
Big Data over Networks

Edited by
Shuguang Cui, Texas A&M University, College Station, TX, USA

Alfred Hero, University of Michigan, Ann Arbor, MI, USA

Zhi-Quan Luo, University of Minnesota, Minneapolis, MN, USA

José M. F. Moura, Carnegie Mellon University, Pittsburgh PA, USA

Contents

List of illustrations page iv
List of tables v
List of boxes vi
List of contributors vii

Part I Mathematical foundations 1

Part II Big data over communication/computer networks 3

1 Big data analytics systems 5
1.1 Introduction 5
1.2 Scheduling 7

1.2.1 Fairness 8
1.2.2 Placement constraints 11
1.2.3 Additional system-wide objectives 14
1.2.4 Stragglers 14

1.3 Storage 16
1.3.1 Distributed file system 17
1.3.2 In-memory storage 20

1.4 Concluding remarks 26

Part III Big data over social networks 31

Part IV Big data over bio networks 33

Illustrations

1.1 Impact of packing on DAGs of tasks compared to fairness based
allocation (like DRF). Jobs A and B have two phases with a strict
barrier between them. The tables on top show utilization of the
resources. Packing results in better utilization of resources using
complementarity of task requirements. 10

1.2 Architecture of Distributed File Systems (DFS). 17
1.3 The probability of finding a replica on a free machine for different values

of file replication factor and cluster utilization. 20
1.4 Power-law distribution of jobs in the resources consumed by them.

Power-law exponents are 1.9 and 1.6 in the two traces, when fitted with
least squares regression [22]. 21

1.5 Fraction of active jobs whose data fits in the aggregate cluster memory,
as the memory per machine varies [24]. 21

1.6 Coordinated cache architecture [24]. The central coordinator manages
the distributed clients. Thick arrows represent data flow while thin
arrows denote meta-data flow. 22

1.7 Resilient Distributed Datasets in Spark [26]. 24
1.8 Example of a single-wave (2 tasks, simultaneously) and multi-wave job

(12 tasks, 4 at a time). Si’s are slots. Memory local tasks are dark
blocks. Completion time (dotted line) reduces when a wave-width of
input is cached. 24

1.9 Gains in completion time due to caching decreases as wave-width
increases. Solid and dotted lines show completion times without and
with caching (for two jobs with input of I but wave-widths of 2 and 4).
Memory local tasks are dark blocks, sped up by a factor of µ. 25

Tables

1.1 Definitions of terms used in data analytics frameworks. 6

Boxes

List of contributors

Ganesh Ananthanarayanan
Microsoft Research, Redmond WA

Ishai Menache
Microsoft Research, Redmond WA

Part I

Mathematical foundations

Part II

Big data over
communication/computer
networks

1 Big data analytics systems

Abstract

Performing timely analysis on huge datasets is the central promise of big data
analytics. To cope with the high volumes of data to be analyzed, computation
frameworks have resorted to “scaling out” – parallelization of analytics which
allows for seamless execution across large clusters. These frameworks automati-
cally compose analytics jobs into a DAG of small tasks, and then aggregate the
intermediate results from the tasks to obtain the final result. Their ability to do
so relies on an efficient scheduler and a reliable storage layer that distributes the
datasets on different machines.

In this chapter, we survey the above two aspects, scheduling and storage, which
are the foundations of modern big data analytics systems. We describe their key
principles, and how these principles are realized in widely-deployed systems.

1.1 Introduction

Analyzing large volumes of data has become the major source for innovation
behind large Internet services as well as scientific applications. Examples of such
“big data analytics” occur in personalized recommendation systems, online social
networks, genomic analyses, and legal investigations for fraud detection. A key
property of the algorithms employed for such analyses is that they provide better
results with increasing amount of data processed. In fact, in certain domains (like
search) there is a trend towards using relatively simpler algorithms and instead
rely on more data to produce better results.

While the amount of data to be analyzed increases on the one hand, the ac-
ceptable time to produce results is shrinking on the other hand. Timely analyses
have significant ramifications for revenue as well as productivity. Low latency
results in online services leads to improved user satisfaction and revenue. Ability
to crunch large datasets in short periods results in faster iterations and progress
in scientific theories.

To cope with the dichotomy of ever-growing datasets and shrinking times to

6

Term Description

Task Atomic unit of computation with a fixed input

Phase A collection of tasks that can run in parallel, e.g., map, aggregate

Workflow A directed acyclic graph denoting how data flows between phases

Job An execution of the workflow

Block Atomic unit of storage by the distributed file system

File Collection of blocks

Slot Computational resources allotted to a task on a machine
Table 1.1 Definitions of terms used in data analytics frameworks.

analyze them, analytics clusters have resorted to scaling out. Data is spread
across many different machines, and the computations on them are executed in
parallel. Such scaling out is crucial for fast analytics and allows coping with the
trend of datasets growing faster than Moore’s law’s increase in processor speeds.

Many data analytics frameworks have been built for large scale-out parallel
executions. Some of the widely used frameworks are MapReduce [1], Dryad [2]
and Apache Yarn [3]. The frameworks share important commonalities, and we
will use the following common terminology throughout this chapter. Frameworks
compose a computation, referred to as a job, into a DAG of phases, where each
phase consists of many fine grained tasks. Tasks of a phase have no dependen-
cies among them and can execute in parallel. The job’s input (file) is divided
into many blocks and stored in the cluster using a distributed file system. The
input of each task consists of one or more blocks of a file. A centralized scheduler
assigns a compute slot to every task1. Tasks in the input phase produce interme-
diate outputs that are passed to other tasks downstream in the DAG. Table 1.1
summarizes the terminology.

As a concrete example, consider an analysis of web access logs (of many TB’s).
Each row in the log consists of a URL being accessed (e.g., www.cnn.com) and
details about its access (e.g., time of access, user accessing it); the aim of the
analysis is to count the number of accesses of each web URL to understand
popularities. The distributed file systems splits the access logs into small 256
MB blocks and stores them over the different machines. A job to analyze them
would consist of two phases. Every task in the first phase would read a block of
data and generate a 〈url, 1〉 tuple for each row in the log (the “1” indicates a
single access). Each task in the second phase is responsible for some fraction of
the URL’s and collects the corresponding tuples from the first phase’s outputs.
It then sums up the accesses per URL and produces the output.

The key benefit of the analytics frameworks is their ability to scale out to

1 Slot is a virtual token, akin to a quota, for sharing cluster resources among multiple jobs.
One task can run per slot at a time.

Big data analytics systems 7

thousands of commodity machines for computation as well as storage. They do
so by automatically and logically dividing data as well as analyses on them into
fine-grained units of blocks and tasks, respectively. As commodity machines are
susceptible to failures and unavailabilities, the frameworks are resilient to these
failures to ensure data availability as well as successful execution of the tasks.
In this chapter, we survey the important aspects of systems running big-data
analytics frameworks. In particular, we focus on two fundamental requirements:
(i) scheduling jobs efficiently, and (ii) managing data storage across distributed
machines. Scheduling principles and solutions are described in Section 1.2, and
storage architectures in Section 1.3. Additional related and upcoming topics are
briefly outlined in Section 1.4.

1.2 Scheduling

Analytics frameworks typically use a centralized scheduler where all the tasks
in the cluster are queued. The scheduler manages the machines in the cluster,
where each machine has a worker process. The worker processes send periodic
heartbeats to the scheduler informing it of the status of running tasks as well as
the resource usages and general health of the machines. The scheduler aggregates
the information from the heartbeats and makes scheduling decisions to allocate
tasks to machines. When a machine does not send heartbeats for a certain period
of time, the scheduler assumes the machine to be lost and does not schedule
any further tasks to it. It also reschedules the unfinished tasks on the machine
elsewhere.

Recent designs have advocated (and deployed) a hierarchical two-level schedul-
ing model where the individual jobs talk to a central “resource manager” to reg-
ister their demands and queue their tasks (e.g., Mesos [4], Apache Yarn [3]). The
resource manager, then, allocates compute slots to the different tasks. Nonethe-
less, the abstraction of a central scheduler allocating slots to tasks holds.

Our focus in this section is on describing the principles and logic behind the
central scheduler decisions. Scheduling models have been considered for numer-
ous applications in both academia in industry for at least half a century. The
emergence of big-data jobs, running on large-scale clusters, has brought novel
challenges that cannot be readily solved by traditional scheduling mechanisms.
We therefore highlight below the distinctive aspects of scheduling big-data jobs.
In Section 1.2.1 we outline how fairness policies are adapted to deal with several
complexities such as multiple resource types, intra-job dependencies and machine
fragmentation. In Section 1.2.2 we discuss how scheduling solutions accommo-
date placement constraints, such as the necessity to place job tasks alongside
their input data. In Section 1.2.3, we describe scheduling solutions that incor-
porate different objective criteria, such as mean completion time and finishing
jobs by pre-specified deadlines. Finally, in Section 1.2.4 we present the problem

8

of stragglers (tasks running on slow machines), and the main approaches for
mitigating their effect.

1.2.1 Fairness

Allocating resources to multiple jobs has been a fundamental problem in shared
computer systems. While several design criteria have been considered for schedul-
ing mechanisms, fairness is perhaps the most prominent one. There are different
definitions for what constitutes a fair allocation; we do not attempt to cover all
here, but rather focus on the ones that are used in modern big-data clusters.
Max-min fairness is one such policy – it simply maximizes the minimum alloca-
tion across users. If each user has enough “demand” for the resource, the policy
boils down to allocating the resource in equal shares among users. A natural
generalization of this policy is weighted max-min fairness, in which each user re-
ceives resources in proportion to its pre-specified weight. Several algorithms have
been proposed to implement weighted max-min fairness in different engineering
contexts, (e.g., deficit round robin [5] and weighted fair queuing [6]). However,
the original algorithms do not cover important considerations associated with
bing-data jobs, which require adjustments of both the fairness policies and the
algorithms to sustain them. We list below the main considerations and how they
have been addressed.
Multiple resources. Big-data jobs such as map-reduce jobs utilize different
resources, such as CPU, memory and I/O resources. Consider the following nu-
meric example (taken from [7]): Suppose the system consists of 9 CPUs, 18 GB
RAM. Two users ought to share the system – user A runs tasks with demand
vector (1CPU, 4GB), and user B runs tasks with demand vector (3CPUs, 1GB)
each. Note that each task of user A consumes 1/9 of the total CPU and 2/9 of
the total memory. Each task from user B consumes 1/3 of the total CPUs and
1/18 of the total memory. In order to divide the system resources, [7] defines
the notion of dominant resource, which is the resource which is utilized the most
(percentage-wise) by the tenant. In our example, user A’s dominant resource is
memory, while user B’s dominant resource is CPU. The authors in [7] propose a
new policy, Dominant Resource Fairness (DRF) which extends max-min fairness
to the multiple resource case. DRF simply applies max-min fairness across users’
dominant shares. In the example, the DRF allocation would be 3 tasks for user
A and 2 tasks for user B, which will equalize the dominant resource shares of
A and B (2/3 of the RAM for A, and 2/3 of the CPU for B). The DRF solu-
tion has some appealing properties such as pareto efficiency, bottleneck fairness,
sharing incentive, envy-free, and strategy proofness. Without going into details,
the first two properties indicate that the DRF solution is efficient and fair, while
the latter properties mean that users have incentives to participate in a system
which divides resources according to DRF, and further would not game the sys-
tem. [7] also proposes an iterative greedy algorithm, which gears the allocation
towards the DRF solution. The algorithm was implemented in the Mesos cluster

Big data analytics systems 9

resource manager, and leads to better fairness compared to schemes which divide
single-dimension slots.
Intra-job dependencies. As mentioned before, big-data jobs often consist of
multiple phases with data dependencies among them. A fair but naive scheduler
that does not take the inner structure of jobs into account might actually result
in an unfair allocation of resources. For simplicity, we focus here on the issues
arising in the MapReduce framework, although the problems and solutions can
apply to other analytics frameworks. Hadoop launches reduce tasks for a job as
soon as some mappers finish, so that reduces can start copying the maps outputs
while the remaining maps are still running. Assuming that the cluster is initially
not congested, a large job with many mappers would keep getting reduce slots
from a naive fair scheduler. With a lack of preemption mechanism, the problem
here is that these reduce slots would not be released until all mappers finish,
because only then can the reduce function be carried out. This means that small
jobs that arrive to the system during the map phase of the big job might be
starved. [8] proposes the following solution to this problem: Split reduce tasks
into two logically distinct types of tasks - copy tasks and compute tasks, and have
separate admission control mechanisms for both types. In particular, [8] limits
the total number of slots for reduce-compute on each machine, and further sets a
per-job upper bound on the reduce-copy slots on each machine. The combination
of these mechanisms constraints the amount of simultaneous resources given to
jobs without needing to use more aggressive preemption mechanisms.
Fragmentation and over-allocation. As described above, the basic fair sched-
ulers divide resources to slots, where each slot represents some amount of mem-
ory and CPU; slots are allocated to the job which is furthest from its (weighted)
fair-share. Such bundling of resources is obviously inefficient, because it might
lead to either wasting resources in some dimensions or to over allocation if some
dimensions are overlooked. DRF partially resolves these issues by considering
the allocation problem as a multi-dimensional one. However, DRF might leave
some resources idle, since it only attempts to maximize the the dominant re-
source share across all jobs. Further, DRF does not explicitly take into account
the available capacity in each machine, but rather considers the total available
capacity for each resource.

To overcome fragmentation, [9] proposes a multi-resource scheduler that packs
tasks to machines based on their vector of requirements. The underlying schedul-
ing mechanism is based on an online (multi-dimensional) bin-packing heuristic,
which attempts to utilize the available resources in each machine as much as
possible. The tasks are the “balls” and the “bins” are machines over time. In-
tuitively, because the bin packing heuristic attempts to pack balls to bins while
using a minimal number of bins, resources are well utilized and job can finish
quickly.

We illustrate the advantages of a packing-based scheduler via the following
example [9]. Consider a cluster with 18 cores and 36GB of memory. Three jobs
A, B and C have one phase each consisting of 18, 6, and 6 tasks, respectively.

10

3t2tt 4t

6 tasks
(phase 1)

2 tasks
(phase 1)

18 cores 18 cores 18 cores 0 cores 0 cores 0 cores

16 GB 16 GB 16 GB 0 GB 0 GB 0 GB

0 Gbps 0 Gbps 0 Gbps 3 Gbps 3 Gbps 3 Gbps

A

2 tasks
(phase 1)

6 tasks
(phase 1)

2 tasks
(phase 1)

2 tasks
(phase 1)

6 tasks
(phase 1)

2 tasks
(phase 1)

2 tasks
(phase 1)

1 task
(phase 2)

1 task
(phase 2)

1 task
(phase 2)

1 task
(phase 2)

1 task
(phase 2)

1 task
(phase 2)

1 task
(phase 2)

1 task
(phase 2)

1 task
(phase 2)

B

C

5t 6t 3t2tt 4t

18 tasks
(phase 1)

0 tasks

18 cores 18 cores 18 cores 0 cores -- --

36 GB 6 GB 6 GB 0 GB -- --

0 Gbps 3 Gbps 3 Gbps 3 Gbps -- --

A

0 tasks

3 tasks
(phase 2)

6 tasks
(phase 1)

0 tasks

3 tasks
(phase 2)

6 tasks
(phase 1)

3 tasks
(phase 2)

B

C

5t 6t

Figure 1.1 Impact of packing on DAGs of tasks compared to fairness based allocation
(like DRF). Jobs A and B have two phases with a strict barrier between them. The
tables on top show utilization of the resources. Packing results in better utilization of
resources using complementarity of task requirements.

Each task in job A requires 1 core and 2GB of memory, while job B’s and C’s
tasks require 3 cores and 1GB of memory. Assume all tasks run for t time units.
DRF will schedule 6 tasks of job A and 2 tasks each of jobs B and C, at a
time, giving each job a dominant resource share of 1

3 . This leads to an average
job duration of 3t. Such an allocation, however, leaves 20GB of memory in the
cluster idle. A scheduler that packs the tasks schedules all tasks of job A initially
because they use up all the cores and memory in the cluster, followed by tasks
of job B and then job C. This leads to job durations of t, 2t and 3t for the jobs
for an average of 2t and a 33% improvement over DRF.

The advantages of packing tasks carry over to jobs with multiple phases (e.g., a
map-reduce computation consists of a map phase and a reduce phase). Extending
the above example, let all three jobs have two phases separated by a barrier,
i.e., tasks of their second phase begin only after all tasks of their first phase
finish. For simplicity, assume tasks of the second phase require 1Gbps of network
resource but no cores or memory. Suppose that the cluster has total network
bandwidth of 3Gbps; tasks in the first phase have no network usage but need
cores and memory as listed above.2 Let the jobs have 18, 6, and 6 tasks in
their first phase, as before, and 3 tasks each in their second phases (each task,
again, of t time units). Figure 1.1 compares DRF allocation with a packing based
scheduler. Again, by scheduling tasks of job A initially and not wasting resources,
the packing based scheduler is able to exploit the complementarity in resource
requirements between tasks of the first and second phases. This results in all
three jobs finishing faster than under a DRF-based allocation. The average job
duration is 3t versus 6t, or a speed up of 50% compared to DRF. The makespan
improves by 33% from 6t to 4t.

[9] incorporates the packing-based scheduler in a system called Tetris. Tetris
achieves substantial makespan reductions (over 30%) over existing schedulers.

2 Note that this example is typical of a map-reduce computation; map tasks are indeed CPU
and memory intensive while reduce tasks are network-intensive.

Big data analytics systems 11

When resources on a machine become available, Tetris chooses a task which can
fit on the machine, and whose score is maximal; the score is an inner product
of the residual capacity of the machine and the pick resource requirement of the
task. This choice maximizes the utilization and diminishes fragmentation. Tetris
takes fairness into account by considering only a fraction (1 − f) of the tasks,
which are ordered according to a fairness criterion (e.g., max-min), and then
picking the highest-score job among this subset.
Placement constraints. Finally, scheduling algorithms have to take into ac-
count placement constraints, such as scheduling tasks where their input data is.
Since this topic is quite broad, we address it in a separate subsection below.

1.2.2 Placement constraints

Our focus so far has been on scheduling under fairness considerations. In its
simplest form, sustaining fairness means that each user gets “enough” cluster
resources according to pre-specified fairness criterion (e.g., max-min fairness, or
weighted fair sharing). However, in the big-data analytics context, it greatly mat-
ters exactly which resources are given to jobs; jobs might be constrained on the
set of resources (e.g., machines) they can run on. Placement constraints can be
roughly classified into three classes [10]: (i) hard; (ii) soft and (iii) combinatorial.
Examples of hard constraints include jobs that must run on machine with pub-
lic IP address, particular kernel version, specific SKU or hardware (e.g., GPU
machines or machines with SSDs). The most prominent soft constraint is data
locality; while job tasks could be scheduled on machines which do not necessarily
hold the required data for the task, a “cost” is incurred, in the form of additional
latency and excess network bandwidth usage. Combinatorial constraints specify
rules for a collection of machines that are used for the job, such as fault tolerance
constraints. We survey below the related work for each class.
Hard constraints. [11] provides a comprehensive study of Google workloads,
and in particular the impact of hard placement constraints on task scheduling
delays. It turns out that these constraints increase task scheduling delays by a
factor of 2–6. Accordingly, that paper develops a methodology that enables pre-
dicting the impact of hard constraints on task scheduling delays. Specifically, a
metric termed Utilization Multiplier (UM) is introduced; this metric measures
for each relevant resource the utilization ratio between tasks with constraints and
the average utilization of the resource. Accordingly, the higher UM is, the higher
is the expected scheduling delay. Finally, [11] describes how to incorporate place-
ment constraints into existing performance benchmarks, so that they are prop-
erly taken into account when evaluating new cluster architectures or scheduling
mechanisms. [10] proposes scheduling algorithms for dealing with hard place-
ment constraints, while sustaining some notion of fairness between users (jobs).
In particular, this paper defines a new notion of fairness, termed Constrained
Max-Min Fairness (CMMF), which extends max-min fairness while taking into
account that some jobs cannot run on some machines. A CMMF allocation is a

12

machine assignment in which it is not possible to increase the minimum alloca-
tion within any subset of users by reshuffling the machines given to these users. A
CMMF allocation has appealing properties such as incentive compatibility with
regard to a user reporting his placement constraints. Calculating a CMMF solu-
tion, however, might be too costly in practice, as it involves solving a sequence of
LPs. Consequently, the authors propose a simple greedy online scheduler called
Choosy: Whenever a resource becomes available, it is assigned to the user with
the lowest current allocation, which is allowed to get that resource according
to its placement constraints. Perhaps surprisingly, Choosy achieves allocations
which are very similar to those of a CMMF solution, and as a result, the latencies
of jobs are on average at most 2% higher than the CMMF solution.
Soft constraints. We focus here on a particular soft constraint,termed data
locality. Preserving data locality means placing the computation of the job near
its input data. Locality is important because network bandwidth might be a bot-
tleneck, hence transferring input data over the network might lead to substantial
task delays [12]. Simply scheduling jobs near their input data would in general
violate the fairness requirements across multiple users. Hence, it is crucial to
design schedulers which are both fair and locality-aware. [12] uses a simple al-
gorithm to address the tension between locality and fairness: when a job that
should be scheduled next according to the underlying fairness criterion cannot
launch a local task, it waits for a small amount of time, while letting other jobs
use the available resource. If after a pre-specified timeout the job still cannot
execute tasks locally, it is assigned available resources which are not necessarily
local to the task. Accordingly, this basic algorithm is termed delay scheduling.

The authors in [12] extend the basic algorithm described above to address
several practical considerations, including rack locality, hotspots, long tasks and
more; we omit the details here for brevity. The resulting scheduling system is
termed the Hadoop Fair Scheduler (HFS). One important extension in HFS is
a two-layer hierarchical architecture. The higher layer divides resources between
organizations in a fair manner, while the lower layer divides resources between
the organization’s jobs according to a local policy (e.g., FIFO or fair share). Eval-
uation on Facebook workloads shows that delay scheduling achieves nearly 100%
locality, leading to substantial improvements in job response times (especially
for small jobs) and throughput (especially for IO-heavy workload).

The underlying engineering principle which makes delay scheduling appealing
in practice, is that slots running Hadoop free up in a predictable rate. The time-
threshold used for delay scheduling is set accordingly – i.e., taking into account
typical execution times of tasks, it is expected that some local slots would free up
by the time-threshold. We now describe an alternative scheduler which does not
rely on such predictions. [13] maps the problem of scheduling with locality and
fairness considerations into a min-flow problem on a graph. The underlying idea
here is that every scheduling decision can be assigned a cost. E.g., there is a data
transfer cost when task is scheduled far from its input, there is a cost for killing
a task that takes too long, etc. These costs are embedded in a graph, where the

Big data analytics systems 13

nodes are the tasks and physical resources such as racks and servers; The graph-
based algorithm operates by assigning a unit flow to each task node in the system
(either running or waiting for execution). There is a a single sink to which all flows
are drained. The flows could traverse through either a path consisting of resources
(meaning that the respective task is scheduled on the respective resources), or
through their job’s “unscheduled” node, in which case the task is (still) not
executed. Fair sharing constraints are added by setting lower and upper bounds
on the edges from the unscheduled node to the sink. The cost of killing a job is
modeled by gradually increasing the costs of all edges related to the task, but the
edge that “connects” the task node to its executing resource. The authors manage
to scale the solution to large instances by reducing the effective number of nodes
through cost aggregation techniques. [13] implements this graph-based algorithm
in a system called Quincy. Quincy is evaluated against a queue-based algorithm,
and shows sizable gains in both amount of data transferred and throughput (up
to 40%).

It is of interest to qualitatively compare the delay-scheduling approach to the
graph min-flow approach. The graph-based algorithm is more sophisticated, and
can incorporate the global state of the cluster and multiple cost considerations
(e.g., further delaying a waiting task vs. killing a task that has been running for
a long time). While fast min-cost procedures can be used for the solution, scale
issues might arise when the cluster and number of jobs is very large. Another
potential weakness of the graph-based algorithm is that it is greedy by nature,
and optimizes based on the current snapshot of the cluster. The delay-scheduling
algorithm is arguably simpler and easier to implement in production. The frame-
work does not “code” all cost tradeoffs, which could be problematic, especially in
more complicated job models which do not obey systematic execution patterns.
Another advantage of delay scheduling is that it uses knowledge about task du-
rations which allows it to take into account the future evolvement of the cluster
state (rather than act solely as a function of the present state).

Combinatorial constraints. Combinatorial constraints may arise, e.g., due
to security and fault tolerance considerations. An example of such constraints
could be - “not more than x% of each job’s tasks should be allocated in the same
fault domain”. [14] considers the problem of assigning physical machines to ap-
plications while taking into account fault tolerance performance. [14] tackles the
difficult combinatorial problem by using a smooth convex cost function, which
serves as a proxy for fault tolerance. In particular, this function incentivizes
stripping machines belonging to the same application across fault domains. [14]
also deals with the fundamental cost tradeoff between fault tolerance and band-
width consumption - a solution that spreads machines across fault domains is
usually bad in terms of the bandwidth consumption, as communication might
heavily use the network core. Accordingly, [14] introduces an additive penalty
to the above cost function, which carefully balances the optimization of the two
metrics.

14

1.2.3 Additional system-wide objectives

Sustaining fairness has been the primary objective of cluster schedulers. How-
ever, there are additional objectives that may be as important. For example,
Tetris [9] (described above) optimizes the makespan by packing tasks to ma-
chines. Tetris also has a knob for reducing average job completion time. It sorts
jobs by estimated remaining work and chooses tasks whose jobs have the least re-
maining work; this is commensurate with the Shortest Remaining Time (SRTF)
scheduling discipline, which is known to be effective in minimizing job comple-
tion times. Tetris combines the packing score (described in Section 1.2.1) and
the remaining-work score into a single score per-task, with a tuneable parameter
that controls how much weight is given to each component.

Another potential system-wide objective is meeting job deadlines. Big-data
jobs are often used for business critical decisions, hence have strict deadlines
associated with them. For example, outputs of some jobs are used by business
analysts; delaying job completion would significantly lower their productivity. In
other cases, a job computes the charges to customers in cloud computing set-
tings, and delays in sending the bill might have serious business consequences.
Recently, several works have addressed the resource allocation problem where
meeting job deadlines is the primary objective. Jockey [15] dynamically predicts
the remaining run time at different resource allocations, and chooses an alloca-
tion which is expected to meet the job’s deadline without wasting unnecessary
resources. Jockey treats each job in isolation with the assumption that allocat-
ing resources “economically” would lead to solutions that satisfy multiple jobs
deadlines. [16] proposes an interface in which users submit resource requirements
along with deadlines, and the scheduler objective is to meet the jobs deadlines.
The resource requirements are malleable in the sense that the scheduler can of-
ten pick alternative allocations that would lead to job completion. As such, the
scheduler can choose the specific allocations which will allow multiple jobs to
finish without violating the cluster’s capacity. In a similar context, [17–19] de-
velop scheduling algorithms for the model where jobs have different values, and
the scheduler objective is to maximize the value of jobs that complete before the
deadline. [17–19] provide constant-factor approximation algorithms for the prob-
lem. As may be expected, the approximation quality improves when deadlines
are less stringent with respect the available cluster capacity.

1.2.4 Stragglers

Classic scheduling models usually assume that a task has a predictable/deterministic
execution time, regardless of the physical server chosen to run it; e.g., a task
would complete in 30 seconds if run on any server at any point in time. However,
in the context of current big-data analytics framworks, there are plenty of factors
that could vary the actual running time of the task. The original map-reduce pa-
per [1] introduces the notion of a straggler - “a machine that takes an unusually

Big data analytics systems 15

long time to complete one of the last few map or reduce tasks in the computa-
tion”. [1] lists a couple of reasons for stragglers, such as machine with bad disk,
other tasks running on the same machine, bugs in machine initialization, etc. The
paper proposes a general mechanism to deal with stragglers: When a MapRe-
duce job is close to completion, backup executions of the remaining in-progress
tasks are scheduled. The task completes whenever either the primary or backup
execution completes. This assignment of backup task(s) is often termed specu-
lative execution (or speculative task). The simple mechanism described above
can lead to substantial improvement in job response times (up to 44% according
to [1]. While the principle of speculative execution is natural for dealing with
stragglers, it is not a-priori clear under which conditions duplication should take
place. Obviously, this knob can lead to negative congestion effects if used inju-
diciously. We survey below recent works that have addressed this problem for
different scenarios.

The Hadoop scheduler uses a simple threshold rule for speculative execution.
It calculates the average progress score of each category of tasks (maps and re-
ducers) and defines a threshold accordingly: When the task’s progress score is
less than the average minus some parameter (say 0.2), it is considered a strag-
gler. [20] emphasizes the shortcomings of this mechanism: It does not take into
account machine heterogeneity, it ignores the hardware overhead in executing
stragglers, it does not take into account the rate at which the task progresses;
further, it assumes that tasks finish in waves and that tasks require the same
amount of work, assumptions that are imprecise even in homogenous environ-
ment. Accordingly, [20] designs a new algorithm Longest Approximate Time to
End (LATE). As can be inferred from its name, the distinctive feature of LATE
compared to previous approaches is that it selects tasks for speculative execution
based on the estimated time left, rather than based solely on the progress itself.
In particular, it uses (1 − ProgressScore)/ProgressRate to rank each task,
where ProgressScore is the progress estimator given by Hadoop. The authors
point out that this formula has some drawbacks, yet it is simple and works well
in most cases. In addition to the above, LATE also sets a hard constraints on the
number of speculative tasks allowed in the system. When a slot becomes avail-
able and the number of speculative tasks running is below the threshold, LATE
launches a copy of the highest-ranked task whose progress rate is low enough
(below some pre-specified threshold). Finally, LATE does not launch copies on
machines that are statistically slow. Implementation of LATE on an EC2 virtual
cluster with 200 machines shows 2X improvement in response time compared to
Hadoop scheduler.

Mantri [21] proposes a refined method for limiting the resource overhead of
speculative execution. A speculative task is scheduled if the probability of it fin-
ishing before the original task is high. Mantri provides more knobs with regard
to the speculative execution itself – it supports duplication (including multi-
ple duplicates), kill-restart and pruning based on re-estimations of progress. In
addition, Mantri extends the scope of speculative execution to preventing and

16

mitigating stragglers and failures. It does so in different ways. First, it replicates
critical task output to prevent situations where tasks wait for lost data; as be-
fore the decision to do so is based on estimating the probability of the bad event
and evaluating the tradeoff between re-computation and excess resource cost.
Second, Mantri executes tasks in descending order of their input size. The idea
here is that tasks with heavier input take longer to execute, and thus should
be prioritized since what matters is the makespan of the tasks. Finally, Mantri
chooses the placement of reduce tasks in a network-aware manner, taking into
account the data that has to be read across the network and the available band-
width. Mantri has been deployed on Bing’s cluster with thousands of machines,
and exhibited median job speedup of 32%.

The aforementioned techniques for handling stragglers generally operate at
the task level – e.g., rank tasks based on progress or completion time, limit the
number speculative tasks, etc. Instead, [22] proposes to apply different mitigation
logic at the job level. The main observation here is that for small jobs, i.e.,
jobs that consist of few tasks, a system can tolerate a more aggressive issuing
of duplicates. In particular, [22] uses full cloning of tasks belonging to small
jobs, avoiding waiting and speculating, hence improving the chances that the
tasks output is ready on time. Analyzing production traces, [22] shows that the
smallest 90% of jobs consume only 6% of the total resources. Hence, cloning
can be done to a substantial chunk of the jobs with a rather small resource
overhead. On the algorithmic front, cloning introduces the following challenge:
efficient cloning means that the system uses the (intermediate) output data of
the upstream clone that finishes first; however, this creates contention for the IO
bandwidth at that upstream clone, since multiple downstream clones require its
data. [22] solves this problem through a heuristic reminiscent to delay scheduling,
hence named delay assignment. Every downstream clone waits for a small amount
of time (a parameter ω of the heuristic) to see if it can get an exclusive copy
of the intermediate data from a preassigned upstream clone. If the downstream
clone does not get its exclusive copy by ω, it reads from the upstream clone that
finishes first. [22] implements the cloning framework in a system called Dolly.
The paper reports substantial improvements in completion time of small jobs –
34%-46% compared to LATE and Mantri, using less than 5% extra resources.

1.3 Storage

Storage is a key component of big data analytics clusters. Clusters store petabytes
of data, distributed over many machines. Key to analytics is reliable and efficient
storage of the data. Data should be accessible even in the face of machine failures
(which are common) and should be read/written efficiently (without significant
overheads).

Distributed file systems present the abstraction of a single unified storage
to applications by abstracting away as much of the details of the individual

Big data analytics systems 17

��
��
��
��
��
��

��������

��������	
����
�

�������	������

���

	
�� ����

��

�������

��� �	����� ����
����������

��� �	����� ����
����� ����

��� �	����� ����
���� ��� �

��� �	����� ����
���� ����

! ! !

��
��
��
��
��
��

��������

��������	
����
�

�������	������

����� �	������

��
��
��
��
��
��
��

��������

��������	
����
�

�������	������

����� �	������

�������	������

�

�

��
"��# $"
�

�������	������

��
"��# %
"��

&����
����������'

Figure 1.2 Architecture of Distributed File Systems (DFS).

storage machines as possible; the machines store the data on their local disks.
We describe how distributed file systems enable such storage while presenting the
unified storage abstraction in Section 1.3.1. An important and upcoming class
of storage solutions, driven by falling RAM prices is in-memory caching. Such
caching offers much faster access to data compared to disks but require special
handling along certain aspects, which we cover in Section 1.3.2.

1.3.1 Distributed file system

Typically, a file in a distributed file system is divided into many smaller blocks,
which are stored on different machines. Every file has a unique identifier, and
every block within a file is also referenced uniquely. The distributed file system
is oblivious to the local storage mechanisms used by the disk subsystems of the
machines. The machine could employ various disk architectures like just-bunch-
of-disks, RAID or simple striping. It could also employ its own error-recovery
and caching mechanisms.

Architecture
Distributed file systems have a centralized architecture: a single central master
that maintains metadata about the blocks in the cluster. Figure 1.2 presents a
simple architectural representation. Metadata information for every block con-
tains the locations storing it, its last access time, size, the file it is part of, and so
forth. Each of the machines have a file system worker that is responsible for man-
aging the local data blocks. It interfaces with the local storage subsystem and
allows the master to be oblivious. It also periodically informs the master about
the available space on the machine, and other performance characteristics.

18

The widely used distributed file systems provide interfaces similar to the
POSIX interface [23] for reading and writing data. File namespaces are hierar-
chical and can be identified via path names. The operators supported are create,
open, read, write, close and delete.
Writing: Writing data to the file system involves the following steps.

1. Application calls create to the master with a file name. The master responds
positively with a handle if the filename is not in use currently.

2. Application uses the handle to open a file to the master. The master checks
its metadata to pick the machine to write the first block of the file. It returns
the details of the corresponding worker process.

3. Application calls write to the worker to store its data until the size is equal
to the upper-limit for a block. Once the block is full, the worker informs the
application.

4. Application gets another worker to write its next block of data. A file is
written only one block at a time.

5. When all the blocks are written, the application calls close on the file to the
master.

While the master controls where the data is written and automatically obtains
metadata information, the actual writes themselves go directly to the worker.
Such a design helps significantly with the scalability of the master. Imagine an
alternate design where the application provides its data to the master and lets
it send to the worker machine transparently. While such an approach would
marginally simplify the application, it places a huge burden on the master.
Append-only: Modern distributed file systems do not support updates to the
blocks, only appends. While applications can add blocks to an existing file, they
cannot modify any of the existing blocks. Such an append-only decision is suited
for these clusters where data is written once and read many times over, and
rarely updated.

While the single master scales well since it only deals with requests as opposed
to data, its scalability can be improved by federating its namespace. Recall that
the files are organized as a hierarchical namespace. Therefore, the master can
be scaled by partitioning the namespace appropriately. Thus each sub-space in
the hierarchy will be independently handled which reduces the load on any sin-
gle machine. Partitioning happens based on hierarchical boundaries as well as
popularity of data access.
Reading: Reading data from the file system involves the following steps.

1. Application calls open to the master with the desired file name. The master
returns with the handle.

2. Application calls read to the master and optionally provides block identifiers.
The master responds with the set of worker machines on which the desired
blocks of data are stored.

3. Application contacts the worker nodes and requests data blocks.

Big data analytics systems 19

4. After reading all the blocks, application calls close on the file to the master.

As earlier, the master only deals with providing applications with the locations
of the workers, and does not directly pass the data blocks. However, different
from above, applications can read from multiple workers in parallel or in series.
Not allowing applications to write in parallel simplifies the design of the master
as it does not have to deal with load balancing the write speeds across different
machines.
Authentication: An important piece missing in the above workflows for reading
and writing data is authentication. Files should be written to and read by only
authenticated users. This is highly important in multi-tenant clusters. For this
purpose, the master enforces explicit access controls and requires users to au-
thenticate themselves. Further, when writing data, applications are provided an
explicit token that helps authenticate themselves to the workers. The tokens are
time-specific and cannot be reused.

Fault tolerance
Fault tolerance is an important concern for distributed file systems. The master
is a single point of failure as the loss of its metadata will require hours to rebuild
as each worker has to inform the new master of the blocks stored on its machine.
To prevent such expensive rebuilding, file systems use two approaches: periodic
checkpointing and hot standby. The master periodically checkpoints its metadata
to persistent storage. In addition there is also a hot standby that can take over
immediately when the primary master fails. The standby picks up from the
persisted metadata state.

Data is replicated (typically, three times) to provide fault tolerance. Replica-
tion, however, is transparent to the application. The worker to which a block
is written contacts the master to obtain another location where data is to be
replicated. The second location, in turn, creates another replica of the data.

File systems also support reverting to previous versions via snapshots. Snap-
shots allow users to revert to previous versions. Traditionally, snapshotting is
implemented by time-stamping and storing the old copy of a block whenever it
changes. The append-only model greatly simplifies snapshotting by avoiding the
need to store any old copies. Whenever blocks are appended to a file, a simple
log that timestamps the action is sufficient to roll back to any desired time. Of
course, when files are deleted, they still have to be persisted for rollback.

Variable replication
In time, replication is used for both performance as well as reliability. In these
distributed clusters, reading from local storage is often faster than reading from
remote machines. Thus, analytics frameworks schedule their tasks on the ma-
chines that contain data locally. Achieving locality for concurrently executing
tasks, however, is dependent on the number of replicas as well as cluster utiliza-
tion.

20

Figure 1.3 The probability of finding a replica on a free machine for different values of
file replication factor and cluster utilization.

We present a simple analysis that demonstrates the intuition behind how in-
creased replication reduces contention. With m machines in the cluster, k of
which are available for a task to run, the probability of finding one of r replicas
of a file on the available machines is 1−(1− k

m)r. This probability increases with
the replication factor r, and decreases with cluster utilization (1− k

m).
Figure 1.3 plots the results of a numerical analysis to understand how this

probability changes with replication factors and cluster utilizations. At a cluster
utilization of 80%, for example, with the current replication factor (r=3), we see
that the probability of finding a replica among the available machines is less than
half. Doubling the replication factor raises the probability to over 75%. Even at
higher utilizations of 90%, a file with 10 replicas has a 60% chance of finding a
replica on a free machine. By replicating files proportionally to their number of
concurrent accesses, the chances of finding a replica on a free machine improves.

Therefore, some file systems perform automatic variable replication of files
based on their popularity. Using historical access statistics—total number of
accesses as well as number of concurrent accesses—systems create extra replicas
of popular data blocks. Such variable replication ensure sufficient number of
replicas that help in providing locality for future tasks concurrently acccesing
the same data block.

1.3.2 In-memory storage

Hardware trends, driven by falling costs, indicate a steep increase in memory
capacities of large clusters. This presents an opportunity to store the input data
of the analytics jobs in memory and speed them up. As mentioned earlier, data-
intensive jobs have a phase where they process the input data (e.g., map in
MapReduce [1], extract in Dryad [2]). This phase simply reads the raw input and
writes out parsed output to be consumed during further computations. Natu-
rally, this phase is IO-intensive. Workloads from Facebook and Microsoft Bing
datacenters, consisting of thousands of servers, show that this IO-intensive phase
constitutes 79% of a job’s duration and consumes 69% of its resources.

Big data analytics systems 21

Figure 1.4 Power-law distribution of jobs in the resources consumed by them.
Power-law exponents are 1.9 and 1.6 in the two traces, when fitted with least squares
regression [22].

Figure 1.5 Fraction of active jobs whose data fits in the aggregate cluster memory, as
the memory per machine varies [24].

Storing all the data currently present in disks is, however, infeasible because
of the three orders of magnitude difference in the available capacities between
disk and memory, notwithstanding the growing memory sizes. Datacenter jobs,
however, exhibit a heavy-tailed distribution of their input sizes thus offering the
potential to cache the inputs of a large fraction of jobs.
Heavy-tailed input sizes: Workloads consist of many small jobs and relatively
few large jobs. In fact, 10% of overall data read is accounted by a disproportionate
96% and 90% of the smallest jobs in the Facebook and Bing workloads. As
Figure 1.4 shows, job sizes indeed follow a power-law distribution, as the log-log
plot shows a linear relationship [22].

The skew in job input sizes is so pronounced that a large fraction of active jobs
can simultaneously fit their entire data in memory.3 Consider a simple simulation
that looks at jobs in the order of their arrival time. The simulator assumes
the memory and computation slots across all the machines in the cluster to be
aggregated. It loads a job’s entire input into memory when it starts and deletes it
when the job completes. If the available memory is insufficient for a job’s entire
input, none of it is loaded. Figure 1.5 plots the results of the simulation. For the
workloads from Facebook and Bing, 96% and 89% of the active jobs respectively
can have their data entirely fit in memory, given an allowance of 32GB memory
per server for caching [24].

3 By active jobs we mean jobs that have at least one task running.

22

������

���	
����	

������

�����

����

��	��	

������

�����

����

��	��	

������

�����

����

��	��	

����

����	

Figure 1.6 Coordinated cache architecture [24]. The central coordinator manages the
distributed clients. Thick arrows represent data flow while thin arrows denote
meta-data flow.

Coordination architecture
Data is cached on the different distributed machines, and globally coordinated.
Global coordination enables the abstraction of viewing different input blocks in
unison to implement cache replacement policies. A coordinated cache infrastruc-
ture, (a) supports queries for the set of machines where a block is cached, and
(b) mediates cache replacement globally across the machines (covered shortly).

The architecture of a caching system consists of a central coordinator and a
set of clients located at the storage nodes of the cluster (see Figure 1.6). Blocks
are added to the cache clients. The clients update the coordinator when the state
of their cache changes (i.e., when a block is added or removed). The coordinator
uses these updates to maintain a mapping between every cached block and the
machines that cache it. As part of the map, it also stores the file that a block
belongs to.

The client’s main role is to serve cached blocks, as well as cache new blocks.
Blocks are cached at the destination, i.e., the machine where the task executes
as opposed to the source, i.e., the machine where the input is stored. This allows
an uncapped number of replicas in cache, which in turn increases the chances of
achieving memory locality especially when there are hotspots due to popularity
skew [25]. Memory local tasks contact the local cache client to check if its input
data is present. If not, they fetch it from the distributed file system (DFS). If
the task reads data from the DFS, it puts it in cache of the local cache client
and the client updates the coordinator about the newly cached block. Data flow
is designed to be local in the architecture as remote memory access could be
constrained by the network.
Fault tolerance: The coordinator’s failure does not hamper the job’s execu-
tion as data can always be read from disk. However, the architecture includes

Big data analytics systems 23

a secondary coordinator that functions as a cold standby. Since the secondary
coordinator has no cache view when it starts, clients periodically send updates
to the coordinator informing it of the state of their cache. The secondary co-
ordinator uses these updates to construct the global cache view. Clients do not
update their cache when the coordinator is down.

Resilient distributed datasets
An important class of applications reuse data across computations. Examples
include iterative machine learning and graph algorithms like K-Means clustering
and logistic regression. In-memory storage is an efficient way to support such
data reuse. Storing it to the distributed file system incurs substantial overheads
due to data replication and serialization, which can dominate execution times.
Reuse also occurs in interactive data explorations when the same input is loaded
once and used by many queries.

To enable efficient reuse of data, there is an abstraction proposed called re-
silient distribtued datasets (RDDs). RDDs are fault-tolerant parallel data struc-
tures that let users store data in memory, optimize their placement and execute
generic queries over them. RDDs can persist input data as well as intermediate
results of a query to memory. A simple example to illustrate the programming
model is as follows.

lines = spark.textFile(“hdfs://”)
errors = lines.filter(.startsWith(“ERROR”)
errors.persisit()

The main challenge in designing RDDs is providing efficient fault tolerance.
Traditional options like replication or logging updates across machines are resource-
expensive and time-consuming. RDDs provide fault tolerance by storing the lin-
eage of the dataset. The lineage represents the set of steps (e.g., map, filter) used
to create the RDD. Therefore, when a machine fails, its data can be regenerated
by replaying the corresponding lineage steps. Maintaining lineage is a simple and
inexpensive way to provide fault tolerant in-memory storage without replication.

The Spark system, that supports RDDs, has a simple Scala programming
interface for managing RDDs. Spark’s execution engine automatically converts
the Scala program to a data parallel job of many parallel tasks, and executes
them on the cluster. Figure 1.7 illustrates the execution.

Cache replacement for parallel jobs
Maximizing cache hit-ratio does not minimize the average completion time of
parallel jobs. In this section, we explain that using the concept of wave-width of
parallel jobs and use it to devise the LIFE cache replacement algorithm.
All-or-nothing property: Achieving memory locality for a task will shorten
its completion time. But this need not speed up the job. Jobs speed up when
an entire wave-width of input is cached (Figure 1.8)4. The wave-width of a job
4 This assumes similar task durations, which turns out to be true in practice. The 95th

24

Figure 1.7 Resilient Distributed Datasets in Spark [26].

���� ����

�
�

����

�
�

�
�

�
�

�
�

�
�

�
�
�
�
��

�	

�

���� ����

�
�

�
�

�
�

��

�
�
�
�
��

�	

�

�
�

�
�

�
�

�
�

Figure 1.8 Example of a single-wave (2 tasks, simultaneously) and multi-wave job (12
tasks, 4 at a time). Si’s are slots. Memory local tasks are dark blocks. Completion
time (dotted line) reduces when a wave-width of input is cached.

is defined as the number of simultaneously executing tasks. Therefore, jobs that
consist of a single wave need 100% memory locality to reduce their completion
time. We refer to this as the all-or-nothing property. Jobs consisting of many
waves improve as we incrementally cache inputs in multiples of their wave-width.
In Figure 1.8, the single-waved job runs both its tasks simultaneously and will
speed up only if the inputs of both tasks are cached. The multi-waved job, on the
other hand, consists of 12 tasks and can run 4 of them at a time. Its completion
time improves in steps when any 4, 8 and 12 tasks run memory locally.
Average completion time: In a cluster with multiple jobs, favoring jobs with
the smallest wave-widths minimizes the average completion time of jobs. Assume

percentile of the coefficient-of-variance (stdev
mean

) among tasks in the data-processing phase
(e.g., map) of jobs is 0.08.

Big data analytics systems 25

������

�
�
�
��

���� �� ��	

�
�

������

�
�
��
��

���� �����	

�
�

�
�
�
��

������ ������

�
�
��
��

Figure 1.9 Gains in completion time due to caching decreases as wave-width increases.
Solid and dotted lines show completion times without and with caching (for two jobs
with input of I but wave-widths of 2 and 4). Memory local tasks are dark blocks,
sped up by a factor of µ.

that all jobs in the cluster are single-waved. Every job j has a wave-width of w
and an input size of I. Let us assume the input of a job is equally distributed
among its tasks. Each task’s input size is

(
I
w

)
and its duration is proportional to

its input size. Memory locality reduces its duration by a factor of µ. The factor µ
is dictated by the difference between memory and disk bandwidths, but limited
by additional overheads such as deserialization and decompression of the data
after reading it.

To speed up a single-waved job, we need I units of cache space. On spending
I units of cache space, tasks would complete in µ

(
I
w

)
time. Therefore the saving

in completion time would be (1− µ)
(

I
w

)
. Counting this savings for every access

of the file, it becomes f (1− µ)
(

I
w

)
, where f is the frequency of access of the

file. Therefore, the ratio of the job’s benefit to its cost is f (1− µ)
(1

w

)
. In other

words, it is directly proportional to the frequency and inversely proportional to
the wave-width. The smaller the wave-width, the larger the savings in completion
time per unit of cache spent. This is illustrated in Figure 1.9 comparing two jobs
with the same input size (and of the same frequency), but wave-widths of 2 and
4. Clearly, it is better to use I units of cache space to store the input of the job
with a wave-width of two. This is because its work per task is higher and so the
savings are proportionately more. Note that even if the two inputs are unequal
(say, I1 and I2, and I1 > I2), caching the input of the job with lower wave-width
(I1) is preferred despite its larger input size. Therefore, in a cluster with multiple
jobs, average completion time is best reduced by favoring the jobs with smallest
wave-widths (LIFE).

This can be easily extended to a multi-waved jobs. Let the job have n waves, c
of which have their inputs cached. This uses cw

(
I

nw

)
of cache space. The benefit

in completion time is f (1− µ) c
(

I
nw

)
. The ratio of the job’s benefit to its cost is

f (1− µ)
(1

w

)
, hence best reduced by still picking the jobs that have the smallest

wave-widths.

26

1.4 Concluding remarks

The concepts surveyed in this chapter enable the execution of big-data ana-
lytics on commodity clusters. These concepts address the principal aspects of
large-scale computation, such as data-locality, consistency and fault-tolerance,
provided by analytics frameworks while abstracting the details away from the
user/application. While the concepts were presented in the context of batch an-
alytics, we would like to point out that the template of jobs composed as DAG
of tasks is by no means restricted to batch analytics alone. Many interactive
frameworks [27–29] are using this template for fast interactive analytics, while
also employing in-memory caching techniques explained in the chapter. Recently,
stream processing—continuous processing of data as it streams in—is also em-
ploying this template. These systems divide the streaming input data into time
buckets, and execute jobs on each of the time buckets. Thus, we expect the solu-
tions presented here to remain the relevant core as analytics frameworks evolve
in the future with new models and requirements of big data processing.

Our focus here has been on scheduling and storage, which can be viewed
as basic ingredients of any such systems. We conclude this chapter by briefly
outlining additional elements which are subject to ongoing research.

Approximate computing
An emerging class of applications is geared towards approximation. Approxima-
tion jobs are based on the premise that providing a timely result, even if on only
part of the dataset is good enough. Approximation jobs are growing in interest
to cope with the deluge in data since processing the entire dataset can take
prohibitively long.

Approximation is explored along two dimensions—time to produce the result
(deadline), and error (accuracy) in (of) the result [30, 31].

1. Deadline-bound jobs strive to maximize the accuracy of their result within a
specified time limit. Such jobs are common in real-time advertisement systems
and web search engines. Generally, the job is spawned on a large dataset and
accuracy is proportional to the fraction of data processed.

2. Error-bound jobs strive to minimize the time taken to reach a specified er-
ror limit in the result. Again, accuracy is measured in the amount of data
processed (or tasks completed). Error-bound jobs are used in scenarios where
the value in reducing the error below a limit is marginal, e.g., counting of
the number of cars crossing a section of a road to the nearest thousand is
sufficient for many purposes.

Approximation jobs raise several challenges that are part of ongoing research.
Sample selection is crucial towards meeting the desired approximation bounds.
The selected sample impacts the achieved accuracy within a deadline, as well
as the ability to meet an error bound. Also, understanding the query patterns
and data access characteristics help provide confidence intervals on the produced

Big data analytics systems 27

result. Designing smart samplers that balance the accuracy of the result, sample
storage space and function generically is an open problem.

Another important problem is straggler mitigation. Approximation jobs re-
quire schedulers to prioritize the appropriate subset of their tasks depending on
the deadline or error bound. Optimally prioritizing tasks of a job to slots is a clas-
sic scheduling problem with known heuristics. Stragglers, on the other hand, are
unpredictable and require dynamic modification to the priority ordering accord-
ing to the approximation bounds. The challenge is to achieve the approximation
bound by dynamically weighing the gains due to speculation against the cost of
using extra slots.

Energy efficiency
Energy costs are considered to be a major factor in the overall operational costs of
datacenters. Therefore, there is strong motivation for utilizing clusters in energy-
efficient manner. In our context of big-data jobs, there is an opportunity of saving
on energy costs, as some of the workloads can tolerate delays in execution, and
can be scheduled when the energy costs are cheaper. The associated decision
process involves several factors, such as time-varying energy prices, the existence
of renewable energy sources, cooling overhead, and more; see e.g., [32–34] and
references therein.

On top of the original scheduling decision of when to run jobs, there are
additional control knobs that may be incorporated. For example, tasks can be
executing using different power levels [35], and perhaps some resources can be
turned off when overall demand is not high [36]. At a higher level, it may be
possible to migrate jobs across datacenters in order to execute the jobs where
energy is currently cheap [37].

Pricing
In Section 1.2 we have briefly discussed mechanisms which incentivize users to
utilize resources fairly and truthfully. Such mechanisms are mostly relevant for
internal enterprize clusters (a.k.a. private clouds). In the public cloud context,
however, the main provider objective is maximizing the net profit, consisting
of revenues minus operating costs. Current cloud providers rent Virtual Ma-
chines (VMs) on an hourly basis using a variety of pricing schemes (such as
on-demand, reserved, or spot pricing, see, e.g., [38]); recent research has accord-
ingly been devoted to maximizing the customer’s utility in face of the different
pricing schemes (see, e.g., [39] and reference therein). From the provider perspec-
tive, public cloud offerings, such as Amazon EC2, have recently incorporated an
additional premium price for using big-data services such as Hadoop. Never-
theless, an interesting research direction is to investigate more specific pricing
schemes, e.g., such that take into account job SLAs, deadlines, etc.

28 References

References

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clus-
ters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[2] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: distributed data-
parallel programs from sequential building blocks,” in ACM EuroSys, 2007.

[3] V. Vavilapalli and et. al, “Apache hadoop yarn: Yet another resource negotiator,”
in ACM SoCC, 2013.

[4] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,
S. Shenker, and I. Stoica, “Mesos: a platform for fine-grained resource sharing
in the data center,” in USENIX NSDI, 2011.

[5] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit round-robin,”
IEEE/ACM Transactions on Networking, vol. 4, no. 3, pp. 375–385, 1996.

[6] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queueing
algorithm,” in ACM SIGCOMM Computer Communication Review, vol. 19, no. 4.
ACM, 1989, pp. 1–12.

[7] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica,
“Dominant resource fairness: Fair allocation of multiple resource types.” in NSDI,
vol. 11, 2011, pp. 24–24.

[8] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I. Stoica,
“Job scheduling for multi-user mapreduce clusters,” EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2009-55, 2009.

[9] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella, “Multi-
resource packing for cluster schedulers.” ACM SIGCOMM, 2014.

[10] A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Choosy: Max-min fair sharing
for datacenter jobs with constraints,” in Proceedings of the 8th ACM European
Conference on Computer Systems. ACM, 2013, pp. 365–378.

[11] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and C. R. Das, “Model-
ing and synthesizing task placement constraints in google compute clusters,” in
Proceedings of the 2nd ACM Symposium on Cloud Computing. ACM, 2011, p. 3.

[12] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica,
“Delay scheduling: a simple technique for achieving locality and fairness in cluster
scheduling,” in Proceedings of the 5th European conference on Computer systems.
ACM, 2010, pp. 265–278.

[13] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg,
“Quincy: fair scheduling for distributed computing clusters,” in Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles. ACM, 2009,
pp. 261–276.

[14] P. Bod́ık, I. Menache, M. Chowdhury, P. Mani, D. A. Maltz, and I. Stoica, “Sur-
viving failures in bandwidth-constrained datacenters,” in Proceedings of the ACM
SIGCOMM 2012 conference on Applications, technologies, architectures, and pro-
tocols for computer communication. ACM, 2012, pp. 431–442.

[15] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca, “Jockey: guaran-
teed job latency in data parallel clusters,” in Proceedings of the 7th ACM european
conference on Computer Systems. ACM, 2012, pp. 99–112.

References 29

[16] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramakrishnan, and S. Rao,
“Reservation-based scheduling: If you’re late don’t blame us!” in Proceedings of
the ACM Symposium on Cloud Computing. ACM, 2014, pp. 1–14.

[17] N. Jain, I. Menache, J. Naor, and J. Yaniv, “Near-optimal scheduling mechanisms
for deadline-sensitive jobs in large computing clusters,” in SPAA, 2012, pp. 255–
266.

[18] B. Lucier, I. Menache, J. Naor, and J. Yaniv, “Efficient online scheduling for
deadline-sensitive jobs: extended abstract,” in SPAA, 2013, pp. 305–314.

[19] P. Bod́ık, I. Menache, J. S. Naor, and J. Yaniv, “Brief announcement: deadline-
aware scheduling of big-data processing jobs,” in Proceedings of the 26th ACM
symposium on Parallelism in algorithms and architectures. ACM, 2014, pp. 211–
213.

[20] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica, “Improving
mapreduce performance in heterogeneous environments.” in OSDI, vol. 8, no. 4,
2008, p. 7.

[21] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y. Lu, B. Saha,
and E. Harris, “Reining in the outliers in map-reduce clusters using mantri.” in
OSDI, vol. 10, no. 1, 2010, p. 24.

[22] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective straggler
mitigation: Attack of the clones.” in NSDI, vol. 13, 2013, pp. 185–198.

[23] “Posix,” http://pubs.opengroup.org/onlinepubs/9699919799/.
[24] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula,

S. Shenker, and I. Stoica, “Pacman: Coordinated memory caching for parallel
jobs,” 2012.

[25] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica, D. Harlan,
and E. Harris, “Scarlett: Coping with skewed popularity content in mapreduce
clusters,” in ACM EuroSys, 2011.

[26] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. Franklin,
S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing,” in USENIX NSDI, 2012.

[27] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and
T. Vassilakis, “Dremel: Interactive analysis of web-scale datasets,” in Proc. of the
36th Int’l Conf on Very Large Data Bases, 2010, pp. 330–339.

[28] R. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica, “Shark:
SQL and Rich Analytics at Scale,” in Proceedings of the 2013 ACM SIGMOD
International Conference on Management of data, 2013.

[29] S. Agarwal, B. Mozafari, A. Panda, M. H., S. Madden, and I. Stoica, “Blinkdb:
Queries with bounded errors and bounded response times on very large data,” in
Proceedings of the 8th European conference on Computer Systems. ACM, 2013.

[30] J. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung, “Imprecise computa-
tions.” in IEEE, 1994.

[31] S. Lohr, “Sampling: Design and analysis,” in Thomson, 2009.
[32] Y. Chen, S. Alspaugh, D. Borthakur, and R. Katz, “Energy efficiency for large-

scale mapreduce workloads with significant interactive analysis,” in Proceedings of
the 7th ACM european conference on Computer Systems. ACM, 2012, pp. 43–56.

[33] Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, M. Marwah, and
C. Hyser, “Renewable and cooling aware workload management for sustainable

30 References

data centers,” in ACM SIGMETRICS Performance Evaluation Review, vol. 40,
no. 1. ACM, 2012, pp. 175–186.

[34] A. Beloglazov, R. Buyya, Y. C. Lee, A. Zomaya, et al., “A taxonomy and sur-
vey of energy-efficient data centers and cloud computing systems,” Advances in
Computers, vol. 82, no. 2, pp. 47–111, 2011.

[35] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy, “Optimal power allocation
in server farms,” in ACM SIGMETRICS Performance Evaluation Review, vol. 37,
no. 1. ACM, 2009, pp. 157–168.

[36] A. Gandhi, V. Gupta, M. Harchol-Balter, and M. A. Kozuch, “Optimality anal-
ysis of energy-performance trade-off for server farm management,” Performance
Evaluation, vol. 67, no. 11, pp. 1155–1171, 2010.

[37] N. Buchbinder, N. Jain, and I. Menache, “Online job-migration for reducing the
electricity bill in the cloud,” in NETWORKING 2011. Springer, 2011, pp. 172–
185.

[38] “EC2 pricing,” http://aws.amazon.com/ec2/pricing/.
[39] I. Menache, O. Shamir, and N. Jain, “On-demand, spot, or both: Dynamic resource

allocation for executing batch jobs in the cloud,” in 11th International Conference
on Autonomic Computing (ICAC), 2014.

Part III

Big data over social networks

Part IV

Big data over bio networks

