J. N. de Beaudrap, R. Cleve, and J. Watrous. Sharp Quantum versus Classical Query Complexity Separations.
Algorithmica, 34(4):449–461, 2002.

[3] S. Beauregard, G. Brassard, and J. M. Fernandez. Quantum Arithmetic on Galois Fields. arXiv:quant-
ph/0301163v1, January 2003. Available at http://arxiv.org/abs/quant-ph/0301163v1.

[4] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language. Journal of Symbolic
Computation, 24:235–265, 1997.

[5] A. M. Childs, L. J. Schulman, and U. V. Vazirani. Quantum algorithms for hidden nonlinear structures. In
Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07), pages 395–
404. IEEE Computer Society, 2007.

[6] R. Dahab, D. Hankerson, F. Hu, M. Long, J. López, and A. Menezes. Software Multiplication Using Gaussian
Normal Bases. IEEE Transactions on Computers, 55(8), 2006.

[7] W. van Dam, S. Hallgren, and L. Ip. Quantum algorithms for some hidden shift problems. In Proceedings of
the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’03), pages 489–498, 2003. Available at
http://arxiv.org/abs/quant-ph/0211140v1.

[8] A. G. Fowler, A. M. Stephens, and P. Groszkowski. High threshold universal quantum computation on the surface
code. Phys. Rev. A, 80:052312, 2009.

[9] W. Geiselmann and H. Lukhaub. Redundant Representation of Finite Fields. In Kwangjo Kim, editor, Public
Key Cryptography, 4th International Workshop on Practice and Theory in Public Key Cryptography, PKC 2001,
volume 1992 of Lecture Notes in Computer Science, pages 339–352. Springer, 2001.

[10] J. Guajardo. Itoh-Tsujii Inversion Algorithm. In Henk C. A. van Tilborg and Sushil Jajodia, editors, Encyclopedia
of Cryptography and Security, pages 650–653. Springer, second edition, 2011.

[11] S. Hallgren. Polynomial-time quantum algorithms for Pell’s equation and the principal ideal problem. In Pro-
ceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC’02), pages 653–658, 2002.

15

http://arxiv.org/abs/quant-ph/0301163v1
http://arxiv.org/abs/quant-ph/0211140v1

[12] T. Itoh and S. Tsujii. Structure of parallel multipliers for a class of fieldsGF (2m). Information and Computation,
83:21–40, 1989.

[13] D. Johnson, A. Menezes, and S. Vanstone. The Elliptic Curve Digital Signature Algorithm (ECDSA). Interna-
tional Journal of Information Security, 1(1):36–63, 2001.

[14] D. Jungnickel. Finite Fields: Structure and Arithmetics. Wissenschaftsverlag, 1993.

[15] P. Kaye and C. Zalka. Optimized quantum implementation of elliptic curve arithmetic over binary fields.
arXiv:quant-ph/0407095v1, July 2004. Available at http://arxiv.org/abs/quant-ph/0407095v1.

[16] A. Y. Kitaev. Quantum computations: algorithms and error correction. Russian Math. Surveys, 52(6):1191–1249,
1997.

[17] D. Maslov, J. Mathew, D. Cheung, and D. K. Pradhan. AnO(m2)-depth quantum algorithm for the elliptic curve
discrete logarithm problem over GF(2m). Quantum Information & Computation, 9(7):610–621, 2009.

[18] D. Maslov, J. Mathew, D. Cheung, and D. K. Pradhan. On the Design and Optimization of a Quantum
Polynomial-Time Attack on Elliptic Curve Cryptography. arXiv:0710.1093v2, February 2009. Available at
http://arxiv.org/abs/0710.1093v2.

[19] E. D. Mastrovito. VLSI designs for multiplication over finite fields GF (2m). In Teo Mora, editor, Proceedings
of the Sixth Symposium on Applied Algebra, Algebraic Algorithms and Error Correcting Codes, volume 357 of
Lecture Notes in Computer Science, pages 297–309. Springer, 1988.

[20] E. D. Mastrovito. VLSI Architectures for Computation in Galois Fields. PhD thesis, Linköping University,
Linköping, Sweden, 1991.

[21] C. Moore, D. Rockmore, A. Russell, and L. J. Schulman. The power of strong Fourier Sampling: Quantum
Algorithms for Affine Groups and Hidden Shifts. SIAM Journal on Computing, 37(3):938–958, 2007.

[22] National Institute of Standards and Technology, Gaithersburg, MD 20899-8900. FIPS PUB 186-3. Federal
Information Processing Standard Publication. Digital Signature Standard (DSS), June 2009. Available at http:
//csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf.

[23] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.

[24] M. Ozols, M. Roetteler, and J. Roland. Quantum rejection sampling. In Proceedings of the 3rd ACM conference
on Innovations in Theoretical Computer Science (ITCS’12), pages 290–308, 2012.

[25] B. W. Reichardt. Quantum universality by state distillation. Quantum Inf. Comput., 9:1030–1052, 2009.

[26] A. Reyhani-Masoleh and M. A. Hasan. Low Complexity Bit Parallel Architectures for Polynomial Basis Multi-
plication over GF (2m). IEEE Transactions on Computers, 53(8):945–959, 2004.

[27] F. Rodrı́guez-Henrı́quez, N. A. Saqib, and N. Cruz-Cortés. A Fast Implementation of Multiplicative Inversion
over GF(2m). In International Symposium on Information Technology: Coding and Computing (ITCC 2005),
volume 1, pages 574–579. IEEE Computer Society, 2005.

[28] M. Rötteler. Quantum algorithms for highly non-linear Boolean functions. In Proceedings of the 21st An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA’10), pages 448–457, 2010. Available at http:
//arxiv.org/abs/0811.3208v2.

[29] P. W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Com-
puter. SIAM Journal on Computing, 26(5):1484–1509, 1997.

[30] J. H. Silverman. Fast Multiplication in Finite Fields GF(2N). In Çetin Kaya Koç and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems, First International Workshop, CHES ’99, volume 1717 of
Lecture Notes in Computer Science, pages 122–134. Springer, 1999.

16

http://arxiv.org/abs/quant-ph/0407095v1
http://arxiv.org/abs/0710.1093v2
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://arxiv.org/abs/0811.3208v2
http://arxiv.org/abs/0811.3208v2

[31] N. Takagi, J. Yoshiki, and K. Takagi. A Fast Algorithm for Multiplicative Inversion in GF (2m) Using Normal
Basis. IEEE Transactions on Computers, 50(5):394–398, 2001.

17

	1 Introduction
	2 Preliminaries: finite fields F2m
	2.1 Polynomial basis representation
	2.2 Ghost-bit basis representation
	2.3 Normal basis representation
	2.4 Computing multiplicative inverses with the Itoh-Tsujii algorithm

	3 Multiplying in linear depth using ghost-bit and Gaussian normal basis representations
	3.1 Linear depth multiplication using a ghost-bit basis
	3.2 Linear depth multiplication using a Gaussian normal basis

	4 Inversion in depth O(mlog(m)) using the Itoh-Tsujii algorithm
	5 Comparison and conclusions

