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Abstract— We present a fundamentally different approach
to classifying traffic flows according to the applications that
generate them. In contrast to previous methods, our approach
is based on observing and identifying patterns of host behavior
at the transport layer. We analyze these patterns at three levels
of increasing detail (i) the social, (ii) the functional and (iii)
the application level. This multilevel approach of looking at
traffic flow is probably the most important contribution of this
paper. Furthermore, our approach has two important features.
First, it operates in the dark, having (a) no access to packet
payload, (b) no knowledge of port numbers and (c) no additional
information other than what current flow collectors provide.
These restrictions respect privacy, technological and practical
constraints. Second, it can be tuned to balance the accuracy
of the classification versus the number of successfully classified
traffic flows. We demonstrate the effectiveness of our approach
on three real traces. Our results show that we are able to classify
80%-90% of the traffic with more than 95% accuracy.

I. I NTRODUCTION

In this work, we address the problem of traffic flow clas-
sification according to the generating application. Identifying
which application is creating each flow is important for: (a)
effective network planning and design, and (b) monitoring the
trends of the applications. Despite the importance of traffic
classification, an accurate method that can reliably address this
problem is still to be developed. The ultimate goal is to provide
a tool to a network operator which will provide a meaningful
classification per-application, and if this is infeasible, with
useful insight into the traffic behavior. The latter may facilitate
detection of abnormalities in the traffic, malicious behavior or
identification of novel applications.

Currently, application classification practices rely to a large
extent on the use of transport-layer port numbers. While
this practice may have been effective in the early days of
the Internet, currently port numbers only provide limited
information. Often, applications and users are not cooperative
and intentionally or not use inconsistent ports. Thus, “reliable”
traffic classification requires the packet-payload examination,
which scarcely is an option due to: (a) hardware and com-
plexity limitations, (b) privacy and legal issues, (c) payload
encryption by the applications.

Taking into account empirical application trends [8], [18]
and the increasing use of encryption, we conjecture that traffic
classifiers of the future will need to classify traffic “in the
dark”. In other words, we need to address the traffic classifi-
cation problem with the following constraints: (i) no access to
user payload is possible, (ii) well-known port numbers cannot
be assumed to indicate the application reliably, and (iii) we can

only use the information that current flow collectors provide.
Clearly, there may be cases where these constraints may not
apply, which would make the classification easier. However,
we would like to develop an approach that would be applicable
and deployable in most practical settings.

Recently, some novel approaches treat the problem of
application classification as a statistical problem. These ap-
proaches develop discriminating criteria based on statistical
observations and distributions of various flow properties in
the packet traces. Typically, such discriminating criteria refer
to the packet size distribution per flow, the inter arrival times
between packets etc. However, for the most part, these methods
do not exploit network-related properties and characteristics,
that we believe contain a lot of valuable information. In addi-
tion, the validation of a classification method is a challenge.
The effectiveness of most of the current approaches has not
been validated in a large scale, since there does not exist a
reference point or a benchmark trace with known application
consistency.

In this work, we propose a novel approach for the flow
classification problem as defined above, which we callBLINd
Classification or BLINC for short. The novelty of our ap-
proach is twofold. First, we shift the focus from classifying
individual flows to associating Internet hosts with applications,
and then classifying their flows accordingly. We argue that
observing the activity of a host provides more information and
can reveal the nature of the applications of the host. Second,
BLINC follows a different philosophy from previous methods
attempting to capture the inherent behavior of a host at three
different levels: (a) social level, (b) network level, and (c) the
application level.

Combining these two key novelties, we classify the behavior
of hostsat three different levels.
• At the social level, we capture the behavior of a host in

terms of the hosts that it communicates with. First, we
examine the popularity of a host in terms of the number
of interactions with other hosts. Second, we identify
communities of nodes, which may correspond to clients
with similar interests or members of a collaborative
application.

• At the functional level, we capture the behavior of the
host in terms of its functional role in the network, namely
whether it acts as a provider or consumer of a service, or
both, in case of a collaborative application. For example,
hosts that use a single port for the majority of their
interactions with other hosts are likely to be providers
of the service offered on that port.
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• At the application level, we capture the transport layer
interactions between particular hosts on specific ports
with the intent to identify the application of origin. First,
we provide a classification using only 4 tuples (source
address, destination address, source port, and destination
port). Then, we refine the classification further by ex-
ploiting other flow characteristics such as the transport
protocol or the average packet size.

Tunability. A key feature of our methodology is that it can
provide results at various levels of detail and accuracy. First,
we have the three previous levels of the classification. Second,
the classification criteria are controlled by thresholds, which
can be relaxed or tightened to achieve the desired balance
between a loose and a conservative classification. The level of
accuracy and detail can be chosen according to: (a) the goal of
the study, and (b) the amount of exogenous information (e.g.
application specifications).

The highlights of our work can be summarized in the
following points:

• Developing a classification benchmark.We provide a
comparison benchmark for flow classification. We collect
full payload packet traces, and we develop a payload clas-
sification methodology. While this methodology could be
of independent interest, we use it here to evaluateBLINC,
which is the focus of this work.

• Identifying patterns of behavior.We identify “signature”
communication patterns, which can help us identify the
applications that a host is engaged in. Using these pat-
terns, we develop a systematic methodology to implement
our multilevel approach.

• Highly accurate classification.We successfully apply our
approach to several real traces. Our approach manages to
classify successfully 80%-90% of the total traffic with
more than 95% accuracy.

• Detecting the “unknown”.We show how our approach
can help us detect: (a) unknown applications, such as
a new p2p protocol, and (b) malicious flows, which
emerge as deviations from the expected behavior. Note
that these cases cannot be identified by payload or port-
based analysis.

Our work in perspective.To the best of our knowledge,
this is the first work to advocate the shift from characterizing
flows by application to associating hosts with applications.
Our methodology is a first attempt at exploring the benefits
and limitations of such an approach. Given the quality of our
results, we feel that our approach shows great promise and
opens interesting new directions for future research.

The remainder of the paper is structured as follows. In
Section II, we motivate the problem and describe related work.
In Section III, we present our payload-based classification
technique.BLINC is presented in Section IV and its perfor-
mance results are shown in Section V. Section VI discusses
implementation details, limitations and future extensions to
BLINC. Finally, section VII concludes our paper.

II. BACKGROUND

Analysis of the application traffic mix has always been one
of the major interests for network operators. Collection of
traffic statistics is currently performed either by flow monitors,
such as Cisco NetFlow, or by sophisticated network monitor-
ing equipment, that captures one record for each (sampled)
packet seen on a link. The former produces a list of flow
records capturing the number of bytes and packets seen, while
the latter produces a list of packet records that can also be
aggregated into 5-tuple flows (e.g. with the same source,
destination IP address, source, destination port, and protocol).
The subsequent mapping of flows, however, to application
classes is not as straightforward and has recently attracted
attention in the research community.

While port numbers were always an approximate yet suf-
ficient methodology to classify traffic, port-based estimates
are currently significantly misleading due to the increase of
applications tunneled through HTTP (e.g., web, chat, stream-
ing, etc), the constant emergence of new protocols and the
domination of p2p networking. Indeed, studies have confirmed
the failure of port-based classification [13].

To address the inefficiency of port-based classification,
recent studies have employed statistical classification tech-
niques to probabilistically assign flows to classes, e.g machine
learning [11] or statistical clustering [16]. In such approaches,
flows are grouped in a predetermined number of clusters
according to a set of discriminants, that usually includes the
average packet size of a flow, the average flow duration,
and the inter-arrival times between packets (or the variability
thereof). Studies have also examined how the exact timing and
sequence of packet sizes can describe specific applications in
the slightly different context of generating realistic application
workloads [6].

One of the most challenging application types is the one
for peer-to-peer traffic. Quantifyingp2p traffic is problematic
both due to the large number of proprietaryp2pprotocols, but
also because of the intentional use of random port numbers
for communication. Payload-based classification approaches
tailored top2p traffic have been presented in [17], [9], while
identification ofp2p traffic through transport layer character-
istics is proposed in [8]. In the same spirit [4] looks into
the problem of identifying and characterizingchat traffic.
Our work goes beyond previous efforts aiming at classifying
most of the applications that generate the majority of today’s
Internet traffic.

III. PAYLOAD -BASED CLASSIFICATION

This section describes our payload classifier and establishes
a comparison reference point. Our data feature the unique
property of allowing for accurate classification; our monitors
capture thefull payload of each packet instead of just the
header as is commonly the case. Thus, we can move beyond
simple port-based application classification and establish a
comparison benchmark. To achieve efficient payload classi-
fication, we develop a signature-matching classifier able to
classify the majority of current Internet traffic.
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TABLE I

GENERAL WORKLOAD DIMENSIONS OF OUR TRACES.

Set Date Day Start Dur Direc. Src.IP Dst.IP Packets Bytes Aver.Util. Aver. Flows.

GN 2003-08-19Tue 17:20 43.9 h Bi-dir. 1455 K 14869 K 1000M 495 G 25 Mbps 105 K
UN1 2004-01-20Tue 16:50 24.6 h Bi-dir. 2709 K 2626 K 2308 M 1223 G 110.5 Mbps 596 K
UN2 2004-04-23Fri 15:40 33.6 h Bi-dir. 4502 K 5742 K 3402 M 1652 G 109.4 Mbps 570 K

TABLE II

APPLICATION SPECIFIC BIT-STRINGS AT THE BEGINNING OF THE

PAYLOAD .“0X” IMPLIES HEX CHARACTERS.

Application String Trans. prot.

eDonkey2000 0xe319010000 TCP/UDP
MSN messenger “PNG”0x0d0a TCP

IRC “USERHOST” TCP
nntp “ARTICLE” TCP
ssh “SSH” TCP

A. Payload packet traces

We use packet traces collected using a high speed moni-
toring box [12] installed on the Internet link of two access
networks. We capture every packet seen on each direction of
the link along with itsfull payload.

Table I lists general workload dimensions of our data
sets: counts of distinct source and destination IP addresses,
the numbers of packets, and bytes observed, the average
utilization and the average number of flows per 5-minute
interval. Throughout the paper, flows are defined according
to their 5-tuple, e.g. source and destination IP address, source
and destination port, and protocol. In accordance to previous
work [3], a flow is expired if it is idle for 64 seconds. We
processed traces with CAIDA’s Coral Reef suite [10]. The two
Internet locations we use are the following:

• Genome campus: Our traces (GN in table I) reflect
traffic of several biology-related facilities. There are three
institutions on-site that employ about 1,000 researchers,
administrators and technical staff.

• Residential university: We monitor numerous academic,
research and residential complexes on-site (UN1andUN2
traces in table I). Collectively we estimate a user pop-
ulation of approximately 20,000. The residential nature
of the university reflects traffic covering a wider cross-
section of applications.

The two sites and time-of-capture of the analyzed traces
were selected so that our methodology could be tested against
a variety of different conditions and a diverse set of applica-
tions. Indeed, the selected links reflect significantly different
network “types”; this difference will become evident in the
following section where we examine the application mix
of these links. In addition, the two university traces were
collected both during weekdays (UN1) and also beginning
of weekend (UN2) to capture possible weekday to weekend
variation in application usage and network traffic patterns.
Finally, the traces were captured several months apart from
each other to minimize potential similarities in the offered
services and client interactions. Such dissimilar traces were
intentionally selected to stress test our belief that the proposed
approach models generic networking characteristics instead of
link or network idiosyncrasies, ergo being applicable without
requiring previous training in any type of network.

B. Payload classification

Even with access to full packet payload, classification of
traffic is far from trivial. The main complication lies in the fact
that payload classification of traffic requiresa priori knowl-
edge of application protocol signatures, protocol interactions
and packet formats. While some of the analyzed applications
are well-known and documented in detail, others operate
on top of nonstandard, usually custom-designed proprietary
protocols. To classify such diverse types of traffic, we develop
a signature-based classifier in order to avoid manual interven-
tion, automate the analysis and speed-up the procedure.

Our classifier is based on identifying characteristic bit
strings in the packet payload that potentially represent the
initial protocol handshake in most applications (e.g., HTTP
requests). Protocol signatures were identified either from RFCs
and public documents in case of well-documented protocols,
or by reverse-engineering and empirically deriving a set of
distinctive bit strings by monitoring both TCP and UDP traffic
using tcpdump [20]. Table II lists a small subset of such
signature (bit) strings for TCP and UDP. The complete list
of bit strings we used is presented in [7].

Once the signatures have been identified, we classify traffic
using a modified version of the “crlflow” utility of the Coral
Reef suite [10]. Our technique operates on two different time
scales and traffic granularities. The short time scale operates on
a per packet basis upon each packet arrival. The coarse time
scale essentially summarizes the results of the classification
process during the preceding time interval (we use intervals of
5 minutes throughout the paper) and assists in the identification
of flows that potentially have remained unclassified during
payload analysis.

Both operations make use of an{IP, port} pair table
that contains records of the IP-port pairs that have already
been classified based on past flows. These{IP, port} pairs
associate a particular IP address and a specific port with a
code reflecting its causal application. The{IP, port} table is
updated upon every successful classification and consulted at
the end of each time interval for evidence that could lead
to the classification of unknown flows or the correction of
flows mis-classified under the packet level operation. Since
the service reflected at a specific port number for a specific
IP does not change at the time-scales of interest, we use this
heuristic to reduce processing overhead. To avoid increasing
memory requirements by storing an immense number of{IP,
port} pairs, we only keep{IP, port} pairs that reflect known
services such as those described in table III. Lastly, to further
identify data transfer flows, such as passive ftp, we parse the
control stream to acquire the context regarding the upcoming
data transfer, i.e. the host and port number where the follow-up
data connection is going to take place.
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TABLE III

CATEGORIES, APPLICATIONS ANALYZED AND THEIR AVERAGE TRAFFIC PERCENTAGES IN FLOWS(BYTES).

Category Application/protocol GN UN1 UN2

web www 32% (14.0%) 31.8% (37.5%) 24.7% (33.5%)
FastTrack, eDonkey2000, BitTorrent, Gnutella

p2p WinMx, OpenNap, Soulseek, Ares, MP2P 0.3% (1.2%) 25.5% (31.9%) 18.6% (31.3%)
Dirrect Connect, GoBoogy, Soribada, PeerEnabler

data (ftp) ftp, databases (MySQL) 1.1% (67.4%) 0.3% (7.6%) 0.2% (5.4%)
Network management (NM) dns, netbios, smb, snmp, ntp, spamassasin, GoToMyPc12.5% (0.1%) 9% (0.5%) 9.4% (0.2%)

mail mail (smtp, pop, imap, identd) 3.1% (3.4%) 1.8% (1.4%) 2.5% (0.9%)
news news (nntp) 0.1% (4.0%) 0% (0.3%) 0% (0.2%)

chat/irc (chtirc) IRC, msn messenger, yahoo messenger, AIM 3.7% (0.0%) 1.8% (0.2%) 5.8% (0.7%)
streaming (strm) mms (wmp), real, quicktime, shoutcast 0.1% (0.8%) 0.2% (6%) 0.2% (6.8%)

vbrick streaming, logitech Video IM
gaming (gam) HalfLife, Age of Empires, etc. – 0.3% (0.1%) 0.3% (0.3%)
Nonpayload – 45.3% (2.2%) 24.9% (0.5%) 30.9% (1.0%)
Unknown – 1.3% (6.6%) 4.3% (11.9%) 7.3% (16.9%)

1: procedure CLASSIFIER

2: Get pkt and find flow from 5-tuple;
3: if Is flow classifiedthen
4: if Is flow classified as HTTPthen
5: check payload
6: go to 11:
7: else
8: get next packet
9: else

10: check payload
11: if Is there a matchthen
12: clasify flow
13: classify reverse direction . where applicable
14: store{IP, port}pair
15: get next packet

ProcedureClassifierpresents the per-packet operation. The
procedure simply examines the contents of each packet against
our array of strings, and classifies the corresponding flow
with an application-specific tag in case of a match. Successful
classification of a flow on one direction leads to the subsequent
classification of the respective flow in the reverse direction, if
it exists. Previously classified flows are not examined, unless
they have been classified asHTTP. This further examination
allows identification of non-web traffic relayed over HTTP
(e.g., streaming, p2p, web-chat, etc.). Finally if a flow is
classified, we store the{IP, port} pair if the port number
reflects a well-known service.

At the end of each time interval, we simply compare all
flows against our list of known{IP, port} pairs, to classify
possible unknown flows or correct misclassifications (e.g., a
p2p flow that was classified underweb, because the only
packet so far was an HTTP request or response).

C. Application breakdown

We classify flows in eleven distinct application-type cate-
gories. Table III lists these categories, the specific applications
and their share of traffic as percentage of the total number of
flows and bytes (in parentheses) in the link. Thenonpayload
category includes flows that transfer only headers and no user-
data throughout their lifetime, while theunknowncategory lists
the amount of traffic that could not be classified.

As expected, the two types of network (GN vs UN) appear
significantly different. TheUN network is mostly dominated
by webandp2p traffic, whereasGN contains a large portion of
ftp traffic reflecting large data transfers of Genome sequences.

Despite the difference in the day of capture and the large
interval between the twoUN traces, their traffic mix is roughly
similar. Other interesting observations from these traces are:
• Nonpayloadflows account almost for one third of all

flows in both links! Examination of these flows suggests
that the vast majority corresponds to failed TCP connec-
tions on ports of well-known exploits or worms (e.g.,
135, 445). Large percentage of address space scans is also
implied by the large number of destination IPs especially
in the GN trace.

• Unknown flows:The existence of user payload data does
not guarantee that all flows in our traces will be classified.
Our analysis of the most popular applications cannot
possibly guarantee identification of all applications con-
tributing traffic to the Internet. For example, 4%-7% of
all flows (10% in bytes) of theUN traffic cannot be
identified. Note that a fraction of this unknown traffic
is due to experimental traffic fromPlanetLab (three
PlanetLabnodes exist behind our monitoring point).

IV. T RANSPORT LAYER CLASSIFICATION

This section describes our multi-level methodology,BLINC,
for the classification of flows into applications without the use
of the payload or “well-known” port numbers.BLINC realizes
a rather different philosophy compared to other approaches
proposed in the area of traffic classification. The main differ-
ences are the following:
• We do not treat each flow as a distinct entity; instead, we

focus on the source and destination host of these flows.
We advocate that when the focus of the classification
approach is shifted from the flow to the host, then one
can accumulate sufficient information to disambiguate the
roles each host plays in the Internet across different flows,
and thus identify specific applications.

• Our approach operates on flow records and requires no
information about the timing or the size of individual
packets. Consequently, the input to our methodology may
potentially be flow record statistics collected by currently
deployed equipment.

• Our approach is insensitive to network dynamics such as
congestion or path changes, that can potentially affect
statistical methodologies which rely heavily on inter-
arrival times between the packets in a flow.
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A. The Overview ofBLINC

BLINC operates on flow records. Initially, we parse all flows
and gather host-related information reflecting transport layer
behavior. We then associate the host behavior with one or more
application types and thus indirectly classify the flows. The
host behavior is studied across three different levels, while the
final flow classification is the result of the combined analysis
of the characteristics inferred at each level:

• At the social level, we capture the behavior of a host
in terms of the number of other hosts it communicates
with, which we refer to aspopularity. Intuitively, this
level focuses on the diversity of the interactions of a host
in terms of its destination IPs and the existence of user
communities. As a result, we only need access to the
source and destination IP addresses at this level.

• At the functional level, we capture the behavior of the
host in terms of its functional role in the network, that
is, whether it is a provider or consumer of a service, or
whether it participates in a collaborative communication.
For example, hosts that use a single source port for the
majority of their interactions are likely to be providers of
a service offered on that port. At this level, we analyze
characteristics of the source and destination IP address,
and the source port.

• At the application level, we capture the transport layer
interactions between hosts with the intent to identify the
application of origin. We first provide a classification
using only the 4-tuple (IP addresses and ports), and
then we refine the final classification, by developing
heuristics that exploit additional flow information, such as
the number of packets or bytes transferred as well as the
transport protocol. For each application, we capture host
behavior using empirically derived patterns. We represent
these patterns using graphs, which we callgraphlets.
Having a library of thesegraphlets, we then seek for
a match in the behavior of a host under examination.

We want to stress that throughout our approach, we treat
the port numbers as indexes without any application-related
information. For example, we count the number of distinct
ports a host uses, but we do not assume in any way that the
use of port80 signifies web traffic.

While the preceding levels are presented in order of in-
creasing detail, they are equally significant. Not only analysis
at each level will benefit from the knowledge acquired in the
previous level, but also the final classification of flows into
applications depends on the unveiled “cross-level” character-
istics.

A key advantage of the proposed approach is its tunability.
The strictness of the classification criteria can be tailored to the
goal of the measurement study. These criteria can be relaxed
or tightened to achieve the desired balance between loose and
conservative classification. Thus, the methodology can provide
results at different points in the trade off between the looseness
of the classification versus accuracy.

Selecting the appropriate threshold values.In order to
facilitate the use of our tool, we have identified four levels
of “strictness” in the classification process so that a user can
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Fig. 1. Complementary cumulative distribution function of destination IP
addresses per source IP for 15 minutes of theUN1 trace for four different
applications.

quickly explore the range in the trade-off between aggressive
and conservative classification. A more experienced user will
be able to modify each individual threshold through a possible
user friendly interface.

BLINC provides two types of output. First, it reports aggre-
gate per-class statistics, such as the total number of packets,
flows and bytes. Second, it produces a list of all flows (5-
tuple) tagged with the corresponding application for every
time interval. Furthermore,BLINC can detect unknown or non-
conformant hosts and flows, as we will see in Section V.

B. Classification at the social level

We identify the social role of each host in two ways. First,
we focus on itspopularity, namely the number of distinct hosts
it communicates with. Second, we detectcommunitiesof hosts
by identifying and grouping hosts that interact with the same
set of hosts. A community may signify a set of hosts that
participate in a collaborative application, or offer a service
to the same set of hosts. Although social behavior cannot
by itself classify flows into specific applications, it conveys
considerable information regarding the role of a specific host.

Examining the social behavior of single hosts.The social
behavior of a host refers to the number of hosts this particular
host communicates with. To examine variations in host so-
cial behavior, Fig. 1 presents the complementary cumulative
distribution function (CCDF) of the hostpopularity. Based
on payload classification from section III, we display four
different CCDFs corresponding to four different types of
traffic, namely web, p2p, malware (e.g., failed nonpayload
connections on known malware ports, possible attacks, worms,
etc), andmail. In all cases, the majority of sources appear to
communicate with a small set of destination IPs.

In general, the distribution of the hostpopularity cannot
reveal specific rules in order to discriminate specific applica-
tions, since it is highly dependent upon the type of network,
link or even the specific IPs. However, we can also distinguish
significant differences among applications. For example, hosts
interacting with a large number of other hosts in a short
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time period appear to either participate in ap2p network
or constitute malicious behavior. In fact, themalwarecurve,
appears flat below 100 destination IPs, denoting the presence
of a large number of possible address-space scans, where a
number of sources has the same number of destination IPs
during a specific time interval.

Detecting communities of hosts.Social behavior of hosts
is also expressed through the formation of communities or
clusters between sets of IP addresses. Communities will appear
asbipartite cliquesin our traces, like the one shown in Fig. 2.
The bipartite graph is a consequence of the single observation
point. Interactions between hosts from the same side of the
link are not visible, since they do not cross the monitored
link. Communities in our bipartite graph can be either exact
cliques where a set of source IPs communicates with the exact
same set of destination IPs, or approximate cliques where a
number of the links what would appear in a perfect clique is
missing.

D
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Fig. 2. An example of a community in our traces: the graph appears as an
approximate bipartite clique.

Identifying the communities is far from trivial, since identi-
fying maximal cliques in bipartite graphs is an NP-Complete
problem. However, there exist polynomial algorithms for iden-
tifying the cross-associationsin the data mining context [2].
Cross-association is a joint decomposition of a binary matrix
into disjoint row and column groups such that the rectan-
gular intersections of groups are homogeneous or formally
approximate a bipartite clique. In our case, this binary matrix
corresponds to the interaction matrix between the source and
destination IP addresses in our traces.

Fig. 3. Communities of on-line game players appear as highly connected
clusters in the interaction matrix after applying the cross-associations algo-
rithm (5-minutes ofUN1 trace).

To showcase how communities can provide interesting
features of host behavior, we apply the cross association
algorithm in gaming traffic for a small time period of one
of our traces (a 5-minute interval of theUN1 trace) and

we successfully identify communities of gamers. Specifically,
Fig. 3 presents the interaction matrix after the execution of the
cross-association algorithm. The axes present source (x-axis)
and destination (y-axis) IPs (350 total IPs), while the matrix
is essentially the original interaction matrix shifted in such a
way so that strongly connected components appear clustered
in the same area. The horizontal and vertical lines display the
boundaries of the different clusters. Specifically, we observe
two major clusters: First, three source IPs communicating with
a large number of destination IP addresses although not an
exact clique (at the bottom of Fig. 3,x-axis:0-280, y-axis:347-
350). Second, an exact clique of five hosts communicating with
the exact same 17 destination IPs (x-axis:280-285, y-axis:300-
317).

In general we study three different types of communities,
according to their deviation from the definition of the perfect
clique:

• “Perfect” cliques: a hint for malicious flows.While the
previous example displays a perfect clique in gaming
traffic, we find that perfect cliques are mostly signs
of malicious behavior. In our analysis, we identify a
number of IP addresses communicating with the exact
same list of IP addresses (approximately 250 destination
IPs in 15 minutes). Further analysis revealed that these
cases represented malicious traffic, such as flows for the
Windows RPC exploit and Sasser worm.

• Partial overlap: collaborative communities or common
interest groups.In numerous cases, only a moderate
number of common IP addresses appear in the destination
lists for different source IPs. These cases correspond to
peer-to-peer sources, gaming and also clients that appear
to connect to the same services at the same time (e.g.,
browsing the same web pages, or streaming).

• Partial overlap within the same domain: service “farms”.
Closer investigation of partial overlap revealed IP ad-
dresses interacting with a number of addresses within the
same domain, e.g., addresses that differ only at the least
significant bits. Payload analysis of these IPs revealed that
this behavior is consistent with service “farms”: multi-
machine servers that load-balance requests of a host to
servers within the same domain. We find that service
“farms” were used to offerweb, mail, streaming, or even
dnsservices.

The richness of the information that we discover at this
level and the social role of a host is an interesting topic in its
own sake. However, further analysis of social behavior and its
implications is out of the scope of this work.

Conclusion and Rules: Based on the above analysis,
we can infer the following regarding the social behavior of
network hosts. First, IPs within the same domain may offer
the same service. Thus, identifying a server within the domain
might be sufficient to classify “neighboring” IPs under the
same service (if they use the same service port). Second, exact
communities may indicate attacks. Third, partial communities
may signify p2p or gaming applications. Finally, most IPs
act as clients having a minimum number of destination IPs.
Thus, focusing on the identification of the small number of
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Fig. 4. Number of source ports versus number of flows per source IP
address in theUN1 trace for a 15-minute interval for four different
applications. In client-server applications (web,ftp,mail), most points
fall on the diagonal or on horizontal lines for small port numbers in
the y-axis. In p2p, points are clustered inside the diagonal.

servers can retrospectively pinpoint the clients, and lead to the
classification of a large portion of the traffic, while limiting the
amount of associated overhead. Identification of server hosts
is accomplished through the analysis of the functional role of
the various hosts.

C. Classification at the functional level

At this level, we identify the functional role of a host: hosts
can be primarily offering a service, using services, or both.
Most applications operate with the server-client paradigm.
However, several applications interact in a collaborative way,
with p2pnetworks being the prominent example. Interestingly,
classifying p2p traffic is a very challenging task, which has
raised a controversy between academic and RIAA studies [8].
Distinguishing the functional role accurately could provide an
essential step toward accurate p2p traffic estimation.

We attempt to capture the functional role by using the num-
ber of sourceports a particular host uses for communication.
For example, let us assume that hostA provides a specific
service (e.g., web server) and we examine the flows whereA
appears as a source. Then,A is likely to use a single source
port in the vast majority of its flows. In contrast, ifA were
a client to many servers, its source port would vary across
different flows. Clearly, a host that participates in only one or
few flows would be difficult to classify.

To quantify how the number of used source ports may sepa-
rate client versus server behavior, we examine the distribution
of the source ports a host uses in our traces. In Fig. 4, we
plot the number of flows (x-axis) versus the number of source
ports (y-axis) each source IP uses for 15 minutes of ourUN1
trace1. Each subplot of Fig. 4 presents traffic from a different
application as identified by payload analysis. We identify three
distinct behaviors:

Typical client-server behavior: Client-server behavior is
most evident inweb in Fig. 4 (top-right), where most points

1The source{IP, port} pair is used without loss of generality. Observations
are the same in the destination{IP, port} case.

fall either on the diagonal or on horizontal lines parallel to the
x-axis for small values ofy (less or equal to two). The first
case (where the number of ports is equal to the number of
distinct flows) represents clients that connect to web servers
using as many ephemeral source ports as the connections they
establish. The latter case reflects the actual servers that use
one (y = 1, port 80, HTTP) or two (y = 2, port 80, HTTP
and 443, HTTPS) source ports for all of their flows.

Typical collaborative behavior: In this case, points are
clustered between thex-axisand the diagonal, as shown in the
p2p case in Fig. 4 (top-left) , where we cannot discriminate
client from server hosts.

Obscure client-server behavior: In Fig. 4, we plot the
behavior for the case ofmail and ftp. While mail and ftp fall
under the client-server paradigm, the behavior is not as clear
as in the web case for two reasons:

• The existence of multiple application protocols support-
ing a particular application, such asmail. Mail is
supported by a number of application protocols, i.e.,
SMTP, POP, IMAP, IMAP over SSL, etc., each of which
uses a different service port number. Furthermore, mail
servers often connect toRazor [15] databases through
SpamAssassinto report spam. This practice generates a
vast number of small flows destined toRazor servers,
where the source port is ephemeral and the destination
port reflects the SpamAssassin service. As a result, mail
servers may use a large number of different source ports.

• Applications supporting control and data streams, such
as ftp. Discriminating client-server behavior is further
complicated in cases of separate control and data streams.
For example, passiveftp, where theftp server uses as
source ports a large number of ephemeral ports different
than the service ports (20,21), will conceal the ftp server.

Conclusion and Rules:If a host uses a small number of
source ports, typically less or equal to two, for every flow,
then this host is likely providing a service. Our measurements
suggest that if a host uses onlyonesource port number, then
this host reflects a web, a chat or a SpamAssassin server in
case of TCP, or falls under the Network Management category
in case of UDP.

D. Classification at the application level

In this level, we combine knowledge from the two previous
levels coupled with transport layer interactions between hosts
in order to identify the application of origin. The basic insight
exploited by our methodology is that interactions between
network hosts display diverse patterns across the various
application types. We first provide a classification using only
the 4-tuple (IP addresses and ports), and then, we refine it
using further information regarding a specific flow, such as
the the protocol or the packet size.

We model each application by capturing its interactions
through empirically derived signatures. We visually capture
these signatures usinggraphlets. A sample of application-
specific graphlets is presented in Fig. 5. Eachgraphlet de-
scribes network flow characteristics corresponding to different
applications, by capturing the relationship between the use
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Fig. 5. Visual representation of transport-layer interactions for various applications: port numbers are provided for completeness but are not
used in the classification.

of source and destination ports, the relative cardinality of
the sets of unique destination ports and IPs as well as the
magnitude of these sets. Each of thegraphlets reflects the
“most common” behavior for a particular application. Having a
library of thesegraphlets, we can classify a host by identifying
the closest matching behavior. Note that an unknown behavior
may match severalgraphlets. The success of the classification
will then have to rely on operator-defined thresholds to control
the strictness of the match. Such thresholds are the minimum
number of distinct destination IPs observed for a particular
host, the relative cardinality of the sets of destination IPs and
ports, the number of distinct packet sizes observed and the
number of payload versus nonpayload flows. The role of these
thresholds will become evident during the description of each
graphlet.

In more detail, eachgraphlethas four columns correspond-
ing to the 4-tuple source IP, destination IP, source port and
destination port. We also show somegraphlets with 5 columns,
where the second column corresponds to the transport protocol
(TCP or UDP) of the flow. Each node2 presents adistinctentry
to the set represented by the corresponding column, e.g.,135
in graphlet5(a) is an entry in the set of destination ports. The
lines connecting nodes imply that there exists at least one
flow whose packets contain the specific nodes (field values).
Dashed lines indicate links that may or may not exist and are
not crucial to the identification of the specific application. Note
that while some of thegraphlets display port numbers, the
classification and the formation ofgraphlets do not associate

2We use the term node to indicate the components in agraphlet, and the
term host to indicate an end-point in a flow.

in any way a specific port number with an application.
The order of the columns in our visual representation of

eachgraphlet mirrors the steps of our multilevel approach.
Our starting field, the source IP address, focuses on the
behavior of a particular host. Itssocial behavior is captured
in the fanout of the second column which corresponds to all
destination IPs this particular source IP communicates with.
The functional role is portrayed by the set of source port
numbers. For example, if there is a “knot” at this level the
source IP is likely to be a server as mentioned before. Finally,
application types are distinguished using the relationship of all
four different fields. Capturing application-specific interactions
in this manner can distinguish diverse behaviors in a rather
straightforward and intuitive manner as shown in Fig. 5.

Let us highlight some interesting cases ofgraphlets. The
top row of Fig. 5 displays three types of attacks (graphlets
(a)(b)(c)). Fig. 5(a) displays a typical attack where a host
scans the address space to identify vulnerability at a partic-
ular destination port. In such cases, the source host may or
may not use different source ports, but such attacks can be
identified by the large number of flows destined to a given
destination port. A similar but slightly more complicated type
of attack common in our traces involves hosts attempting to
connect to several vulnerable ports at the same destination
host (Fig. 5(b)). Similarly, we show thegraphlet of typical
port scan of a certain destination IP in Fig. 5(c).

The power of our method lies in the fact that we do not
need to know the particular port number ahead of time. The
surprising number of flows at the specific port will raise
the suspicion of the network operator. While such behaviors
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are also identifiable by tools such asAutoFocus [5], that
work aims at identifying heavy hitters and not perform traffic
classification.

In some cases, hosts offering services on certain ports
exhibit similar behavior. For instance,p2p (the server side),
web, and gamesall result in the same type ofgraphlet:
a single source IP communicates with multiple destinations
using the same source port (the service port) on several
different destination ports. In such cases, we need further
analysis to distinguish between applications. First, we can
use quantitative criteria such as the relative cardinality of the
sets of destination ports versus destination IPs. As we will
describe later in the section, the use of the transport protocol,
TCP versus UDP, can further help to discriminate between
applications with similar or complicatedgraphlets depicted in
the second and third rows of Fig. 5.

Applications such asftp, streamingor mail present more
complicatedgraphlets, exhibiting “cris-cross” flow interac-
tions (Fig. 5(h)(i)(j)). Thesegraphlets have more than service
ports, or have both source and destination service ports. In
the case offtp, the source host provides the service at two
main ports (control and data channel), whereas other source
ports represent the case ofpassive ftp. Streamingon the other
hand uses specific port numbers both at the source and the
destination side. Streaming users (destination IPs in our case)
connect at the service port (TCP) of the streaming server
(control channel), while the actual streaming is initiated by the
server using an ephemeral random source port to connect to
a pre-determined UDP user port. Similarlymail uses specific
port numbers at the source and destination side, yet all mail
flows are TCP.Mail servers may further use port 25 both
as source or destination port across different flows while
connecting to other mail servers to forward mail. As previously
noted, the specific port numbers are only listed to help with
the description of thesegraphlets and they are in no way taken
into consideration in our algorithm.

Lastly, graphlets become even more complex when ser-
vices are offered through multiple application and/or transport
protocols. As an example, Fig. 5(l) presents a mail server
supporting IMAP, POP, SMTP, and ident, while also acting
as a DNS server. Knowledge of the role of the host may assist
as corroborative evidence on other services offered by the
same host. For instance identifying a host as an SMTP server
suggests that the same host may be offering POP, IMAP, DNS
(over UDP) or even communicate with SpamAssassin servers.

E. Heuristics

Here, we present a set of final heuristics that we use to
refine our classification and discriminate complex or similar
cases ofgraphlets. This set of heuristics have been derived
empirically through inspection of interactions present in vari-
ous applications in our traces.

Heuristic 1. Using the transport layer protocol. One
criterion for such a distinction is the transport layer protocol
used by the flow. The protocol information can distinguish
similar graphlets into three groups using: (a)TCP, which
includesp2p, web, chat, ftp andmail, (b) UDP, which includes

Fig. 6. Relationship between the number of destination IP addresses
and ports for specific applications per source IP. The cardinality of
the set of destination ports is larger than the one of destination IPs
reflected in points above the diagonal for web. On the contrary, points
in the p2p case fall either on top or below the diagonal.

Network Management trafficandgamesand (c) both protocols,
which includesp2p, streaming. For example, whilegraphlets
for mail andstreamingappear similar, mail interactions occur
only on top of TCP. Another interesting case is shown in
Fig. 5(k), wherep2p protocols may use both TCP and UDP
with a single source port for both transport protocols (e.g.,
Gnutella, Kazaa, eDonkeyetc.). With the exception ofdns, our
traces suggest that this behavior is unique top2p protocols.

Heuristic 2. Using the cardinality of sets.As discussed
earlier, the relative cardinality of destination sets (ports vs IPs)
is able to discriminate different behaviors. Such behaviors may
be webversusp2p andchat, or Network Managementversus
gaming. Fig. 6 presents the number of distinct destination IPs
versus the number of distinct destination ports for each source
IP in 15 minutes of ourUN2 trace, forwebandp2p. In theweb
case, most points concentrate above the diagonal representing
parallel connections of mainly simultaneous downloads of web
objects (many destination ports to one destination IP). On the
contrary, most points in thep2pcase are clustered either close
to the diagonal (the number of destination ports is equal to the
number of destination IPs) or below (which is common for
UDP p2pcommunications, where the destination port number
is constant for some networks).

Heuristic 3. Using the per-flow average packet size.A
number of applications displays unique behavior regarding
patterns of transfer of packet sizes. For instance, the majority
of gaming, malwareor SpamAssassin flows are characterized
by a series of packets of constant size. Thus, constant packet
size can discriminate certain applications. Note that it is not
the actual size that is the distinctive feature, but instead the
fact that packets have the same size across all flows; in other
words, we simply need to examine whether the average packet
size per flow (e.g. the fraction of total bytes over the number
of packets) remains constant across flows.

Heuristic 4. Community heuristic. As discussed in the
social behavior of network hosts, communities offer significant
knowledge regarding interacting hosts. Thus, examining IP ad-
dresses within a domain may facilitate classification for certain
applications. We apply the community heuristic to identify
“farms” of services by examining whether ‘neighboring” IPs
exhibit server behavior at the source port under question.
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Heuristic 5. Recursive detection.Hosts offering specific
types of services can be recursively identified by the inter-
actions among them (variation of the community heuristic).
For examplemail or dns servers communicate with other
such servers and use the same service port both as source
or destination port across different flows. Also, SpamAssassin
servers should only communicate with mail servers.

Heuristic 6. Nonpayloadflows.Nonpayload or failed flows
usually point to attacks or evenp2p networks (clients often
try to connect to IPs that have disconnected from thep2p
network). The magnitude of failed flows can hint toward types
of applications.

V. CLASSIFICATION RESULTS

Here, we demonstrate the performance of our approach
when applied to the traces described in section III. Overall,
we find thatBLINC is very successful at classifying accurately
the majority of the flows in all our traces.

We use two metrics to evaluate the success of the classifica-
tion method. Thecompletenessmeasures the percentage of the
traffic classified by our approach. In more detail, completeness
is defined as the ratio of the number of classified flows (bytes)
by BLINC over the total number of flows (bytes) indicated
by payload analysis. Theaccuracy measures the percentage
of the classified traffic byBLINC that is correctly labeled. In
other words, accuracy captures the probability that a classified
flow belongs to the class (according to payload) thatBLINC
indicates. Note that both these metrics are defined for a given
time interval, which could be either in the time-scales of
minutes or the whole trace, and can be applied for each
application class separately or for all traffic as a whole.

The challenge for any method is to maximize both metrics,
which however exhibit a trade-off relationship. The number of
misclassifications will increase depending on how aggressive
BLINC is in its classification criteria. These criteria refer to the
thresholds thatBLINC uses to identify a behavior. Depending
on the purpose of the measurement study, the aggressiveness
can be tuned accordingly. We examine the sensitivity of our
approach to the aggressiveness in V-B.

We use the payload classification as a reference point
(section III) to evaluateBLINC’s performance. Given that the
payload classifier has no information to classifynonpayload
flows, such flows need to be excluded from the comparison
to level the field. Further, we have no way of characterizing
“unknown” flows according to payload analysis. Consequently,
the total amount of traffic used to evaluateBLINC for each
trace, does not includenonpayloadand unknown(according
to payload) flows, which are discussed separately at the end
of this section. It is interesting to note that our approach
outperforms the payload classification in some cases. For
example, BLINC is able to characterizenonpayloadflows
where payload analysis fails.

A. Overall completeness and accuracy

BLINC classifies the majority of the traffic with high
accuracy.In Fig. 7, we plot the completeness and accuracy
for the entire duration of each trace. In theUN traces,BLINC
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Fig. 7. Accuracy and completeness of all classified flows in the three
traces. ForUN traces more than 90% of the flows are classified with
aprroximately 95% accuracy. InGN trace, we classify approximately
80% of the flows with 99% accuracy.
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the bottom lines present flows (bytes) classified correctly byBLINC.
The three lines coincide visually indicating high completeness and
accuracy.

classifies more than 90% of the flows with approximately 95%
accuracy. For theGN trace,BLINC classifies approximately
80% flows with 99% accuracy.

BLINC closely follows traffic variation and patterns in time.
To stress test our approach, we examine the classification
performance across small time intervals in time. In Fig. 8, we
plot flows (left) and bytes (right) classified withBLINC versus
the payload classifier, computed over 5-minute intervals for
the UN1 dataset. The top line presents all classified flows as
identified by the payload classifier, the middle line represents
flows classified byBLINC, and the bottom line represents
flows classified correctly withBLINC. The performance seems
consistently robust over time. In terms of bytes, completeness
ranges from 70%-85% for theUN traces and 95% for the
GN trace with more than 90% accuracy. It is interesting to
note that the difference betweenBLINC and payload in terms
of bytes is due to a small number of large volume flows. In
these flows, both source and destination hosts do not present
sufficient number of flows in the whole trace and thus cannot
be classified withBLINC without compromising the accuracy.

High per-application accuracy.Fig. 9 presents the accuracy
and completeness for each of the four dominant applications
of each trace, collectively representing more than 90% of
all the flows classified under payload analysis. In all cases,
accuracy is approximately 80% or more and completeness in
most cases exceeds 80%. Note that per-class accuracy and
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Fig. 9. Completeness and accuracy per application type. For each
trace, we show the four most dominant applications, which contribute
more than 90% of the flows. W:web, P:p2p, FT:ftp, M:mail, CH:chat,
NM: network management.
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Fig. 10. Trade-off of accuracy versus completeness forp2p and the
total number of flows. Decreasing the number of samples required to
detectp2p behavior increases completeness but decreases accuracy.

completeness depends on the total amount of traffic in each
class. For example,web-related metrics always exceed 90% in
UN traces sinceweb is approximately one third of all traffic.
In GN where web is approximately 15% of the total bytes,
completeness is approximately 70% (99% accuracy).

B. Fine-tuningBLINC

The trade-off between accuracy and completeness directly
relates to the “strictness” of the classification criteria as we
saw in section IV. Here we study the effect of one of the
thresholds we use in our approach. In classifying a host as a
p2p candidate, we require that the host participates in flows
with at leastTd distinct destination IPs. SettingTd to a low
value will increase completeness sinceBLINC will classify
more hosts and their flows asp2p. However, the accuracy of
the classification will decrease.

In Figure 10, we plot the accuracy and completeness for
p2p flows (left columns) and the total number of classified
flows (right columns) for two different values ofTd: Td = 1
and Td = 4. We observe that by reducing the threshold, the
fraction of classified flows increases, whereas the fraction of
correctly identified flows drops from 99% to 82%. Note that
the total accuracy is also affected (as previously “unknown”
flows are now (mis)classified) but the decrease for total
accuracy is much smaller than in thep2p case dropping from
approximately 98% to 93%. In all previous examples, we have
used a value ofTd = 4 opting for accuracy.

This flexibility is a key advantage of our approach. We
claim that, for a network operator, it may be more beneficial
if BLINC opts for accuracy. Misclassified flows are harder to

Fig. 11. Histogram of destination ports for flows classified under
address space scans forGN and UN2 traces.BLINC successfully
discriminates major address space scans at ports of “well-known”
worms or exploits.

detect within a class of thousands of flows, whereas unknown
flows can potentially be examined separately by the operator
by using additional external information such asBLINC’s
social and functional role reports, or application specifications
and consultations with other operators.

C. Characterizing nonpayload and unknown flows

In some cases, our approach goes beyond the capabilities
of the payload classification. Although we unavoidably use
payload analysis as benchmark, payload classification fails in
two cases: a) it cannot characterize nonpayload flows (zero
payload packets), and b) declares flows asunknownwhen
they reflect protocols which are not analyzed a priori. In
contrast,BLINC does not depend on the existence of payload.
Therefore,BLINC has the ability to uncover transport layer
behavior that may potentially allow for the classification of
flows originating from previously unknown applications that
fall under ourgraphlet modeled types (such as a newp2p
protocol).

Nonpayload flows: The multilevel analysis ofBLINC
highlighted that the vast majority of nonpayload flows were
due to IP address scans and port scans. Specifically, using
the attackgraphlets (fig. 5 (a),(b),(c)),BLINC successfully
identified port scans corresponding to various worms and
exploits. Fig. 11 presents the histogram of destination ports in
the flows that were classified as address space scans for two
different traces. Inspecting the peaks of this histogram shows
that BLINC successfully identified destination ports of well-
known worms or exploits, some of which are highlighted in
the plot for visualization purposes. In total,BLINC classified
approximately 26M flows as address space scans in ourUN2
trace. In addition, we classified approximately 100K flows as
port scanning on 90 IP addresses in the same trace. Note that
we did not need to use the port number of the exploits or
any other external information. On the contrary, usingBLINC
helped us identify the vulnerable ports by showing ports with
unusually high traffic targeted at many different destinations
IPs. However, we would like to stress here that our approach
cannot in any way replace IDS systems such asSNORT[19]
or Bro [1]. BLINC can only provide hints toward malicious
behavior by detecting destination ports with high activity of
failed flows.

Unknown applications: BLINC has the ability to identify
previously “unknown” protocols and applications, since it
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captures the basic behavior of the general application types.
Indeed, during our analysis,BLINC identified a newp2p
protocol (classified as unknown with payload analysis) running
on thePlanetLabnetwork (threePlanetLabnodes are behind
our monitoring point). Thisp2p application corresponded to
thePastryproject [14], which we identified after inspecting the
payload, while we were examining our false positives.BLINC
also identified a large number of gaming flows which were
classified as unknown by the payload. Again, these flows were
found when examining packet payload after being classified
under the games category.

VI. D ISCUSSION

ImplementingBLINC is not as straightforward as the pre-
sentation may have let us believe. We present the implemen-
tation challenges and issues and discussBLINC’s properties
and limitations.

A. Implementation issues

We would like to highlight two major functions of the
implementation: (a) the generation ofgraphlets, and (b) the
matching process of an unclassified host against thegraphlets.

The first function can be executed once in the beginning or
periodically in an off-line fashion. Ideally, the second function
should be sufficiently fast in order to enable the real-time
monitoring of a network. This way, the processing of the
data for a given time interval should complete before the data
for the next interval becomes available. As we will see our
implementation is sufficiently fast for this purpose.

A. Creating thegraphlets. In developing thegraphlets, we
used all possible means available: empirical observations, trial
and error, and hunches. An automated way of defining new
graphlets is an interesting and challenging problem that is
left for future work. In our experience, we typically followed
the steps below for creating the majority of ourgraphlets: (i)
detection of the existence of a new application (which could
be triggered from unusual amounts of unknown traffic), (ii)
manual identification of the hosts involved in the unknown
activity, (iii) derivation of thegraphletaccording to the inter-
actions observed, and (iv) verification using human supervision
and partiallyBLINC.

B. The matching process among differentgraphlets. The
general idea here is to examine the unknown host against
all graphlets and determine the best match. The approach we
follow uses a carefully selected order of thegraphlets from
more specific to more general. This way, once a match is found
the host is classified, and the matching process is stopped. This
ordered approach increases the speed of the matching process
compared to examining all possiblegraphlets every time.

Extensibility: adding newgraphlets. As mentioned in previ-
ous sections,BLINC is extensible by design. In fact, this was
an exercise we had to go through ourselves in our attempt to
developgraphlets to capture the majority of the applications
in our traces. The addition of agraphlet requires careful
consideration. Before the insertion of the newgraphlet in
the library, one needs find to the right place in the order
and eliminate race conditions between the newgraphlet and

othergraphlets with which they may “compete” for the same
hosts. In case the newgraphlet is unique, attention needs to
be paid regarding its position in the matching order. If the new
graphletpresents significant similarities with othergraphlets,
then the order must be carefully examined and potentially
additional distinguishing features need to be derived.

Currently, our implementation ofBLINC utilizes three spe-
cial purpose data structures that capture the diverse application
behavior across thegraphlets in the library. The mapping
algorithm then goes through each flow and maps it to the appli-
cation which corresponds to thegraphletthat best matches the
profile of a flow’s source or destination host. To avoid breaking
the flow of the paper, we present a description of the three
structures used in the appendix along with the pseudocode
that performs the actual mapping of flows into applications.

Computational Performance. Our first version of
BLINC shows great promise in terms of computational effi-
ciency. Despite the fact that the currentC++ implementation
has hardly been optimized,BLINC classified our largest
and longest (34-hour) UN2 trace in less than8 hours (flow
tables were computed over 5 minute intervals); processing
took place on a DELL PE2850 with a Xeon 3.4GHz processor
and 2GB of memory, of which maximum memory usage did
not surpass 40%. Consequently,BLINC appears sufficiently
efficient to allow for a real-time implementation alongside
currently available flow collectors.

B. Limitations

Classifying traffic “in the dark” has several limitations. Note
that many of those limitations are not specific to our approach,
but are inherent to the problem and its constraints.

BLINC cannot identify specific application sub-types:Our
technique is capable of identifying the type of an application
but may not be able to identify distinct applications. For in-
stance, we can identifyp2pflows, but it is unlikely that we can
identify the specificp2p protocol (e.geMuleversusGnutella)
with packet header information alone. Naturally, this limitation
could be easily addressed, if we have additional information,
such as the specifications of the different protocols, or in case
of distinctive behavior at the transport layer. We believe that
for many types of studies and network management functions,
this finer classification may not be needed. For example, the
different instances of the same application type may impose
the same requirements on the network infrastructure.

Encrypted transport layer headers:Our entire approach is
based on relationships among the fields of the packet header.
Consequently, our technique has the ability to characterize
encrypted traffic as long as, the encryption is limited to the
transport layer payload. Should layer-3 packet headers be also
encrypted, our methodology cannot function. However, this is
probably true for most classification methods.

Handling NATs:Note thatBLINC may require some mod-
ification to classify flows that go through Network Address
Translators (NATs). Some classification may be possible, since
our method examines the behavior of{IP, port}pairs, and thus
different flows sourcing behind the NAT will be discriminated
through the port number. However, we have not results to argue
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one way or the other, since we have not encountered (or not
identified) any flows that pass through NATs in our traces.

VII. C ONCLUSIONS

We propose an approach with significantly different philos-
ophy than the existing traffic classification efforts. The first
novelty of the approach is that we classify hosts by capturing
the fundamental patterns of their behavior at the transport
layer. The second novel property of our approach is that it
defines and operates at three levels of host behavior: (i) the
social level, (ii) the functional level, and (iii) the application
level of network behavior. In addition, our approach can be
tuned to strike the desired point of balance in the trade off
betweenthe percentage of classified trafficand theaccuracy.

We develop a systematic method to implement our approach
and we apply it on three real traces with very promising
results.
• BLINC classifies approximately 80%-90% of the total

number of flows in each trace with 95% accuracy.
• BLINC classifies correctly more than 80% of the flows of

each dominant application in our traces with an accuracy
of 80% or more.

• A key advantage ofBLINC is that it can identify mali-
cious behavior or new applications without having an a
priori knowledge or port specific information.

Practical impact.We see our method as a flexible tool that
can provide useful information for research or operational
purposes. Our approach provides the first step in obtaining
some understanding of a data trace even without having any
preconceived notions of what we expect to find (akin to search-
ing in the dark). Finally, with our approach, we can identify
“peculiar” behaviors of new and unknown applications.

The grand vision.We envision our approach as a novel way
to address the problem of traffic classification. By focusing on
the fundamental communication behavior, we believe that our
approach can transcend specific technical specifications and
become a method that can be applied in an evolving network
with dynamic application behavior.
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APPENDIX

Our BLINC implementation relies on three data structures,
per our discussion in Section VI. Structure 1 captures the
behavior of thegraphlets in Fig. 5(d)(e)(f)(g)(k)(l), which
is populated by the majority of the traffic. Structure 2 fo-
cuses on failed connections, i.e. connections without any
user data, to model attack traffic using thegraphlets in Fig.
5(a)(b)(c). Lastly, the complicated “cris-cross” interactions in
the graphlets of Fig. 5(h)(i)(j) are captured using Structure 3.

All three structures consist of dictionaries (maps) of sets.
The first level of each structure is a dictionary of all IPs in
our traces, capturing the behavior of a source or a destination
host (if the flow statistics are collected for bidirectional traffic,
we can simply look at source IPs). For each flow a specific
IP participates in, structure 1 is updated by following the
appropriate path through the protocol (TCP/UDP) and source
port dictionaries as indicated by the 5-tuple of the flow. At
the last level (source port), we insert values for the sets
corresponding to destination IP, destination port, number of
packets in the flow, average packet size, (i.e. bytes/packets).
Structure 1 isnot updated for failed flows, which populate
Structure 2.

IP

 TCP

 srcPort1

[
{dstIPs}, {dstPorts},
{#pkts}, {avgpktsize}

:
srcPortS

UDP

(1)

Structure 2 is adjusted to focus on the various attack
graphlets. In order to capture attacks, we are more interested
in the destination fields. Thus, the main difference from
structure 1 lies in the second level, where instead of the source
port, we now have a dictionary of destination ports. Also,
failed flows necessitate the use of TCP as a transport protocol
and thus the protocol dictionary is omitted. Address space
attacks at particular ports are defined by a large number of
failed flows to different destination IPs at the same destination
port. On the other hand, port scans are identified by a large
dictionary of destination ports all of which have one (or more
in case of multiple scans at the same time) and the same entry
at the destination IP set. Finally, we use counter#not failed
to count the number of “payload” flows that may satisfy the
criteria imposed by structure 1; in case this number is above
a specific threshold (4 in our experiments) the flow is deemed
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as non-attack traffic. Note that the structure is more efficient
to detect address space scans than port scans, since address
scans appear more often in our traces.

IP

 dstPort1

[
{dstIPs}, int #not failed

:
dstPortP

(2)

Structure 3 capturesgraphlets with “cris-cross” behavior
(mail, ftp, streaming). The structure stores interactions be-
tween source and destination IPs that communicate with more
than one flows at different source and different destination
ports. More specifically, for a flow to update the structure
the following must be true: the source portdoes notexist
in the srcPorts setand the destination portdoes notexist in
the dstPorts set for the specific source-destination IP pair. As
a result,web interactions will be excluded from this structure
since one of the ports (source or destination) will constantly
be unique (and possibly equal to80). Note that this structure
is an approximation of the “cris-cross”graphlets.

IP

[
dstIP1

[
{srcPorts}, {dstPorts}, {Proto}

:
dstIPD

(3)

In order to find the specific application from structure 3,
we examine for each source IP, the histograms of two lists
that result from the union of a) thesrcPorts sets across all
destination IPs(srcPortsList) and b) thedstPortssets across
all destination IPs (dstPortList). These histograms will reveal
source or destination ports that are commonly used for the
specific IP when communicating with more than one flows with
the same destination IPs at different source and destination
ports. If ports are used in a random fashion, the histograms
will have no peaks. Then, the following are true according to
our graphlets:

• If there exists one or more peaks at the (srcPortsList) and
one peak at the (dstPortsList) and only TCP is used for
the peak ports, the IP is amail server.

• If there exists one peak at the (srcPortsList) and one peak
at the (dstPortsList) and both TCP and UDP are used for
the peak ports, the IP is astreamingserver.

• If there exist two peaks at the (srcPortsList) and no peak
at the (dstPortsList) and only TCP is used for the peak
ports, the IP is anftp server.

Once the structures are populated after a first pass through
the flow table, we simply traverse through all the rules and
heuristics starting from the less to the more specific. Notice
that while our methodology does not incorporate timing in a
direct way, it is incorporated indirectly by the time-granularity
at which the flow table is formed. All our structures may store
information acquired during several time intervals. However,
all entries of our structures are coupled with a timer value
which indicates the last time they were active, i.e., the last
time the corresponding fields were seen in a flow. Entries
inactive for large time intervals (sufficiently larger than the
time corresponding to an iteration) are deleted from our
structures. Deleting inactive entries both prevents memory

saturation (note that we are dealing with millions of{IP, port}
pairs) and speeds up processing.

To avoid processing of already classified servers or known
{IP, port} pairs, at the end of each iteration, we perform
two different actions: First, if our classification agrees with
the observed port number (for known services) we store the
specific {IP, port} pair in a list with known pairs. Hence,
flows containing known pairs in successive intervals will
be automatically classified. Second, we apply therecursive
detectionheuristic. The heuristic moves into the known list:
a) {IP, port} pairs that talk to SpamAssassin servers (mail),
b) the destination{IP, port} pair of a mail server when this
mail server is the source IP and its service port appears as the
destination port (amail server that connected to anothermail
server), c) similarly, the destination{IP, port} pair of dns (or
NM) server when its service port appears as the destination
port, and (d){IP, port} pairs communicating with known
gaming-classified{IP, port} pairs.

For completeness purposes, we provide the pseudocode for
the mapping stage ofBLINC below.

1: procedure BLINC FLOW MAPPING

2: FT← Flow Table
3: for all flows in FT do
4: checkattack . structure 2
5: if found then get next flow;
6: checkmultiple flows . struct3, ftp/mail/streaming
7: if found then get next flow;
8: for all entries in structure 1:do
9: if IP is serverthen . (uses one port)

10: if Is protocol TCPthen
11: checkfanoutheuristic.
12: if dstPorts.size<= dstIps.sizethen
13: return chat; get next flow;
14: else if dstPorts.size> dstIps.sizethen
15: checkpacketsizeheuristic
16: if pkts across flows constant AND

dstPorts.size>>dstIps.sizethen
17: return SpamAs; get next flow;
18: else
19: return web; get next flow;
20: else
21: return NM; get next flow;
22: if IP uses same source port for TCP and UDP and not port

53 then
23: return P2P; get next flow;
24: for each srcportdo
25: checkcommunityheuristic.
26: if found then get next flow;
27: checkcardinalityheuristic.
28: if dstPorts.size== dstIps.sizethen
29: return P2P; get next flow;
30: else if dstPorts.size> dstIps.sizethen
31: if Is protocol TCPthen
32: return web; get next flow;
33: else
34: checkpacketsizeheuristic
35: if pkt size across flows constant AND dst-

Ports.size>> dstIps.sizethen
36: return game; get next flow;
37: else
38: return NM; get next flow;
39: End For . src port
40: End For . entry in struct 1
41: End For . FT


