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Abstract—We present a fundamentally different approach only use the information that current flow collectors provide.
to classifying traffic flows according to the applications that Clearly, there may be cases where these constraints may not
generate them. In contrast to previous methods, our approach 554y “\which would make the classification easier. However,

is based on observing and identifying patterns of host behavior . .
at the transport layer. We analyze these patterns at three levels we would like to develop an approach that would be applicable

of increasing detail (i) the social, (ii) the functional and (i) @nd deployable in most practical settings.
the application level. This multilevel approach of looking at Recently, some novel approaches treat the problem of

traffic flow is probably the most important contribution of this  application classification as a statistical problem. These ap-
paper. Furthermore, our approach has two important features. —,r5aches develop discriminating criteria based on statistical

First, it operates in the dark, having (a) no access to packet . T - .
payload, (b) no knowledge of port numbers and (c) no additional observations and distributions of various flow properties in

information” other than what current flow collectors provide. the packet traces. Typically, such discriminating criteria refer
These restrictions respect privacy, technological and practical to the packet size distribution per flow, the inter arrival times
constraints. Second, it can be tuned to balance the accuracy petween packets etc. However, for the most part, these methods
of the classification versus the number of successfully classified yq ot exploit network-related properties and characteristics,
raffic flows. We demonstrate the effectiveness of our approach that we believe contain a lot of valuable information. In addi-
on three real traces. Our results show that we are able to classify . e R .
80%-90% of the traffic with more than 95% accuracy. tion, the validation of a classification method is a challenge.
The effectiveness of most of the current approaches has not
been validated in a large scale, since there does not exist a
|. INTRODUCTION reference point or a benchmark trace with known application

In this work, we address the problem of traffic flow claseonsistency.
sification according to the generating application. Identifying In this work, we propose a novel approach for the flow
which application is creating each flow is important for: (a§lassification problem as defined above, which we BalNd
effective network planning and design, and (b) monitoring thglassification or BLINC for short. The novelty of our ap-
trends of the applications. Despite the importance of trafffigoach is twofold. First, we shift the focus from classifying
classification, an accurate method that can reliably address ihidividual flows to associating Internet hosts with applications,
problem is still to be developed. The ultimate goal is to providend then classifying their flows accordingly. We argue that
a tool to a network operator which will provide a meaningfubbserving the activity of a host provides more information and
classification per-application, and if this is infeasible, witlsan reveal the nature of the applications of the host. Second,
useful insight into the traffic behavior. The latter may facilitatBLINC follows a different philosophy from previous methods
detection of abnormalities in the traffic, malicious behavior @attempting to capture the inherent behavior of a host at three
identification of novel applications. different levels: (a) social level, (b) network level, and (c) the

Currently, application classification practices rely to a larggpplication level.
extent on the use of transport-layer port numbers. While Combining these two key novelties, we classify the behavior
this practice may have been effective in the early days of hostsat three different levels.
the Internet, currently port numbers only provide limited « At the social leve] we capture the behavior of a host in
information. Often, applications and users are not cooperative terms of the hosts that it communicates with. First, we
and intentionally or not use inconsistent ports. Thus, “reliable” examine the popularity of a host in terms of the number
traffic classification requires the packet-payload examination, of interactions with other hosts. Second, we identify
which scarcely is an option due to: (a) hardware and com- communities of nodes, which may correspond to clients
plexity limitations, (b) privacy and legal issues, (c) payload with similar interests or members of a collaborative
encryption by the applications. application.

Taking into account empirical application trends [8], [18] « At the functional level we capture the behavior of the
and the increasing use of encryption, we conjecture that traffic host in terms of its functional role in the network, namely
classifiers of the future will need to classify traffic “in the  whether it acts as a provider or consumer of a service, or
dark”. In other words, we need to address the traffic classifi- both, in case of a collaborative application. For example,
cation problem with the following constraints: (i) no access to  hosts that use a single port for the majority of their
user payload is possible, (ii) well-known port numbers cannot interactions with other hosts are likely to be providers
be assumed to indicate the application reliably, and (iii) we can of the service offered on that port.



« At the application level we capture the transport layer Il. BACKGROUND

interactions between particular hosts on specific portsA sis of th licati Hic mix h | b
with the intent to identify the application of origin. First, halysis o t e application traffic mix has always een one
f the major interests for network operators. Collection of

we provide a classification using only 4 tuples (sourc%

address, destination address, source port, and destinallaffic statig,tics is currently performe_d _either by flow monitqrs,
port). Then, we refine the classification further by eXguch as Cisco NetFlow, or by sophisticated network monitor-

ploiting other flow characteristics such as the transpdﬁg equipment, that_captures one record for each (sampled)
protocol or the average packet size. packet seen on a link. The former produces a list of flow

records capturing the number of bytes and packets seen, while
Tunability. A key feature of our methodology is that it carthe latter produces a list of packet records that can also be

provide results at various levels of detail and accuracy. Firéggregated into 5-tuple flows (e.g. with the same source,
we have the three previous levels of the classification. Secofl@stination IP address, source, destination port, and protocol).
the classification criteria are controlled by thresholds, whichhe subsequent mapping of flows, however, to application
can be relaxed or tightened to achieve the desired balafd@sses is not as straightforward and has recently attracted
between a loose and a conservative classification. The leveBgention in the research community.

accuracy and detail can be chosen according to: (a) the goal o¥Vhile port numbers were always an approximate yet suf-

the study, and (b) the amount of exogenous information (efifient methodology to classify traffic, port-based estimates

application specifications). are currently significantly misleading due to the increase of
applications tunneled through HTTP (e.g., web, chat, stream-
ing, etc), the constant emergence of new protocols and the
domination of p2p networking. Indeed, studies have confirmed

) - ) the failure of port-based classification [13].

« Developing a classification benchmarW/e provide @ 15 a4qress the inefficiency of port-based classification,
comparison benchmark for flow classification. We colleGhcent studies have employed statistical classification tech-
fl‘,'l,l pa_yload packet traces, gnd we develop a payload Clﬁques to probabilistically assign flows to classes, e.g machine
sification methodology. While this methodology could bg, 5 hing [11] or statistical clustering [16]. In such approaches,
of independent interest, we use it here to evalBitNC, 4,5 are grouped in a predetermined number of clusters
which is the focus of this work. according to a set of discriminants, that usually includes the

« Identifying patterns of behaviowe identify “signature” oy erage packet size of a flow, the average flow duration,
communication patterns, which can help us identify the, the inter-arrival times between packets (or the variability
applications that a host is engaged in. Using these Pgfareof). Studies have also examined how the exact timing and
terns, we develop a systematic methodology to implemegiqence of packet sizes can describe specific applications in

our multilevel approap_h. _ the slightly different context of generating realistic application
« Highly accurate classificationVe successfully apply our ;o j0ads [6].

approach to several real traces. Our approach manages Bne of the most challenging application types is the one

classify successfully 80%-90% of the total traffic W'tq‘or peer-to-peer traffic. Quantifying2p traffic is problematic
more than 950/f accuraC},/. both due to the large number of proprietg3p protocols, but
« Detecting the “unknown™.We show hOW. our approach also because of the intentional use of random port numbers
can help us detect: (a) unknown_a_ppllcatmns, SU(_:h communication. Payload-based classification approaches
a new p2p prot.oc.ol, and (b) malicious flows, .Wh'Chtailored top2p traffic have been presented in [17], [9], while
emerge as deviations from Fhe e.x.pected behavior. N ntification ofp2p traffic through transport layer character-
that these cases cannot be identified by payload or PQfics is proposed in [8]. In the same spirit [4] looks into
based analysis. the problem of identifying and characterizirghat traffic.
Our work goes beyond previous efforts aiming at classifying
Our work in perspectiveTo the best of our knowledge, most of the applications that generate the majority of today’s
this is the first work to advocate the shift from characterizingternet traffic.
flows by application to associating hosts with applications.
Our methodology is a first attempt at exploring the benefits
and limitations of such an approach. Given the quality of our

results, we feel that our approach shows great promise andhis section describes our payload classifier and establishes
opens interesting new directions for future research. a comparison reference point. Our data feature the unique

The remainder of the paper is structured as follows. fproperty of allowing for accurate classification; our monitors
Section Il, we motivate the problem and describe related wodapture thefull payload of each packet instead of just the
In Section Ill, we present our payload-based classificatitneader as is commonly the case. Thus, we can move beyond
technique.BLINC is presented in Section IV and its perforsimple port-based application classification and establish a
mance results are shown in Section V. Section VI discussgsmparison benchmark. To achieve efficient payload classi-
implementation details, limitations and future extensions facation, we develop a signature-matching classifier able to
BLINC. Finally, section VII concludes our paper. classify the majority of current Internet traffic.

The highlights of our work can be summarized in th
following points:

I1l. PAYLOAD-BASED CLASSIFICATION



TABLE |
GENERAL WORKLOAD DIMENSIONS OF OUR TRACES

[Set| Date [Day Start [ Dur | Direc. | Src.lP[  Dst.IP | Packets| Bytes [ Aver.Util. JAver. Flows. |
GN [2003-08-19Tue|17:20 | 43.9 h | Bi-dir. [1455 K| 14869 K | 1000M | 495 G 25 Mbps 105 K
UN1{2004-01-20Tue|16:50 | 24.6 h | Bi-dir. |2709 K| 2626 K [2308 M 1223 G |110.5 Mbps 596 K
UN2/2004-04-23Fri |15:40 | 33.6 h | Bi-dir. |4502 K| 5742 K {3402 M |1652 G |109.4 Mbps 570 K
TABLE I
APPLICATION SPECIFIC BIFSTRINGS AT THE BEGINNING OF THE B. Payload classification
PAYLOAD.“0X” IMPLIES HEX CHARACTERS

| gpplll(catlzcz)rz)o [ . 3512'820000[ TTraCr:DS/'U‘;?:'] Even with access to full packet payload, classification of
ebonkey. Xe: S .. . . . . .
MSN messengel| “PNG0x0d0a TP traffic is far from tr|\./|.al. The main c_ompllcguon I!eg in the fact
IRC “USERHOST” TCP that payload classification of traffic requiraspriori knowl-
nntp “ARTICLE” TCP edge of application protocol signatures, protocol interactions
ssh SSH TcP and packet formats. While some of the analyzed applications

are well-known and documented in detail, others operate
on top of nonstandard, usually custom-designed proprietary
We use packet traces collected using a high speed momietocols. To classify such diverse types of traffic, we develop
toring box [12] installed on the Internet link of two accesa signature-based classifier in order to avoid manual interven-
networks. We capture every packet seen on each directiontioh, automate the analysis and speed-up the procedure.
the link along with itsfull payload. Our classifier is based on identifying characteristic bit
Table | lists general workload dimensions of our datstrings in the packet payload that potentially represent the
sets: counts of distinct source and destination IP addressgagial protocol handshake in most applications (e.g., HTTP
the numbers of packets, and bytes observed, the averagguests). Protocol signatures were identified either from RFCs
utilization and the average number of flows per 5-minutgnd public documents in case of well-documented protocols,
interval. Throughout the paper, flows are defined accordigg by reverse-engineering and empirically deriving a set of
to their 5-tuple, e.g. source and destination IP address, sougiggtinctive bit strings by monitoring both TCP and UDP traffic
and destination port, and protocol. In accordance to previoysing tcpdump [20]. Table Il lists a small subset of such
work [3], a flow is expired if it is idle for 64 seconds. Wesignature (bit) strings for TCP and UDP. The complete list
processed traces with CAIDA's Coral Reef suite [10]. The twef bit strings we used is presented in [7].
Internet locations we use are the following: Once the signatures have been identified, we classify traffic
« Genome campusOur traces GN in table 1) reflect using a modified version of the “cflow” utility of the Coral
traffic of several biology-related facilities. There are threReef suite [10]. Our technique operates on two different time
institutions on-site that employ about 1,000 researchess;ales and traffic granularities. The short time scale operates on
administrators and technical staff. a per packet basis upon each packet arrival. The coarse time
« Residential universityWWe monitor numerous academicscale essentially summarizes the results of the classification
research and residential complexes on-ditd] andUN2 process during the preceding time interval (we use intervals of
traces in table I). Collectively we estimate a user pof minutes throughout the paper) and assists in the identification
ulation of approximately 20,000. The residential naturef flows that potentially have remained unclassified during
of the university reflects traffic covering a wider crosspayload analysis.
section of applications. Both operations make use of aflP, port} pair table

The two sites and time-of-capture of the analyzed tracH¥at contains records of the IP-port pairs that have already
were selected so that our methodology could be tested agalfgn classified based on past flows. Th¢gg port pairs
a variety of different conditions and a diverse set of applic&ssociate a particular IP address and a specific port with a
tions. Indeed, the selected links reflect significantly differe@de reflecting its causal application. ThE®, port table is
network “types”; this difference will become evident in thaipdated upon every successful classification and consulted at
following section where we examine the application mihe end of each time interval for evidence that could lead
of these links. In addition, the two university traces wert® the classification of unknown flows or the correction of
collected both during weekdaysJii1) and also beginning flows mis-classified under the packet level operation. Since
of weekend UN2) to capture possible weekday to weekenthe service reflected at a specific port number for a specific
variation in application usage and network traffic pattern does not change at the time-scales of interest, we use this
Finally, the traces were captured several months apart frél@uristic to reduce processing overhead. To avoid increasing
each other to minimize potential similarities in the offerefieémory requirements by storing an immense numbefiBf
services and client interactions. Such dissimilar traces wdi@rtt pairs, we only keedIP, port pairs that reflect known
intentionally selected to stress test our belief that the proposiivices such as those described in table IIl. Lastly, to further
approach models generic networking characteristics instead@tntify data transfer flows, such as passive ftp, we parse the

link or network idiosyncrasies, ergo being applicable witho@ontrol stream to acquire the context regarding the upcoming
data connection is going to take place.

A. Payload packet traces



TABLE Il

CATEGORIES APPLICATIONS ANALYZED AND THEIR AVERAGE TRAFFIC PERCENTAGES IN FLOW$BYTES).

Category [ Application/protocol [ GN | UNI | UN2 |
web Www 32% (14.0%) | 31.8% (37.5%)] 24.7% (33.5%)
FastTrack, eDonkey2000, BitTorrent, Gnutella
p2p WinMx, OpenNap, Soulseek, Ares, MP2P 0.3% (1.2%) | 25.5% (31.9%)| 18.6% (31.3%)
Dirrect Connect, GoBoogy, Soribada, PeerEnabler
data (ftp) ftp, databases (MySQL) 1.1% (67.4%) 0.3% (7.6%) 0.2% (5.4%)

Network management (NM

dns, netbios, smb, snmp, ntp, spamassasin, GoToM

YRE.5% (0.1%)

9% (0.5%)

9.4% (0.2%)

mail

mail (smtp, pop, imap, identd)

3.1% (3.4%)

1.8% (1.4%)

2.5% (0.9%)

news

news (nntp)

0.1% (4.0%)

0% (0.3%)

0% (0.2%)

chat/irc (chtirc)

IRC, msn messenger, yahoo messenger, AIM

3.7% (0.0%)

1.8% (0.2%)

5.8% (0.7%)

streaming (strm)

mms (wmp), real, quicktime, shoutcast
vbrick streaming, logitech Video IM

0.1% (0.8%)

0.2% (6%)

0.2% (6.8%)

gaming (gam)

HalfLife, Age of Empires, etc.

0.3% (0.1%)

0.3% (0.3%)

Nonpayload

45.3% (2.2%)

24.9% (0.5%)

30.9% (1.0%)

Unknown

1.3% (6.6%)

4.3% (11.9%)

7.3% (16.9%)

. procedure CLASSIFIER
Get pkt and find flow from 5-tuple;
if Is flow classifiedthen
if Is flow classified as HTTRhen
check payload
go to 11:
else
get next packet

Despite the difference in the day of capture and the large
interval between the twdN traces, their traffic mix is roughly
similar. Other interesting observations from these traces are:
« Nonpayloadflows account almost for one third of all
flows in both links! Examination of these flows suggests
that the vast majority corresponds to failed TCP connec-
tions on ports of well-known exploits or worms (e.g.,
135, 445). Large percentage of address space scans is also
implied by the large number of destination IPs especially
in the GN trace.
Unknown flowsThe existence of user payload data does
not guarantee that all flows in our traces will be classified.
Our analysis of the most popular applications cannot
ProcedureClassifierpresents the per-packet operation. The  possibly guarantee identification of all applications con-
procedure simply examines the contents of each packet against tributing traffic to the Internet. For example, 4%-7% of
our array of strings, and classifies the corresponding flow all flows (10% in bytes) of theUN traffic cannot be
with an application-specific tag in case of a match. Successful identified. Note that a fraction of this unknown traffic
classification of a flow on one direction leads to the subsequent is due to experimental traffic fronPlanetLab (three
classification of the respective flow in the reverse direction, if PlanetLabnodes exist behind our monitoring point).
it exists. Previously classified flows are not examined, unless
they have been classified & TP. This further examination IV. TRANSPORT LAYER CLASSIFICATION
allows identification of non-web traffic relayed over HTTP Tpjs section describes our multi-level methodoloByINC,
(e.g., streaming, p2p, web-chat, etc.). Finally if a flow igr the classification of flows into applications without the use
classified, we store th¢IP, port} pair if the port number of the payload or “well-known” port numberBLINC realizes
reflects a well-known service. a rather different philosophy compared to other approaches

At the end of each time interval, we simply compare ajjroposed in the area of traffic classification. The main differ-
flows against our list of knowr{IP, por} pairs, to classify ences are the following:

possible unknown flows or correct misclassifications (€.9., @, \we do not treat each flow as a distinct entity:
p2p flow that was classified underveh because the only ;
packet so far was an HTTP request or response).

else
check payload
if Is there a matchhen
clasify flow
classify reverse direction
store{IP, port}pair
get next packet .

1
2
3
4
5
6
7
8
9:
10:
11
12
13 > where applicable
14
15

instead, we
focus on the source and destination host of these flows.
We advocate that when the focus of the classification
approach is shifted from the flow to the host, then one
can accumulate sufficient information to disambiguate the
roles each host plays in the Internet across different flows,
and thus identify specific applications.

Our approach operates on flow records and requires no
information about the timing or the size of individual
packets. Consequently, the input to our methodology may
potentially be flow record statistics collected by currently
deployed equipment.

Our approach is insensitive to network dynamics such as

C. Application breakdown

We classify flows in eleven distinct application-type cate-
gories. Table Ill lists these categories, the specific applications
and their share of traffic as percentage of the total number ofe
flows and bytes (in parentheses) in the link. Tfenpayload
category includes flows that transfer only headers and no user-
data throughout their lifetime, while thenknowncategory lists
the amount of traffic that could not be classified.

As expected, the two types of networ®N vs UN) appear
significantly different. TheUN network is mostly dominated congestion or path changes, that can potentially affect
by webandp2ptraffic, whereassN contains a large portion of statistical methodologies which rely heavily on inter-
ftp traffic reflecting large data transfers of Genome sequences. arrival times between the packets in a flow.



A. The Overview oBLINC

BLINC operates on flow records. Initially, we parse all flows v 0 —web
and gather host-related information reflecting transport laye \\\
behavior. We then associate the host behavior withoneormor 3 |\ 3.
application types and thus indirectly classify the flows. The =*° S~ | & _
host behavior is studied across three different levels, while th . A . !
final flow classification is the result of the combined analysis %1 108 1¢ 100 10° “10° 100 100 108 10°
of the characteristics inferred at each level: . Number of Destination IPs , Number of Destination IPs
« At the social leve] we capture the behavior of a host ? v
in terms of the number of other hosts it communicates
with, which we refer to apopularity. Intuitively, this 3, 3.
level focuses on the diversity of the interactions of a hos & et
in terms of its destination IPs and the existence of use . .
10 10

communities. As a result, we only need access to th 0 100 100 100 10t 10 100 10" 100 10°
source and destination IP addresses at this level. Number of Destination IPs Number of Destination IPs

« At the functional level we capture the behavior of thery 1 complementary cumulative distribution function of destination IP
host in terms of its functional role in the network, thakddresses per source IP for 15 minutes of thel trace for four different
is, whether it is a provider or consumer of a service, @pplications.

whether it participates in a collaborative communicatio uickly explore the range in the trade-off between aggressive

For example, hosts that use a single source port for t fid conservative classification. A more experienced user will

majorit.y of their interactions are ”"e'Y to be providers o e able to modify each individual threshold through a possible
a service offered on that port. At this level, we analyzg.., friendly interface

characteristics of the source and destination IP address,
and the source port.

« At the application level we capture the transport laye
interactions between hosts with the intent to identify t
application of origin. We first provide a classificationti
using only the 4-tuple (IP addresses and ports), an
then we refine the final classification, by developing
heuristics that exploit additional flow information, such as
the number of packets or bytes transferred as well as tBe Classification at the social level

transport protocol. For each application, we capture hostyye jgentify the social role of each host in two ways. First,
behavior using empirically derived patterns. We represefy focus on itgopularity, namely the number of distinct hosts
these patterns using graphs, which we @iéphles. i communicates with. Second, we deteotnmunitiesf hosts
Having a library of thesegraphles, we then seek for y jgentifying and grouping hosts that interact with the same
a match in the behavior of a host under examination. ¢at of hosts. A community may signify a set of hosts that
We want to stress that throughout our approach, we trgsdrticipate in a collaborative application, or offer a service
the port numbers as indexes without any application-relatesl the same set of hosts. Although social behavior cannot
information. For example, we count the number of distindly itself classify flows into specific applications, it conveys
ports a host uses, but we do not assume in any way that amsiderable information regarding the role of a specific host.
use of port80 signifies web traffic. Examining the social behavior of single hostsThe social
While the preceding levels are presented in order of ilvehavior of a host refers to the number of hosts this particular
creasing detail, they are equally significant. Not only analysi®st communicates with. To examine variations in host so-
at each level will benefit from the knowledge acquired in theial behavior, Fig. 1 presents the complementary cumulative
previous level, but also the final classification of flows intdistribution function (CCDF) of the hogptopularity. Based
applications depends on the unveiled “cross-level” characten payload classification from section Ill, we display four
istics. different CCDFs corresponding to four different types of
A key advantage of the proposed approach is its tunabilityaffic, namelyweh p2p, malware (e.g., failed nonpayload
The strictness of the classification criteria can be tailored to thennections on known malware ports, possible attacks, worms,
goal of the measurement study. These criteria can be relaxdd), andmail. In all cases, the majority of sources appear to
or tightened to achieve the desired balance between loose aachmunicate with a small set of destination IPs.
conservative classification. Thus, the methodology can providein general, the distribution of the hogbpularity cannot
results at different points in the trade off between the loosenesseal specific rules in order to discriminate specific applica-
of the classification versus accuracy. tions, since it is highly dependent upon the type of network,
Selecting the appropriate threshold valuds. order to link or even the specific IPs. However, we can also distinguish
facilitate the use of our tool, we have identified four levelsignificant differences among applications. For example, hosts
of “strictness” in the classification process so that a user carteracting with a large number of other hosts in a short

BLINC provides two types of output. First, it reports aggre-
gate per-class statistics, such as the total number of packets,
flows and bytes. Second, it produces a list of all flows (5-
ple) tagged with the corresponding application for every
e interval. Furthermor@&LINC can detect unknown or non-
nformant hosts and flows, as we will see in Section V.



time period appear to either participate inp2p network we successfully identify communities of gamers. Specifically,
or constitute malicious behavior. In fact, thealware curve, Fig. 3 presents the interaction matrix after the execution of the
appears flat below 100 destination IPs, denoting the presewrcess-association algorithm. The axes present soxrei§)
of a large number of possible address-space scans, whe@nd destinationytaxig IPs @50 total IPs), while the matrix
number of sources has the same number of destination IP®ssentially the original interaction matrix shifted in such a
during a specific time interval. way so that strongly connected components appear clustered
Detecting communities of hostsSocial behavior of hosts in the same area. The horizontal and vertical lines display the
is also expressed through the formation of communities boundaries of the different clusters. Specifically, we observe
clusters between sets of IP addresses. Communities will app@ay major clusters: First, three source IPs communicating with
asbipartite cliquesin our traces, like the one shown in Fig. 2a large number of destination IP addresses although not an
The bipartite graph is a consequence of the single observatexact clique (at the bottom of Fig. 8;axis:0-280 y-axis:347-
point. Interactions between hosts from the same side of tB80). Second, an exact clique of five hosts communicating with
link are not visible, since they do not cross the monitoretie exact same 17 destination IRsais:280-285y-axis300-
link. Communities in our bipartite graph can be either exagtL7).
cliques where a set of source IPs communicates with the exacin general we study three different types of communities,
same set of destination IPs, or approximate cliques wherexgording to their deviation from the definition of the perfect
number of the links what would appear in a perfect clique iique:

missing. « “Perfect” cliques: a hint for malicious flows.While the

previous example displays a perfect clique in gaming
traffic, we find that perfect cligues are mostly signs
of malicious behavior. In our analysis, we identify a
number of IP addresses communicating with the exact
same list of IP addresses (approximately 250 destination
IPs in 15 minutes). Further analysis revealed that these
cases represented malicious traffic, such as flows for the
Windows RPC exploit and Sasser worm.

Fig. 2.  An example of a community in our traces: the graph appears as an® Partial overlap: collaborative communities or common

Destination

Source

approximate bipartite clique. interest groups.In numerous cases, only a moderate
o o L ) ) number of common IP addresses appear in the destination
Identifying the communities is far from trivial, since identi- lists for different source IPs. These cases correspond to

fying maximal cliques in bipartite graphs is an NP-Complete  peer-to-peer sources, gaming and also clients that appear
problem. However, there exist polynomial algorithms for iden- {5 connect to the same services at the same time (e.g.,
tifying the cross-associationg the data mining context [2]. browsing the same web pages, or streaming).
Cross-association is a joint decomposition of a binary matrix, partial overlap within the same domain: service “farms”.
into disjoint row and column groups such that the rectan-  cjoser investigation of partial overlap revealed IP ad-
gular intersections of groups are homogeneous or formally  gresses interacting with a number of addresses within the
approximate a bipartite clique. In our case, this binary matrix  same domain, e.g., addresses that differ only at the least
corresponds to the interaction matrix between the source and gjgnjficant bits. Payload analysis of these IPs revealed that

destination IP addresses in our traces. this behavior is consistent with service “farms”: multi-
Clustered matrix machine servers that load-balance requests of a host to
servers within the same domain. We find that service
50 . “farms” were used to offeweh malil, streaming or even
100 ] dnsservices.
E 150 ] The richness of the information that we discover at this
‘g 200 ] level and the social role of a host is an interesting topic in its
o 250 own sake. However, further analysis of social behavior and its
implications is out of the scope of this work.
300 - Conclusion and Rules: Based on the above analysis,

100 200

Column Clusters

we can infer the following regarding the social behavior of
network hosts. First, IPs within the same domain may offer
Fig. 3. Communities of on-line game players appear as highly connectf#e same service. Thus, identifying a server within the domain
clusters in the interaction matrix after applying the cross-associations algmight be sufficient to classify “neighboring” IPs under the
rithm (5-minutes ofUN1 trace). same service (if they use the same service port). Second, exact
To showcase how communities can provide interestimpmmunities may indicate attacks. Third, partial communities
features of host behavior, we apply the cross associatioray signify p2p or gaming applications. Finally, most IPs
algorithm in gaming traffic for a small time period of oneact as clients having a minimum number of destination IPs.
of our traces (a 5-minute interval of theN1 trace) and Thus, focusing on the identification of the small number of



< p2p

#Ports
#Ports
sN

#Ports
-o‘m
#Ports

#Flows #Flows

Fig. 4. Number of source ports versus humber of flows per source
address in th&JN1 trace for a 15-minute interval for four different

applications. In client-server applications (web,ftp,mail), most points
fall on the diagonal or on horizontal lines for small port numbers in

the y-axis In p2p, points are clustered inside the diagonal.

fall either on the diagonal or on horizontal lines parallel to the
x-axis for small values ofy (less or equal to two). The first
case (where the number of ports is equal to the number of
distinct flows) represents clients that connect to web servers
using as many ephemeral source ports as the connections they
establish. The latter case reflects the actual servers that use
one y = 1, port 80, HTTP) or two § = 2, port 80, HTTP

and 443, HTTPS) source ports for all of their flows.

Typical collaborative behavior: In this case, points are
clustered between theaxisand the diagonal, as shown in the
p2p case in Fig. 4 (top-left) , where we cannot discriminate
client from server hosts.

Obscure client-server behavior: In Fig. 4, we plot the
behavior for the case ahail andftp. While mail andftp fall
under the client-server paradigm, the behavior is not as clear
@s in the web case for two reasons:

The existence of multiple application protocols support-
ing a particular application such asmail. Mail is

supported by a number of application protocols, i.e.,
SMTP, POP, IMAP, IMAP over SSL, etc., each of which

servers can retrospectively pinpoint the clients, and lead to the
classification of a large portion of the traffic, while limiting the
amount of associated overhead. Identification of server hosts

uses a different service port number. Furthermore, mail
servers often connect tRazor[15] databases through
SpamAssassito report spam. This practice generates a

vast number of small flows destined Razor servers,
where the source port is ephemeral and the destination
port reflects the SpamAssassin service. As a result, malil
servers may use a large number of different source ports.
« Applications supporting control and data stregnssich
as ftp. Discriminating client-server behavior is further
complicated in cases of separate control and data streams.
For example, passivélp, where theftp server uses as
source ports a large number of ephemeral ports different

is accomplished through the analysis of the functional role of
the various hosts.

C. Classification at the functional level

At this level, we identify the functional role of a host: hosts
can be primarily offering a service, using services, or both.
Most applications operate with the server-client paradigm.
However, several applications interact in a collaborative way,
with p2pnetworks being the prominent example. Interestingly, . -
class?fy?ng p2p traffic is:qa vepry challenging tzsk, which hgsy than the service port(,21), will conceal the ftp server.
raised a controversy between academic and RIAA studies [8].COnclusion and Rules:If a host uses a small number of
Distinguishing the functional role accurately could provide afPurce Ports, typically less or equal to two, for every flow,
essential step toward accurate p2p traffic estimation. then this hos'g is likely providing a service. Our measurements

We attempt to capture the functional role by using the nurg¥ggest that if a host uses ordye source port number, then

ber of sourceports a particular host uses for communicatiorfis host reflects a web, a chat or a SpamAssassin server in
For example, let us assume that hostprovides a specific €aS€ of TCP, or falls under the Network Management category

service (e.g., web server) and we examine the flows wHereln case of UDP.

appears as a source. Theh,is likely to use a single source

port in the vast majority of its flows. In contrast, £ were D. Classification at the application level

a client to many servers, its source port would vary across|, this jevel, we combine knowledge from the two previous

different flows. Clearly, a host that participates in only one qge|s coupled with transport layer interactions between hosts

few flows would be difficult to classify. in order to identify the application of origin. The basic insight
To quantify how the number of used source ports may seRgmoited by our methodology is that interactions between

rate client versus server behavior, we examine the distributiQBivork hosts display diverse patterns across the various

of the source ports a host uses in our traces. In Fig. 4, Wy jication types. We first provide a classification using only

plot the number of flows (x-axis) versus the number of sourgg, 4-tuple (IP addresses and ports), and then, we refine it

ports (y-axis) each source IP uses for 15 minutes ofWNL \ging further information regarding a specific flow, such as
tracé. Each subplot of Fig. 4 presents traffic from a different e the protocol or the packet size.

a'pp.lication as.identified by payload analysis. We identify three\na model each application by capturing its interactions

d'St'm?t behgwors: i i .. through empirically derived signatures. We visually capture
Typical client-server behavior. Client-server behavior is yeqe signatures usingraphles. A sample of application-

most evident inwebin Fig. 4 (top-right), where most po'ntsspecific graphles is presented in Fig. 5. Eaaraphlet de-
1The source{IP, port} pair is used without loss of generality. ObservationsSCT0es network flow characteristics corresponding to different

are the same in the destinati¢iP, port} case. applications, by capturing the relationship between the use
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Fig. 5. Visual representation of transport-layer interactions for various applications: port numbers are provided for completeness but are not
used in the classification.

o

of source and destination ports, the relative cardinality @i any way a specific port number with an application
the sets of unique destination ports and IPs as well as theThe order of the columns in our visual representation of
magnitude of these sets. Each of tgmphles reflects the eachgraphlet mirrors the steps of our multilevel approach.
“most common” behavior for a particular application. Having @ur starting field, the source IP address, focuses on the
library of thesegraphles, we can classify a host by identifyingbehavior of a particular host. Itsocial behavior is captured
the closest matching behavior. Note that an unknown behavigrthe fanout of the second column which corresponds to all
may match severaraphles. The success of the classificatioriestination IPs this particular source IP communicates with.
will then have to rely on operator-defined thresholds to contrPhe functional role is portrayed by the set of source port
the strictness of the match. Such thresholds are the minimuwmbers. For example, if there is a “knot” at this level the
number of distinct destination IPs observed for a particulgource IP is likely to be a server as mentioned before. Finally,
host, the relative cardinality of the sets of destination IPs aag@plication types are distinguished using the relationship of all
ports, the number of distinct packet sizes observed and foer different fields. Capturing application-specific interactions
number of payload versus nonpayload flows. The role of theigethis manner can distinguish diverse behaviors in a rather
thresholds will become evident during the description of eagfraightforward and intuitive manner as shown in Fig. 5.
graphlet Let us highlight some interesting cases griphles. The

In more detail, eaclgraphlethas four columns correspond-top row of Fig. 5 displays three types of attackgaphles
ing to the 4-tuple source IP, destination IP, source port a(@)(b)(c)). Fig. 5(a) displays a typical attack where a host
destination port. We also show somephles with 5 columns, scans the address space to identify vulnerability at a partic-
where the second column corresponds to the transport protogglr destination port. In such cases, the source host may or
(TCP or UDP) of the flow. Each nodi@resents aistinctentry may not use different source ports, but such attacks can be
to the set represented by the corresponding column, 5., jdentified by the large number of flows destined to a given
in graphlet5(a) is an entry in the set of destination ports. Thgestination port. A similar but slightly more complicated type
lines connecting nodes imply that there exists at least 0geattack common in our traces involves hosts attempting to
flow whose packets contain the specific nodes (field valuegpnnect to several vulnerable ports at the same destination
Dashed lines indicate links that may or may not exist and afgst (Fig. 5(b)). Similarly, we show thgraphlet of typical
not crucial to the identification of the specific application. Notgort scan of a certain destination IP in Fig. 5(c).
that while some of thegraphles display port numbers, the  The power of our method lies in the fact that we do not
classification and the formation gfaphles do not associate peed to know the particular port number ahead of time. The

2We use the term node to indicate the components gnaphlet and the SUTPTising number of flows at the specific port will raise
term host to indicate an end-point in a flow. the suspicion of the network operator. While such behaviors



are also identifiable by tools such a@stoFocus|[5], that

work aims at identifying heavy hitters and not perform traffic /]

classification. | wee Fze
In some cases, hosts offering services on certain port 27

exhibit similar behavior. For instance2p (the server side),

weh and gamesall result in the same type ofraphlet

a single source IP communicates with multiple destination:

# destination Ports
# destination Ports
a
=)

using the same source port (the service port) on severi /

different destination ports. In such cases, we need furthe o

analysis to distinguish between applications. First, we cal f

use quantitative criteria such as the relative cardinality of the 0%, — PRy — o
sets of destination ports versus destination IPs. As we wil # destination IPs 4 destination IPs

describe later in the section, the use of the transport protoq), 6. Relationship between the number of destination IP addresses
TCP versus UDP, can further help to discriminate betweeand ports for specific applications per source IP. The cardinality of

applications with similar or complicatearaphles depicted in the set of destination ports is larger than the one of destination IPs
PP P egfap P reflected in points above the diagonal for web. On the contrary, points

the second and third rows of Fig. 5. _ in the p2p case fall either on top or below the diagonal.
Applications such adtp, streamingor mail present more

complicatedgraphles, exhibiting “cris-cross” flow interac- Network Management traffandgamesand (c) both protocols,
tions (Fig. 5(h)(i)(j)). Thesgraphles have more than servicewhich includesp2p, streaming For example, whilegraphles
ports, or have both source and destination service ports.f@ mail andstreamingappear similar, mail interactions occur
the case offtp, the source host provides the service at tw@nly on top of TCP. Another interesting case is shown in
main ports (control and data channel), whereas other soufdg. 5(k), wherep2p protocols may use both TCP and UDP
ports represent the case mdssive ftp Streamingon the other With a single source port for both transport protocols (e.g.,
hand uses specific port numbers both at the source and @futella Kazaa eDonkeyetc.). With the exception afns our
destination side. Streaming users (destination IPs in our ca@yes suggest that this behavior is unique?2p protocols.
connect at the service port (TCP) of the streaming serverHeuristic 2. Using the cardinality of sets.As discussed
(control channel), while the actual streaming is initiated by trearlier, the relative cardinality of destination sets (ports vs IPs)
server using an ephemeral random source port to connecist@ble to discriminate different behaviors. Such behaviors may
a pre-determined UDP user port. Similariyail uses specific be webversusp2p andchat or Network Managementersus
port numbers at the source and destination side, yet all mg@ming Fig. 6 presents the number of distinct destination IPs
flows are TCP.Mail servers may further use port 25 botrversus the number of distinct destination ports for each source
as source or destination port across different flows whil® in 15 minutes of oudN2trace, forwebandp2p. In theweb
connecting to other mail servers to forward mail. As previousgase, most points concentrate above the diagonal representing
noted, the specific port numbers are only listed to help witarallel connections of mainly simultaneous downloads of web
the description of thesgraphles and they are in no way takenobjects (many destination ports to one destination IP). On the
into consideration in our algorithm. contrary, most points in thp2p case are clustered either close
Lastly, graphles become even more complex when seto the diagonal (the number of destination ports is equal to the
vices are offered through multiple application and/or transpdttmber of destination IPs) or below (which is common for
protocols. As an example, Fig. 5(I) presents a mail servPP p2pcommunications, where the destination port number
supporting IMAP, POP, SMTP, and ident, while also actinig constant for some networks).
as a DNS server. Knowledge of the role of the host may assistieuristic 3. Using the per-flow average packet sizeA
as corroborative evidence on other services offered by thember of applications displays unique behavior regarding
same host. For instance identifying a host as an SMTP serpétterns of transfer of packet sizes. For instance, the majority
suggests that the same host may be offering POP, IMAP, DREgaming malwareor SpamAssassin flows are characterized
(over UDP) or even communicate with SpamAssassin servedy. a series of packets of constant size. Thus, constant packet
size can discriminate certain applications. Note that it is not
the actual size that is the distinctive feature, but instead the
fact that packets have the same size across all flows; in other
Here, we present a set of final heuristics that we use wwrds, we simply need to examine whether the average packet
refine our classification and discriminate complex or similaize per flow (e.g. the fraction of total bytes over the number
cases ofgraphles. This set of heuristics have been derivedf packets) remains constant across flows.
empirically through inspection of interactions present in vari- Heuristic 4. Community heuristic. As discussed in the
ous applications in our traces. social behavior of network hosts, communities offer significant
Heuristic 1. Using the transport layer protocol. One knowledge regarding interacting hosts. Thus, examining IP ad-
criterion for such a distinction is the transport layer protocaresses within a domain may facilitate classification for certain
used by the flow. The protocol information can distinguishpplications. We apply the community heuristic to identify
similar graphles into three groups using: (&)CP, which “farms” of services by examining whether ‘neighboring” IPs
includesp2p, weh chat, ftp andmail, (b) UDP, which includes exhibit server behavior at the source port under question.

E. Heuristics
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Heuristic 5. Recursive detection.Hosts offering specific
types of services can be recursively identified by the inter sof
actions among them (variation of the community heuristic).
For examplemail or dns servers communicate with other
such servers and use the same service port both as soul
or destination port across different flows. Also, SpamAssassi

Percentage of flows
a
o

servers should only communicate with mail servers. 20f
Heuristic 6. Nonpayloadflows. Nonpayload or failed flows o A i
usually point to attacks or evep2p networks (clients often
[ JAccuracy

try to connect to IPs that have disconnected from pi2p

network). The magnitude of failed flows can hint toward typ(%ag(.:;s-Accuracy and completeness of all classified flows in the three

FolUN traces more than 90% of the flows are classified with

of applications. aprroximately 95% accuracy. I8N trace, we classify approximately
80% of the flows with 99% accuracy.
V. CLASSIFICATION RESULTS UNL UNL

Here, we demonstrate the performance of our approac o !
when applied to the traces described in section Ill. Overall oo "/ p\m‘f 6t Payload
we find thatBLINC is very successful at classifying accurately BLINC Mﬁ
the majority of the flows in all our traces. g «oofl aocurste [ |

We use two metrics to evaluate the success of the classific. < g
tion method. Theompletenessneasures the percentage of the § . g
traffic classified by our approach. In more detail, completenes 50
is defined as the ratio of the number of classified flows (bytes
by BLINC over the total number of flows (bytes) indicated 100
by payload analysis. Thaccuracy measures the percentage
of the classified traffic byBLINC that is correctly labeled. In 850 0010 osa0 1700 1850 0010 0840 17:00
other words, accuracy captures the probability that a classifie Time Time

flow belongs to the class (according to payload) BBRtNC Fig. 8. Accuracy and completeness BEINC in UN1 trace in time

indicates. Note that both these metrics are defined for a gi-min intervals). The top line presents flows (bytes) classified by
. . . . . . the payload, the middle lines flows (bytes) classifiedBhyNC, and
time interval, which could be either in the time-scales Qhe hottom lines present flows (bytes) classified correct\BbNC.

minutes or the whole trace, and can be applied for eathe three lines coincide visually indicating high completeness and
application class separately or for all traffic as a whole. ~ &ccuracy.

The challenge for any method is to maximize both metric - o . . o
which however exhibit a trade-off relationship. The number o%tlaSSIfles more than 90% of the flows with approximately 95%

) e - . accuracy. For thésN trace, BLINC classifies approximately
misclassifications will increase depending on how aggressi¥So, fows with 99% accuracy,

BLINC is in its classification criteria. These criteria refer to the . i o

. . : . BLINC closely follows traffic variation and patterns in time.
thresholds thaBLINC uses to identify a behavior. Dependlngl_o stress test our approach, we examine the classification
on the purpose of the measurement study, the aggressivenes PP !

can be tuned accordinaly. We examine the sensitivity of OBer?ormance across small time intervals in time. In Fig. 8, we
gl . y p[ot flows (left) and bytes (right) classified wiBLINC versus
approach to the aggressiveness in V-B.

We use the pavioad classification as a reference Oth{a payload classifier, computed over 5-minute intervals for
(section Ill) to e\f)aIZateBLINC’s erformance. Given that tﬁe{ﬂe UN1 dataset. The top line presents all classified flows as
- Y-S pert C identified by the payload classifier, the middle line represents
payload classifier has no information to classnfgnpayload_ ﬂﬁws classified byBLINC, and the bottom line represents
flows, such flows need to be excluded from the compansaows classified correctly witBLINC. The performance seems

Eo level th"e field. Furthgr, we have no way .Of characterizin nsistently robust over time. In terms of bytes, completeness
unknown” flows according to payload analysis. Consequentyanges from 70%-85% for the)N traces and 95% for the

h I f traffi I INC f h . . .
the total amount of traffic used to evaluB&INC for eac GN trace with more than 90% accuracy. It is interesting to

tr not incl npayl nd unknown rdin . :
ace, does not inc uan P yqada d unknown(according note that the difference betwe®&bLINC and payload in terms
to payload) flows, which are discussed separately at the e .
ytes is due to a small number of large volume flows. In

of this section. It is interesting to note that our approac(lﬁ L
AR '5 ese flows, both source and destination hosts do not present
outperforms the payload classification in some cases. For.. . .
. . sufficient number of flows in the whole trace and thus cannot
example, BLINC is able to characterizeonpayloadflows o : . o
e be classified wittBLINC without compromising the accuracy.
where payload analysis fails. . L .
High per-application accuracyrig. 9 presents the accuracy
and completeness for each of the four dominant applications
A. Overall completeness and accuracy of each trace, collectively representing more than 90% of
BLINC classifies the majority of the traffic with highall the flows classified under payload analysis. In all cases,
accuracy.In Fig. 7, we plot the completeness and accura@ccuracy is approximately 80% or more and completeness in

for the entire duration of each trace. In tb&l traces BLINC most cases exceeds 80%. Note that per-class accuracy and
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i L Fig. 11. Histogram of destination ports for flows classified under
Fig. 9. Completeness and accuracy per application type. For_eaeﬁg\jress space scans fGN and UN2 traces.BLINC successfully
trace, we show the four most dominant applications, which contribuigscriminates major address space scans at ports of “well-known”
more than 90% of the flows. W:web, P:p2p, FT:ftp, M:mail, CH:chatyorms or exploits.

NM: network management. L

100 — - detect within a class of thousands of flows, whereas unknown
1 flows can potentially be examined separately by the operator

by using additional external information such B&INC's

social and functional role reports, or application specifications

and consultations with other operators.
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C. Characterizing nonpayload and unknown flows

‘ ‘ ‘ ‘ In some cases, our approach goes beyond the capabilities
Feme=® PZ“’ Ardas of the payload classification. Although we unavoidably use
hesuney payload analysis as benchmark, payload classification fails in
Fig. 10. Trade-off of accuracy versus completenessd@p and the two cases: a) it cannot characterize nonpayload flows (zero
total number of flows. Decreasing the number of samples requiredggyload packets), and b) declares flows uaknownwhen
detectp2p behavior increases completeness but decreases accura[%y reflect protocols which are not analyzed a priori. In

completeness depends on the total amount of traffic in eak@ntrastBLINC does not depend on the existence of payload.
class. For examplayebrelated metrics always exceed 90% inf herefore,BLINC has the ability to uncover transport layer

UN traces sincevebis approximate|y one third of all traffic. behavior that may potentially allow for the classification of
In GN whereweb is approximately 15% of the total bytes,flows originating from previously unknown applications that

completeness is approximately 70% (99% accuracy). fall under ourgraphlet modeled types (such as a nepp
protocol).

i . Nonpayload flows: The multilevel analysis ofBLINC

B. Fine-tuningBLINC highlighted that the vast majority of nonpayload flows were

The trade-off between accuracy and completeness diredllye to IP address scans and port scans. Specifically, using
relates to the “strictness” of the classification criteria as whe attackgraphles (fig. 5 (a),(b),(c)),BLINC successfully
saw in section IV. Here we study the effect of one of thilentified port scans corresponding to various worms and
thresholds we use in our approach. In classifying a host agxploits. Fig. 11 presents the histogram of destination ports in
p2p candidate, we require that the host participates in flowlse flows that were classified as address space scans for two
with at leastT, distinct destination IPs. Setting,; to a low different traces. Inspecting the peaks of this histogram shows
value will increase completeness sinBEINC will classify that BLINC successfully identified destination ports of well-
more hosts and their flows g2p. However, the accuracy of known worms or exploits, some of which are highlighted in
the classification will decrease. the plot for visualization purposes. In tot8LINC classified

In Figure 10, we plot the accuracy and completeness fapproximately 26M flows as address space scans irJdig
p2p flows (left columns) and the total number of classifiettace. In addition, we classified approximately 100K flows as
flows (right columns) for two different values @f;: 7; = 1 port scanning on 90 IP addresses in the same trace. Note that
and7; = 4. We observe that by reducing the threshold, thee did not need to use the port number of the exploits or
fraction of classified flows increases, whereas the fraction afiy other external information. On the contrary, usBigNC
correctly identified flows drops from 99% to 82%. Note thatelped us identify the vulnerable ports by showing ports with
the total accuracy is also affected (as previously “unknownihusually high traffic targeted at many different destinations
flows are now (mis)classified) but the decrease for totHbs. However, we would like to stress here that our approach
accuracy is much smaller than in tp2p case dropping from cannot in any way replace IDS systems suctSBKORT[19]
approximately 98% to 93%. In all previous examples, we haeg Bro [1]. BLINC can only provide hints toward malicious
used a value of; = 4 opting for accuracy. behavior by detecting destination ports with high activity of

This flexibility is a key advantage of our approach. Wéailed flows.
claim that, for a network operator, it may be more beneficial Unknown applications: BLINC has the ability to identify
if BLINC opts for accuracy. Misclassified flows are harder tpreviously “unknown” protocols and applications, since it
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captures the basic behavior of the general application typethergraphles with which they may “compete” for the same
Indeed, during our analysiBLINC identified a newp2p hosts. In case the negraphletis unique, attention needs to
protocol (classified as unknown with payload analysis) runnirzg paid regarding its position in the matching order. If the new
on thePlanetLabnetwork (threePlanetLabnodes are behind graphlet presents significant similarities with othgraphles,

our monitoring point). Thip2p application corresponded tothen the order must be carefully examined and potentially
thePastryproject [14], which we identified after inspecting theadditional distinguishing features need to be derived.

payload, while we were examining our false positiv@sINC Currently, our implementation dLINC utilizes three spe-
also identified a large number of gaming flows which wereal purpose data structures that capture the diverse application
classified as unknown by the payload. Again, these flows wdyehavior across thgraphles in the library. The mapping
found when examining packet payload after being classifiattjorithm then goes through each flow and maps it to the appli-

under the games category. cation which corresponds to tiggaphletthat best matches the
profile of a flow’s source or destination host. To avoid breaking
VI. DISCUSSION the flow of the paper, we present a description of the three

ImplementingBLINC is not as straightforward as the pre_structures used in the appendix along with the pseudocode

sentation may have let us believe. We present the implem&fidt performs the actual mapping of flows into applications.

tation challenges and issues and discB&$NC's properties _ Computational — Performance. Our first version of
and limitations. BLINC shows great promise in terms of computational effi-

ciency. Despite the fact that the currédt+ implementation
has hardly been optimizedBLINC classified our largest
and longest 34-hour) UN2 trace in less tha® hours (flow
We would like to highlight two major functions of thetables were computed over 5 minute intervals); processing
implementation: (a) the generation gfaphles, and (b) the took place on a DELL PE2850 with a Xeon 3.4GHz processor
matching process of an unclassified host againsgthphles. and 2GB of memory, of which maximum memory usage did
The first function can be executed once in the beginning not surpass 40%. ConsequentBi.INC appears sufficiently
periodically in an off-line fashion. Ideally, the second functiowfficient to allow for a real-time implementation alongside
should be sufficiently fast in order to enable the real-timeurrently available flow collectors.
monitoring of a network. This way, the processing of the
data for a given time interval should complete before the data
for the next interval becomes available. As we will see our’
implementation is sufficiently fast for this purpose. Classifying traffic “in the dark” has several limitations. Note
A. Creating thegraphles. In developing thegraphles, we that many of those limitations are not specific to our approach,
used all possible means available: empirical observations, thwit are inherent to the problem and its constraints.
and error, and hunches. An automated way of defining new BLINC cannot identify specific application sub-typ&3ur
graphles is an interesting and challenging problem that kechnique is capable of identifying the type of an application
left for future work. In our experience, we typically followedbut may not be able to identify distinct applications. For in-
the steps below for creating the majority of agnaphles: (i) stance, we can identifg2pflows, but it is unlikely that we can
detection of the existence of a new application (which couldentify the specifig2p protocol (e.geMuleversusGnutellg)
be triggered from unusual amounts of unknown traffic), (ilvith packet header information alone. Naturally, this limitation
manual identification of the hosts involved in the unknownould be easily addressed, if we have additional information,
activity, (iii) derivation of thegraphletaccording to the inter- such as the specifications of the different protocols, or in case
actions observed, and (iv) verification using human supervisioh distinctive behavior at the transport layer. We believe that
and partiallyBLINC. for many types of studies and network management functions,
B. The matching process among differegraphles. The this finer classification may not be needed. For example, the
general idea here is to examine the unknown host agaidgéterent instances of the same application type may impose
all graphles and determine the best match. The approach Wee same requirements on the network infrastructure.
follow uses a carefully selected order of tgeaphles from Encrypted transport layer header®ur entire approach is
more specific to more general. This way, once a match is fouhdsed on relationships among the fields of the packet header.
the host is classified, and the matching process is stopped. T®@sequently, our technique has the ability to characterize
ordered approach increases the speed of the matching proesssypted traffic as long as, the encryption is limited to the
compared to examining all possibigaphles every time. transport layer payload. Should layer-3 packet headers be also
Extensibility: adding nevgraphles. As mentioned in previ- encrypted, our methodology cannot function. However, this is
ous sectionsBLINC is extensible by design. In fact, this wasprobably true for most classification methods.
an exercise we had to go through ourselves in our attempt tdHandling NATs:Note thatBLINC may require some mod-
developgraphles to capture the majority of the applicationsfication to classify flows that go through Network Address
in our traces. The addition of graphlet requires careful Translators (NATs). Some classification may be possible, since
consideration. Before the insertion of the negraphletin our method examines the behavior{®P, portpairs, and thus
the library, one needs find to the right place in the ordelifferent flows sourcing behind the NAT will be discriminated
and eliminate race conditions between the rgraphletand through the port number. However, we have not results to argue

A. Implementation issues

Limitations
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one way or the other, since we have not encountered (or fu# A. Moore, J. Hall, C. Kreibich, E. Harris, and I. Pratt. Architecture of

identified) any flows that pass through NATSs in our traces. a Network Monitor. InPAM, 2003. .
[13] A. Moore and K. Papagiannaki. Toward the Accurate Identification of

Network Applications. InPAM, March 2005.
VII. CONCLUSIONS [14] Pastry. http://research.microsoft.comantr/Pastry/

Wi h with sianifi v diff hil 15] Razor. http:/irazor.sourceforge.net/

e propose an approach with significantly different philogie) m. Roughan, S. Sen, 0. Spatscheck, and N. Duffield. Class-of-Service

ophy than the existing traffic classification efforts. The first = Mapping for QoS: A Statistical Signature-based Approach to IP Traffic

novelty of the approach is that we classify hosts by capturing, ~Classification. IPACM/SIGCOMM IMG November 2004.

he fund tal patterns of their behavior at the trans E%] S. Sen, O. Spatscheck, and D. Wang. Accurate, Scalable In-Network

the fundamen p S ! vi ) p 't ldentification of P2P Traffic Using Application Signatures. WWW

layer. The second novel property of our approach is that it 2004. _ .

defines and operates at three levels of host behavior: (i) {h& S: Sen and J. Wang. Analyzing Peer-to-Peer Traffic Across Large
. - . o Networks. INACM/SIGCOMM IMW 2002.

social level, (i) the functional level, and (iii) the application g sNORT. htp:/iwww.snort.org/

level of network behavior. In addition, our approach can Heo] tcpdump. http:/mww.tcpdump.org/.

tuned to strike the desired point of balance in the trade off

betweenthe percentage of classified traffaed theaccuracy APPENDIX
We develop a_systematlc method to |mpl_ement our app_“?aC*bur BLINC implementation relies on three data structures,
and we apply it on three real traces with very promisinga. o discussion in Section VI. Structure 1 captures the
results. 3 _ behavior of thegraphles in Fig. 5(d)(€)(f)(g)(K)(l), which
« BLINC classifies approximately 80%-90% of the totals populated by the majority of the traffic. Structure 2 fo-
number of flows in each trace with 95% accuracy.  cyses on failed connections, i.e. connections without any
« BLINC classifies correctly more than 80% of the flows ofiser data, to model attack traffic using theaphles in Fig.
each dominant application in our traces with an accuragya)(b)(c). Lastly, the complicated “cris-cross” interactions in

of 80% or more. the graphles of Fig. 5(h)(i)(j) are captured using Structure 3.

« A key advantage oBLINC is that it can identify mali-  A|| three structures consist of dictionaries (maps) of sets.
cious behavior or new applications without having an #he first level of each structure is a dictionary of all IPs in
priori knowledge or port specific information. our traces, capturing the behavior of a source or a destination

Practical impact.We see our method as a flexible tool thahost (if the flow statistics are collected for bidirectional traffic,
can provide useful information for research or operationgle can simply look at source IPs). For each flow a specific
purposes. Our approach provides the first step in obtainifR participates in, structure 1 is updated by following the
some understanding of a data trace even without having aippropriate path through the protocol (TCP/UDP) and source
preconceived notions of what we expect to find (akin to seargbert dictionaries as indicated by the 5-tuple of the flow. At
ing in the dark). Finally, with our approach, we can identifyhe last level (source port), we insert values for the sets
“peculiar” behaviors of new and unknown applications.  corresponding to destination IP, destination port, number of

The grand visionWe envision our approach as a novel wapackets in the flow, average packet size, (i.e. bytes/packets).
to address the problem of traffic classification. By focusing a®tructure 1 isnot updated for failed flows, which populate
the fundamental communication behavior, we believe that o8tructure 2.
approach can transcend specific technical specifications and

become a method that can be applied in an evolving network srePort [ {dstIPs}, {dstPorts},
with dynamic application behavior. TCoP . {#pkts}, {avgpktsize}
P srcP;orts @
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as non-attack traffic. Note that the structure is more efficiesaturation (note that we are dealing with millions{&®, port}
to detect address space scans than port scans, since adgiss) and speeds up processing.

scans appear more often in our traces.

dstPort; [ {dstIPs}, int #not_failed

1P .
dstPortp

To avoid processing of already classified servers or known
{IP, port} pairs, at the end of each iteration, we perform
two different actions: First, if our classification agrees with
@ the observed port number (for known services) we store the
specific {IP, port} pair in a list with known pairs. Hence,

o ., ~ flows containing known pairs in successive intervals will
Structure 3 capturegraphles with “cris-cross” behavior pe aytomatically classified. Second, we apply theursive
(mail, ftp, streaming. The structure stores interactions begetectionheuristic. The heuristic moves into the known list:
tween source and destination IPs that communicate with MQYR{IP, port} pairs that talk to SpamAssassin serversai)

than one flows at different source and different destinati

4) the destinatior{IP, port} pair of amail server when this

ports. More specifically, for a flow to update the structurgail server is the source IP and its service port appears as the

the following must be true: the source paibes notexist

destination port (anail server that connected to anotheail

in the srcPorts setnd the de_s'Fination pordogs n_otexist in_ server), c) similarly, the destinatiofiP, port pair of dns (or
the dstPorts set for the specific source-destination IP pair. §1) server when its service port appears as the destination
a result,webinteractions will be excluded from this structur@zrt and (d){IP, ports pairs communicating with known

since one of the ports (source or destination) will constan
be unique (and possibly equal 89). Note that this structure
is an approximation of the “cris-crosgiraphles.

mingclassified{IP, port} pairs.
For completeness purposes, we provide the pseudocode for
the mapping stage d@LINC below.

dst1 Py [ {srcPorts}, {dstPorts}, { Proto}
1P . ®) 1
dstIPp 2:
4.
In order to find the specific application from structure 3, 5:
we examine for each source IP, the histograms of two list®:
that result from the union of a) thercPorts sets across all g:
destination IPqsrcPortsLis} and b) thedstPortssets across 9:
all destination IPsdstPortLis). These histograms will reveal 10
source or destination ports that are commonly used for thg,:
specific IP when communicating with more than one flows witts:
the same destination IPs at different source and destinatioyf
ports If ports are used in a random fashion, the histogramg:
will have no peaks. Then, the following are true according to

. 17:
our graphles: 18

« If there exists one or more peaks at tsecPortsLisj and 19
one peak at thedstPortsLisf and only TCP is used for ggf
the peak ports, the IP is mail server. 20

« If there exists one peak at ther¢PortsLisj and one peak
at the @IstPortsLis} and both TCP and UDP are used forgif
the peak ports, the IP is streamingserver. 25

« If there exist two peaks at thar€PortsLisj and no peak 26:
at the @stPortsList and only TCP is used for the peak ggf

ports, the IP is aritp server. 29

Once the structures are populated after a first pass throug?j
the flow table, we simply traverse through all the rules andy:
heuristics starting from the less to the more specific. Notices:
that while our methodology does not incorporate timing in &%
direct way, it is incorporated indirectly by the time-granularity

at which the flow table is formed. All our structures may stores:
information acquired during several time intervals. Howeveg’:
all entries of our structures are coupled with a timer valugg.
which indicates the last time they were active, i.e., the lagb:

procedure BLINC_FLOW_MAPPING

FT— Flow Table
for all flows in FT do
checkattack
if foundthen get next flow;
checkmultiple_flows
if found then get next flow;
for all entries in structure 1do
if IP is serverthen
if Is protocol TCPthen
checkfanoutheuristic.
if dstPorts.size<= dstlps.sizethen
return chat; get next flow;
else ifdstPorts.size> dstlps.sizethen
checkpacketsize heuristic
if pkts across flows constant AND
dstPorts.size >dstlps.sizethen
return SpamAs; get next flow;
else
return web; get next flow;

> structure 2

> struct3, ftp/mail/streaming

> (uses one port)

else
return NM; get next flow;
if IP uses same source port for TCP and UDP and not port
53 then
return P2P; get next flow;
for each srcporto
checkcommunityheuristic.
if found then get next flow;
checkcardinality heuristic.
if dstPorts.size== dstlps.sizethen
return P2P; get next flow;
else ifdstPorts.size> dstlps.sizehen
if Is protocol TCPthen
return web; get next flow;
else
checkpacketsize heuristic
if pkt size across flows constant AND dst-
Ports.size>> dstlps.sizethen
return game; get next flow;
else
return NM; get next flow;

End For > Src port
End For > entry in struct 1
End For > FT

time the corresponding fields were seen in a flow. Entrie&l:
inactive for large time intervals (sufficiently larger than the

time corresponding to an iteration) are deleted from our
structures. Deleting inactive entries both prevents memory



