Web-based Question Answering: Revisiting AskMSR

Chen-Tse Tsai*
University of Illinois
Urbana, IL 61801, USA
ctsail2@illinois.edu

Abstract

Web-based QA, pioneered by Kwok et
al. (2001), successfully demonstrated the
power of Web redundancy. Early Web-
QA systems, such as AskMSR (Brill et al.,
2001), rely on various kinds of rewriting
and pattern-generation methods for iden-
tifying answer paragraphs and for extract-
ing answers. In this paper, we conducted
an experimental study to examine the im-
pact of the advance of search engine tech-
nologies and the growth of the Web, to
such Web-QA approaches. When apply-
ing AskMSR to a new question answering
dataset created using historical TREC-QA
questions, we find that the key step, query
pattern generation is no longer required
but instead, deeper NLP analysis on ques-
tions and snippets remains critical. Based
on this observation, we propose a Web-QA
system that removes the query pattern gen-
eration step and improves answer candi-
date generation and ranking steps, and out-
performs AskMSR by 34 points of MRR.

1 Introduction

In this paper, we consider the problem of open-
domain factoid question answering, where the an-
swers are usually short phrases or few words. For
instance,
Question: Where did Bill Gates go to college?
Answer: Havard University
This form of question answering had been the fo-
cus of NIST TREC-QA tracks (Voorhees and Tice,
2000), which were held each year from 1999 to
2007. Due to the complexity of possible formula-
tions of the same question and the variety of ways
a correct answer can be presented in documents,

*Work conducted while interning at Microsoft Research.

Wen-tau Yih

Christopher J.C. Burges
Microsoft Research
Redmond, WA 98052, USA

{scottyih, cburges}@microsoft.com

deep natural language understanding and reason-
ing was generally viewed as needed for build-
ing a good QA system. Contrary to this belief,
one of the top performing systems in TREC 2011,
AskMSR (Brill et al., 2001), was built using very
simple rules by leveraging the Web documents. It
applies a data-driven approach which utilizes the
vast amount of text data on the web and only per-
forms minimal linguistic analysis. More specif-
ically, it tries to generate variations of the given
question as textual patterns that can occur in the
documents, along with answers. For example, one
of the patterns of the above question is “Bill Gates
went to college at”. Then, the system queries a
search engine by issuing this pattern with quotes
as the query. By assuming that the answer would
appear near the pattern in the document, the sys-
tem then tries to extract the answer from the top
retrieved snippets (summary of documents).

Although this question pattern generation pro-
cess was viewed as the key step in Web-QA sys-
tems like AskMSR and had later been studied ex-
tensively (Yang et al., 2003; Zhao et al., 2007), its
effect has become less clear nowadays due to two
reasons. First, because of the popularity of com-
munity QA sites like Yahoo! Answers, the origi-
nal questions have been included with the answers.
Using the original question as query could better
match the relevant documents instead of using arti-
ficial question patterns. Second, given the advance
of modern search engine technologies, especially
on general query reformulation using query and
click logs analysis (Huang and Efthimiadis, 2009),
the existing question pattern generation process
could be redundant and less optimal.

In this work, we revisit the design of AskMSR
and examine the effectiveness of its individual
components. We show that a Web-based QA sys-
tem without question pattern generation can per-
form significantly better. That is, we query a
search engine using the original question string

Question

uestion—> : .
Q Classification

’ ’

Answer Candidate
Generation

Ranked
Answers

Answer Candidate
‘ Ranking ’ -

Search Engine

.y
Wikipedia | |_ WordNet |

Figure 1: The pipeline of the proposed system. Given a question, the first step is to classify it into one of
the 13 types. Then, we query a search engine by the question and extract answer candidates from the top
retrieved snippets. Finally, several features are extracted from each question/answer pair and a ranking

model is applied to rank answer candidates.

without any modification and then generate an-
swer candidates from the top retrieved snippets.
By removing the pattern generation step, the re-
call of answer candidates increases without sac-
rificing precision. In addition, we improve the
answer candidate generation and ranking compo-
nents. In AskMSR, the answer candidates are ex-
tracted based on the n-grams in the snippets. We
propose a number of simple rules to categorize
questions and incorporate a Named Entity Recog-
nizer (NER) to extract answer candidates which
match the target answer type. Instead of ranking
answer candidates only by the number of occur-
rences in the snippets, we study several features
that measure the relatedness of a question to an an-
swer candidate. We show that enriching the textual
information of answer candidates using Wikipedia
documents can further improve the overall perfor-
mance. Our evaluation is done using five years of
TREC factoid question answering datasets (1999
— 2003). To have an accurate and fair compari-
son, we update the answers by crowdsourcing us-
ing Amazon Mechanical Turk. The revised dataset
consists of 1,751 training questions and 380 test
questions, along with related search snippets and
answers, and is released with this technical re-
port. We believe it will provide future researchers
a valuable benchmark dataset for evaluating fac-
toid question answering systems.

2 Approach

Figure 1 shows the proposed system architecture
as well as resources used in our system. Given
a question, the first step is to categorize ques-
tions based on the type of answers it is looking
for. We then issue the question as the query to a
search engine and extract answer candidates from
the top retrieved snippets. Finally, a trained rank-
ing model which uses information from Wikipedia
and WordNet is applied to rank the answer candi-

Type Rules

continent | “what/which continent”

county “what/which county”

city “what/which city”

state “what/which state”

airport “what/which airport”

country “what/which country”

location starts with “where”, contains “birthplace”

person starts with “who”

d “what date/day/year”, contains “birthday”
ate 1 e »

starts with “when” or “in what year

digit “how much/many”, “how old”

company | “what/which company”

name contains “name”

other all the other questions

Table 1: 13 question types and the corresponding
classification rules used in the question classifica-
tion step.

dates. We describe each algorithmic component in
the following sections

2.1 Question Classification

Classifying questions into several pre-defined tar-
get answer types has been shown as an impor-
tant step for locating answer candidates accu-
rately (Hovy et al., 2001; Li and Roth, 2002). We
use a few simple rules to classify questions into 13
categories. The categories are based on the named
entity types defined an Named Entity Recognizer
(NER)!, which is applied in the answer candidate
generation step. For example, if the question starts
with “What city” or “Which city”, we assign it the
“city” type. If a question does not match any clas-
sification rule, it falls into the “other” category.
The full list of 13 categories and the corresponding
classification rules are listed in Table 1.

2.2 Answer Candidate Extraction

Given a question, instead of rewriting it by sev-
eral hand-crafted rules as AskMSR does, we di-

"We use an in-house named entity recognizer, which con-
sists of 16 named entity types.

rectly submit the whole question as a query to a
search engine, and collect the top 40 returned snip-
pets (query-focused summary of the documents).
Since snippets consist of sentences that typically
have words in the query and also the nearby sen-
tences, the answers are likely included in these
snippets. Therefore, we do not need to analyze
the full documents, which may introduce more ir-
relevant answer candidates.

After collecting the retrieved snippets, the
next step is to extract answer candidates from
these snippets. If the given question is not the
“other” type, we apply an NER on the snippets
to extract entities with the target answer type
of the question as answer candidates. If the
question is not classified as any named entity
type, we consider all unigrams, bigrams, and
trigrams in the snippets as answer candidates.
The extracted answer candidates are sorted by the
number of occurrences in the snippets at this stage.

Filtering One problem of using n-grams is that
many of them are not meaningful phrases. To
improve the quality of the answer candidate set,
we remove n-grams that satisfy one or more of
the following conditions: (1) containing a verb,
(2) is a punctuation as a single token, (3) starting
or ending with a stop word, and (4) consisting of
words in the question. In addition, for questions
asking for a specific entity, we require that an
answer candidate needs to be a title in Wikipedia
if the candidate does not contain any digit. Since
Wikipedia has a broad coverage of entities and
concepts, applying this filtering rule largely
increases the precision of answer candidate
extraction.

Tiling Even when each answer candidate is a
meaningful phrase, there might be duplicate infor-
mation among all candidates. For instance, “Har-
vard” and “Harvard University” are both candi-
dates and “Harvard” should have counts no less
than “Harvard University” does due to the na-
ture of n-gram. Although both of them could be
the correct answer, we want to reduce the redun-
dant information and provide the most complete
answers. To resolve this issue, we apply the n-
gram tiling algorithm used in AskMSR. The algo-
rithm constructs longer n-grams from a sequence
of overlapping shorter n-grams. More specifically,
the algorithm starts from the top-scoring candi-

Answer Candidates Count
Harvard 12 .

Answer Candidates Count
College 10 - 4.Coll "

arvard College

University 8 —> L

Harvard University 8
Harvard College 7
Harvard University 5

Figure 2: An example of answer candidates tiling.
The right list is the result of performing answer
candidates tiling on the left list which consists of
answer candidates generated based on n-grams in
the snippets.

date, and checks if the subsequent candidates can
be tiled with the current answer candidate. If so,
the higher ranking candidate is replaced with the
tiled n-gram and the lower ranking candidate is
removed. The score of the new n-gram is the max-
imum score of the constituent n-grams. For exam-
ple, the list in Figure 2 (left) shows answer can-
didates before performing tiling. We can see that
the counts of unigrams are higher than the ones
of bigrams and many of them actually refer to the
same entity. After tiling, only the longer answer
candidates are kept (the right list).

2.3 Answer Candidate Ranking

Unlike the original AskMSR approach, where
answer candidates are ranked by the frequency
counts, we learn a binary classifier instead. The
classifier relies on two vector-space models to
capture semantic relatedness between the question
and answers, as well as other simple features.

WordNet Noun Beginners Matching In this
model, we use the 25 unique noun beginners in
WordNet (Table 2) to represent questions and
answers. These beginners are the top words of
the WordNet noun taxonomy, each of which
corresponds to a relatively distinct semantic
domain. We create a 25-dimensional vector for
each question and answer candidate by extracting
nouns and looking up their beginners in WordNet.
For a question vector, the ¢-th component of
the vector is the total number of ¢-th beginner
appearing in the question. We also increase the
counts by one for the first and last beginner in the
question since they may carry more information.
For an answer candidate, we create the vector
using the count of beginners of the words in it, but
also take the named entity types into account. In
particular, we use the named entity type provided

| Name # | Name

1 | act 13 | motive

2 | animal 14 | object

3 | artifact 15 | person

4 | attribute 16 | phenomenon
5 | body 17 | plant

6 | cognition 18 | possession
7 | communication | 19 | process

8 | event 20 | quantity

9 | feeling 21 | relation
10 | food 22 | shape

11 | group 23 | state
12 | location 24 | substance
25 | time

Table 2: The 25 noun beginners in WordNet.

to generate the corresponding beginner. For
example, if the named entity type is “Person”, we
add the beginner which represents the ‘“Person”
sense into the vector.

Wikipedia Introduction Matching This model
measures the textual similarity between a ques-
tion and an answer candidate. Since an answer
candidate only consists of few words, we use
the introduction section in the corresponding
Wikipedia page to enrich textual information.
Note that we simply use the Wikipedia page
where the title exactly matches the answer can-
didate. In other words, no entity disambiguation
is performed. If an answer string is ambiguous,
there will be no match since titles in Wikipedia
have some additional description to distinguish
an ambiguous concept (e.g,. [Insurgent (novel)
vs. Insurgent (film)) . Each question and answer
candidate is represented by a bag-of-word vector.
The ¢-th component of an vector indicates the
term frequency of the ¢-th word in the vocabulary.

For the both vector space models, we take the
inner product between the vectors of a question
and an answer candidate as the score, indicating
how relevant the answer candidate is to the ques-
tion. We further combine these two scores with
other features via training a binary classifier. For a
pair of question and answer candidate, we add the
following sparse features:

e Words in the question

e Named entity types in the question

e Words in the answer candidate

e Named entity types in the answer candidate
e Total number of occurrences of the answer
candidate in the retrieved snippets
o The initial ranking (by the number of occur-
rences in snippets)
Note that words are lowercased and lemmatized in
all the features.

3 Evaluation

We first describe how we construct the new dataset
by revising answers from five years of TREC
shared tasks, and then we compare each proposed
algorithmic component with the original AskMSR
system.

3.1 Dataset

The Text REtrieval Conference (TREC) held a
question answering track (Voorhees and Tice,
2000) each year from 1999 to 2007. The data used
in the competitions are publicly available and have
been a popular benchmark for evaluating various
QA systems. We take the factoid QA collections
from 1999 to 2003 (TREC 8-12) to develop our
system. Excluding the questions which were left
out from the evaluation in the shared tasks, there
are 2,131 questions in total. We use the 1,751
questions from 1999 to 2001 for training and the
380 questions from 2002 for testing.

The systems participated in the shared tasks
were automatically evaluated against some answer
patterns which consist of regular expressions to
capture possible answer strings. Although these
patterns are also publicly available, they became
somewhat inaccurate several years after the data
was released. This could be due to two reasons.
First, in the shared tasks, participants are asked to
extract answers from a collection of documents.
Some answers may not occur in the documents but
exist in the snippets retrieved by a search engine.
In addition, the patterns may only be able to cap-
ture the wording used in the documents, and thus
fail to cover other possible expressions of the an-
swers. Second, answers could change over time,
such as those to the questions asking about the
population of a city and the current president of
a country.

In order to have a fair and accurate evaluation,
we use Amazon Mechanical Turk to collect the an-
swers of these 2,131 questions. Along with the
question, we provide the top 40 snippets retrieved
by Bing to the Turkers and ask them to extract an

| Approach MRR
1 | AskMSR 27.22
2 | Direct Query 45.24
3 | Direct Query + Question Type 57.27
4 | WordNet Beginners Matching 57.33
5 | Wikipeida Introduction Matching | 61.06
6 | AskMSR+ 62.11

Table 3: An ablation study of how each proposed
component improves over the original AskMSR.

answer from each snippet. If a snippet does not
contain any answer, “None” should be provided
as the answer. Each snippet is examined by three
Turkers and the majority of the three answers is
considered as an answer pattern if it is not “None”.
We manually resolve the cases where three an-
swers are all different.

3.2 Experimental Results

In our experiments, we use Bing as the search en-
gine to query relevant snippets and an SVM model
with polynomial kernel of degree 3 is used as the
binary classifier. The decision value obtained from
the model is used as the relevance score to rank an-
swer candidates. Following the evaluation method
used in TREC, we take the Mean Reciprocal Rank
(MRR) of the top 5 answer candidates as our main
evaluation metric:

1 X1
MRR = — Y —, 1

where N is the total number of questions, and r;
is the highest ranking position of a correct answer
to the ¢-th question. If no correct answer found in
the list of answers, % is set to 0.

Table 3 shows a comparison between the orig-
inal AskMSR system and each proposed algorith-
mic component. The main difference between
AskMSR and Direct Query is that Direct Query is-
sues the question string to a search engine directly
and considers all n-grams from the top retrieved
snippets, whereas AskMSR queries a search en-
gine by several reformulations of the original
question in order to mine the n-grams around the
query strings. Note that the answer candidates are
ranked by the number of occurrences for both ap-
proaches. We can see that Direct Query already
outperforms AskMSR significantly without apply-
ing other proposed methods.

In the third approach, we add the proposed sim-
ple question classification method, as well as the
candidate generation approach that extracts the
named entities with the corresponding target an-
swer type from the snippets. The 12-point im-
provement over Direct Query implies that question
typing is a very important step which poses seman-
tic constraints on possible answer candidates, and
thus prunes many irrelevant answer candidates.

The last three approaches re-rank the answer
candidates of the third approach by the proposed
WordNet Noun Beginners Matching, Wikipedia
Introduction Matching, and the final combination
by training a binary classifier respectively. We
can see that Wikipedia Introduction Matching per-
forms very well when comparing to ranking by
counts, which indicates that it is useful to enrich
contextual information of answer candidates from
other knowledge sources. Finally, AskMSR+ is
the full proposed system, which combines the two
vector-space models with other semantic and syn-
tactic features extracted from the snippets and the
question. By learning from the training data, a
simple binary classifier can achieve the best rank-
ing result on the test set. It would be interesting to
investigate other learning to rank algorithms.

4 Conclusions

In this paper, we revisit the design of AskMSR,
a simple web-based question answering system,
and have several interesting findings. For instance,
one of the key steps of question pattern generation
seems to have become redundant, as its function
has partially been incorporated in modern search
engines. On the other hand, semantic analysis of
the questions and potential answers remains im-
portant, and can influence the results significantly.
Based on these observations, we proposed an en-
hanced Web-QA system framework, revised from
the original AskMSR system. By removing the
question pattern generation process and by adding
semantic matching features between questions and
answers using WordNet, Wikipedia and named en-
tity information, our system achieves a substan-
tial gain on TREC-QA questions, where the an-
swers are corrected by crowdsourcing. We hope
this study can provide an updated view of Web-
based question answering and with the new QA
dataset, enable more future research on this im-
portant problem.

References

Eric Brill, Jimmy J Lin, Michele Banko, Susan T Du-
mais, and Andrew Y Ng. 2001. Data-intensive
question answering. In TREC.

Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Chin-
Yew Lin, and Deepak Ravichandran. 2001. Toward
semantics-based answer pinpointing. In Proceed-
ings of the first international conference on Human
language technology research, pages 1-7. Associa-
tion for Computational Linguistics.

Jeff Huang and Efthimis N Efthimiadis. 2009. Ana-
lyzing and evaluating query reformulation strategies
in web search logs. In Proceedings of the 18th ACM
conference on Information and knowledge manage-
ment, pages 77-86. ACM.

Cody Kwok, Oren Etzioni, and Daniel S Weld. 2001.
Scaling question answering to the web. ACM Trans-
actions on Information Systems (TOIS), 19(3):242—
262.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In Proceedings of the 19th international
conference on Computational linguistics-Volume 1,
pages 1-7. Association for Computational Linguis-
tics.

Ellen M Voorhees and Dawn M Tice. 2000. Building
a question answering test collection. In Proceedings
of the 23rd annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 200-207. ACM.

Hui Yang, Tat-Seng Chua, Shuguang Wang, and Chun-
Keat Koh. 2003. Structured use of external knowl-
edge for event-based open domain question answer-
ing. In Proceedings of the 26th annual international
ACM SIGIR conference on Research and develop-
ment in informaion retrieval, pages 33—40. ACM.

Shiqi Zhao, Ming Zhou, and Ting Liu. 2007. Learning
question paraphrases for QA from Encarta logs. In
IJCAI, pages 1795-1801.

