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ABSTRACT

Motivation: Biological processes are dynamic, whereas the networks
that depict them are typically static. Quantitative modeling using dif-
ferential equations or logic-based functions can offer quantitative pre-
dictions of the behavior of biological systems, but they require detailed
experimental characterization of interaction kinetics, which is typically
unavailable. To determine to what extent complex biological pro-
cesses can be modeled and analyzed using only the static structure
of the network (i.e. the direction and sign of the edges), we attempt to
predict the phenotypic effect of perturbations in biological networks
from the static network structure.

Results: We analyzed three networks from different sources: The
EGFR/MAPK and PI3K/AKT network from a detailed experimental
study, the TNF regulatory network from the STRING database and a
large network of all NCl-curated pathways from the Protein Interaction
Database. Altogether, we predicted the effect of 39 perturbations
(e.g. by one or two drugs) on 433 target proteins/genes. In up to
82% of the cases, an algorithm that used only the static structure of
the network correctly predicted whether any given protein/gene is
upregulated or downregulated as a result of perturbations of other
proteins/genes.

Conclusion: While quantitative modeling requires detailed experimen-
tal data and heavy computations, which limit its scalability for large
networks, a wiring-based approach can use available data from path-
way and interaction databases and may be scalable. These results lay
the foundations for a large-scale approach of predicting phenotypes
based on the schematic structure of networks.
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Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

Analysis of regulatory networks has been used to explore the
molecular mechanisms that underlie biological processes and to
identify new regulatory modules (Hughey ez al., 2010; Przytycka
et al., 2010; Shamir and Karlebach, 2008). Network-based mod-
eling tools are often used to account for the difference between
healthy and diseased cells (Sorger et al., 2011). They have also
been used to predict the effect of perturbations, e.g. inhibiting
one protein/gene or more, on other proteins/genes in the network

*To whom correspondence should be addressed.

(Li et al., 2010; Maslov and Ispolatov, 2007; Mitsos et al., 2009;
Prill et al., 2010; Wang et al., 2009). For example, Ruths et al.
successfully predicted changes in protein levels in the MAPK/
AKT signaling network in breast tumor cells in response to per-
turbation of two genes (Ruths ez al., 2008). A wide variety of
methods have been developed to analyze regulatory networks
and provide predictions at different levels of detail (Fisher and
Piterman, 2010; Shamir and Karlebach, 2008). The input for
these methods ranges from quantitative kinetic parameters,
such as reaction rates, to logical constraints defining the inter-
actions (e.g. AND/OR relationships). Continuous methods such
as ordinary differential equations (ODEs) model the rate of
change of each component in the network and provide detailed
quantitative information regarding the networks dynamics
(Hughey et al., 2010; Shamir and Karlebach, 2008). However,
ODEs require comprehensive knowledge of kinetic parameters,
which are unknown for most networks, and therefore their
applicability is limited (Arisi et al., 2006; Bailey, 2001; Papin
et al., 2005).

Alternatively, in discrete logic-based models, each component
in the network has a discrete level, which is determined at every
time step through a logical function. Two main methods in this
category are Boolean networks (Glass and Kauffman, 1973;
Thomas, 1973) and Petri nets (Reddy ez al., 1996). Both have
been used to model regulatory networks and proven useful for
gaining mechanistic insights and for predicting phenotypes
(Chaouiya, 2007; Morris et al., 2010). Such approaches do not
depend on quantitative data but rather on the structure of the
network along with a set of logical constraints. Although the low
resolution of logic-based models imposes limitations on their
predictive power, they are applicable to systems that could not
be modeled with ODEs owing to lack of kinetic information
(Ruths et al., 2008).

High-throughput technologies are being used extensively to
identify physical and functional relationships between proteins
and genes on a large scale. These data are often deposited in
interaction databases such as IntAct (Hermjakob er al., 2010),
Biogrid (Tyers et al., 2011) and STRING (Jensen ez al., 2009).
Pathway databases such as KEGG (Kanehisa et al., 2010) and
the Pathway Interaction Database (PID) (Schaefer et al., 2009),
which are manually curated, also rely on these data. They are
typically represented by schematic diagrams, with no quantita-
tive parameters or logical constraints. Consequently, continuous
models or logic-based models are not applicable to most of the
available interaction data and to most known networks.
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Despite this limitation, these data have previously been used to
gain insight and suggest novel molecular mechanisms. For ex-
ample, Ideker er al. used binary protein—protein and protein—
DNA interactions to generate mechanistic hypotheses that
explain experimental expression data (Ideker et al., 2002). This
work was later extended and used to infer regulatory pathways
from subsets of candidate genes using a literature-derived net-
work of biological relationships (Rajagopalan and Agarwal,
2005). More recently, an elegant method applying edge consist-
ency in directed and signed networks was used to infer causal
perturbations (Chindelevitch et al., 2012; Enayetallah et al.,
2011).

Although the representation of biological networks as sche-
matic diagrams is widespread, it is clearly a harsh oversimplifi-
cation of reality and can only give a partial view of the real chain
of events (Tyson et al., 2001). However, as a large portion of
physical and functional interaction data are available only at this
level of abstraction, it is important to explore to what extent
these networks capture the complexity of biological processes.
To this end, we devised a simple algorithm for modeling regula-
tory networks, based on their schematic wiring alone. In particu-
lar, given a regulatory network that depicts known pairwise
relationships within a biological process, this algorithm predicts,
for each protein/gene, whether it will be upregulated, downregu-
lated or will remain unchanged if one or more of the proteins/
genes in the network is perturbed (e.g. inhibited by a drug). To
determine the effect of a perturbation of one protein/gene on
another protein/gene in the network, all the paths between
them are assessed. We tested this approach on three different
networks from three independent sources, for which experimen-
tal perturbation data were available. First, we attempted to pre-
dict the effect of drug perturbations on a relatively small but
carefully constructed protein signaling network that originated
in a detailed experimental study by Nelander et al. (Nelander
et al., 2008). This study also included a comprehensive set of
drug perturbations and their experimental readouts that were
used to validate our predictions. Next, we tested a small gene
regulatory network derived from STRING (Jensen et al., 2009).
Finally, we predicted the effect of drug perturbations on a large
network of hundreds of nodes, including all the National Cancer
Institute (NCI)—curated pathways available in the Protein
Interaction Database (Schaefer et al., 2009). The experimental
drug perturbation data used to evaluate our predictions for the
two last networks were gleaned from microarray data from the
connectivity map (CMAP) project (Golub et al., 2000).

Our approach was able to correctly predict between 71% and
82% of experimental readouts, depending on the quality of the
pairwise data that were used to construct the network. This
shows that the network structure itself captures a significant
part of the dynamic behavior of the network. We compare our
approach with a method proposed by Yeang et al. (Yeang et al.,
2004) who used network structure to predict the effect of per-
turbations where the paths between the perturbed node and the
readout are consistent. Our method provides correct predictions
in many cases where the previous method could not be applied
(e.g. when there are multiple contradicting paths, which in some
networks constitute >50% of the cases).

Finally, our analysis demonstrates how it is possible to inte-
grate data from a variety of databases and repositories, such as

high-throughput microarray experiments, drug-target informa-
tion and interaction databases, to create a useful platform to
predict and evaluate the effect of perturbations in the cell.

2 METHODS
2.1 Algorithm

The input to our algorithm is a directed weighted network and a pair of
nodes (x,y), where x is the target of a perturbation and y is the node to be
evaluated. The algorithm predicts whether node y is upregulated, down-
regulated or unchanged as the result of inhibiting node x. The acyclic
paths between node x and node y are computed through recursive ex-
haustive search.

The effect (E) of inhibiting node x, on the level of node y, is defined as
the sum of individual effects of all paths from x to y, multiplied by —1:

E(x,y) = =) Fx.p)
i=1

where 7 is the number of acyclic paths from x to y, and F(x,y) is the
function that quantifies the effect of the /" path. In turn, F(x,); is defined

as the multiplication of weights along the i path:

!
Foep) = [[w
j=1

where /is the length of the i”” path, and w is the weight of the j” edge. The
combined effect (CE) of multiple perturbations is defined as the sum of
individual perturbations:

P
CE(1. x2.p,3) = ) B, )
k=1

where p is the number of perturbations, and E(x,y); is the effect of the k™

perturbation. As our algorithm aims to predict the direction of change
(DOC) of the combined effect, we transform the data as follows:

up —regulated (1) if CE > T
DOC = { down — regulated (]) if CE< T
unchanged (=) O.W.

where T is a predefined threshold. Here, we did not optimize the param-
eters, and, somewhat arbitrarily, set the threshold T to be zero and the
weights (w;) to be +0.5 and —0.5 for activating and inhibiting inter-
actions, respectively. Using T =0 dictates that in most cases, a perturb-
ation would affect all genes. Choosing other values for T will allow one to
ignore small changes. Obviously, the choice of optimal thresholds may
change according to the system, the network and the desired specificity
and sensitivity.

2.2 Control and background models

We created three null models as controls for assessing the significance
of the predictions. Two of the null models are based on 1000 simulations
in which the ‘predictions’ were made randomly maintaining either
the ratio of upregulation/downregulation as in the experimental data
(control 1) or that ratio as in results obtained from the algorithm (con-
trol 2). The third control was based on running the algorithms on 1000
randomized networks that preserve the in- and out-degree of each net-
work node (control 3).

2.3 EGFR/MAPK and PI3K/AKT network

To test our algorithm, we used a model created by Nelander et al.
(Nelander et al., 2008), based on a computational and experimental plat-
form regarding MCF7 human breast carcinoma cells. In this model, the
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authors inhibited key components in the network and measured the re-
sulting phenotypic effects. Additionally, they used these measurements to
infer regulatory interactions and construct a regulatory network. The cells
were treated with six inhibitors that were used to target EGFR (ZD1839),
mTOR (rapamycin), MEK (PD0325901), PKC-delta (rottlerin), PI3
kinase (LY294002) and IGFIR (Al2). Inhibitors were administered
singly and in pairs, followed by stimulation with epidermal growth
factor. As relevant readouts of phenotypic responses, phosphor-protein
levels of seven regulators (p-AKT, p-ERK, p-MEK, p-eIF4E, p-RAF,
p-P70S6K and pS6) were measured, as well as cell-cycle arrest and apop-
tosis. These readouts are given as quantitative levels of treated versus
untreated cells standardized to an interval between —1 and +1. Using
these readouts, the authors developed a computational strategy to infer
the regulatory interactions between the network components. They
inferred 23 interactions between 14 nodes, nine of which were designated
as ‘low significance’ interactions. To create a network with a single con-
nected component, we included all 23 interactions (Table 1 and Fig. 1A).
Additionally, we binned the experimental readout values to either upre-
gulated (value>0) or downregulated (value <0).

2.4 Using CMAP expression data

Normalized ratios of treated/untreated expression levels from the CMAP
project (Golub ez al., 2006) were used. The original CMAP data set
included 6100 instances, each representing the expression profile of cells
treated with a small molecule at a specific concentration. Overall, 1310
small molecules were used at different concentrations and on different cell
types. We mapped the small molecules used in CMAP to their known
targets through the ‘Drug Target’ field in the DrugBank database (Knox
etal.,2011). In all, 2861 CMAP instances comprising 548 small molecules
were found to have a known target (Supplementary Table S1). Overall,
552 gene targets were identified. In this study, we used only instances of
MCFT7 cells at their highest concentration of treatment.

Each expression profile in CMAP comprises normalized ratios of trea-
ted/untreated expression levels for 22283 probes on Affymetrix gene
chips. However, the expression level of a single gene may be represented
by multiple, often contradictive, datapoints in CMAP. This can occur if
more than one probe on the microarray is mapped to the same gene, or if
the same experiment was duplicated at different (or the same) concentra-
tions. Therefore, we defined the following policy to determine whether a
gene is over- or underexpressed as a result of treatment: a probe on the
microarray is considered regulated, only if the ratio of treated/untreated
>1.25 (upregulated) or treated/untreated <0.8 (downregulated). A gene is
considered regulated if 70% of its probes change in the same direction.
Additionally, at least 50% of the probes must be either up- or down-
regulated. Using this policy, we tagged each gene as either upregulated,
downregulated or as having no change. To further filter the data, a target
gene was considered valid only if 50% of its direct neighbors in the
regulatory network were regulated in the anticipated direction according
to the sign of the edge. As this last filter dramatically reduces the amount
of data, we used it only for the large NCI network, and not for the small
TNF network.

Table 1. Network statistics

Nodes Interactions Source
EGFR/MAPK 14 23 Nelander ez al.
TNF 14 29 STRING
NCI 227 466 PID

2.5 TNF network

We identified the 25 proteins from the TGF-8 receptor signaling pathway
in Pathway Commons (Cerami et al., 2011) that were targets of a drug in
the CMAP project. The STRING server (Jensen et al., 2009) was used to
determine the regulatory interactions between this subset of proteins.
First, we used the STRING web interface to get a full list of links between
these components and then used the STRING data file (protein.ac-
tions.detailed.v9.0.txt) with information regarding interaction types to
identify regulatory interactions. Removing isolated nodes left us with a
regulatory network of 14 nodes and 29 edges (Table 1 and Fig. 1C).
Merging this data with CMAP revealed a set of 16 perturbations over
13 proteins. Although the remaining (14th) protein was also targeted by a
drug in CMAP, it is excluded because it did not cause a change in the
expression of any of the other network nodes. Similarly, only 10 of the
proteins are analyzed as readouts, as the remaining four did not show any
change for any of the perturbations. We note that four interactions ap-
peared twice with opposite signs. As both interactions may be true under
different biological circumstances, we left both edges in the network.
Many of the interactions in this network involve TNF, therefore we
refer to this network as the TNF network.

2.6 NCI pathways network

The integrated XML file of all NCI pathways was downloaded from PID
(Schaefer et al., 2009). Generally, interactions in this file are described
using the following edge types: input biomolecule (input), negative regu-
lator (inhibitor), positive regulator (agent) and output. The input, agent
and inhibitor edges point from a set of molecules to a specific process
type, which in turn points with an output edge to the output molecule. To
transform this network to a set of binary interactions, we connected each
molecule from the source of the input agent and inhibitor edges to the
target of the output edge. For interactions where no output edge exists,
e.g. when the interaction triggers a biological process, edges were created
from the molecules to the process. This procedure resulted in a network
of 5916 nodes (many of which are complexes) and 13 050 interactions.
For this network, we computed all paths of up to six nodes.

Considering only nodes that were either targets or readouts in CMAP,
or part of the paths connecting them, resulted in a network of 227 nodes
and 466 interactions (Table 1 and Results). Seven edges that were both
activating and inhibiting were treated as described earlier. The network
was rendered using Cytoscape with the force directed layout algorithm
(Smoot et al., 2011).

2.7 Comparing predictions with experimental results
When comparing our predictions with the experimental results, we only
used experimental data points that were either upregulated or downregu-
lated, and not points that had no change. Additionally, we excluded cases
in which there was no path between the perturbed node and the readout
node. Our assumption being that when experimental results imply a regu-
latory relationship between two nodes, but no pathway connects them, it
proves that the pathway is not fully represented, and therefore our
method cannot be tested on such a case.

3 RESULTS

3.1 Predicting the effect of perturbations on a protein
signaling pathway

We first predicted the effects of perturbations on the EGFR/
MAPK and PI3K/AKT signaling pathway. To this end, we
relied on the experiments of Nelander ez al. (Nelander et al.,
2008) who used drugs to inhibit different proteins in these path-
ways, either one at a time or in pairs, in MCF7 breast cancer cells.
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Fig. 1. Predicting perturbation effects on regulatory networks. Panels A and C depict the EGFR/MAPK and PI3K/AKT signaling network as derived
from Nelander ez al. (A), and the TNF network constructed using STRING (C). Solid arrowed edges denote activation, dashed blocked edges denote
inhibition and faint dotted edges denote contradictive information regarding the sign of the interaction. Circles denote genes or proteins, whereas
diamonds denote phenotypic processes. The prediction matrix of our method compared with the experimental readouts for the networks are shown in
panels B and D. The experimental readouts for the EGFR/MAPK and PI3K/AKT signaling network were taken from Nelander et al. and discretized
(B). The experimental readouts for the perturbations on the TNF network were extracted from expression data in the CMAP project (D). The top tables
in these panels present the experimental layout, i.e. which proteins/genes were targeted by a drug (or a pair of drugs) in each experiment. The bottom
tables present our predictions, where arrows indicate the direction of change (up- or downregulated) for each protein/gene, and the shade indicates
whether the prediction agrees with the experimental readout (light grey) or not (dark grey). Results that could not be determined, as either no path exists
between the perturbed node and the readout node or the expression data was inconclusive,are marked with diagonal stripes

For each such perturbation or a combination thereof, they mea-
sured phenotypic readouts of phosphor-protein levels for seven
regulators in these pathways. They also measured the effect of the
perturbations on cell-cycle arrest and apoptosis. The authors then
developed an algorithm that searched for a set of ODEs that will
explain the measurements. Their best model comprised 23 inter-
actions amongst 14 components of the EGFR/MAPK and PI3K/
AKT signaling pathways (see Methods). Table 1 summarizes the
network characteristics. We used this network to predict the

phenotypic effects that were measured in the experiment. The re-
sults of our predictions are presented in Table 2 and illustrated in
Figure 1. Our method correctly predicted the experimental results
(i.e. if a protein is upregulated or downregulated) for 81% (153/
188) of the readouts (Table 2 and Fig. 1A and B). To assess the
significance of these predictions, we compared them to three
background null models (see Methods). Briefly, one null model
was based on randomly designating the effect for each node (e.g.
upregulation or downregulation), preserving the ratio of
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Fig. 2. Integrating data from different bioinformatics resources. In the Connectivity Map (CMAP) Project, cells were treated (perturbed) with hundreds
of small molecules, some of which are drugs, and expression profiles were measured. The ratios of treated/untreated profiles are used to assign each
protein/gene as upregulated, downregulated or unchanged in each experiment (Left). The small molecules used in CMAP can be mapped to their protein/
gene target through DrugBank. In turn, this information can be integrated with regulatory networks through pathway and interaction databases e.g.
STRING and PID Right. Finally, predictions can be made regarding the effect of perturbations on the components of the regulatory networks and then

validated with the expression data in CMAP

Table 2. Prediction results

Regulatory networks Control 1* Control 2° Control 3¢

Precision Y% Y% P-value % P-value % P-value
EGFR/MAPK 153/188 81.4 52.0 (£0.04) <0.001 56.5 (£0.03) <0.001 48.7 (£0.08) <0.001
TNF 31/43 72.1 50.0 (£0.08) 0.014 50.2 (£0.08) 0.014 48.4 (£0.07) 0.002
NCI 143/202 70.8 54.0 (£0.03) <0.001 53.2 (£0.03) <0.001 46.0 (£0.09) <0.001

“Randomly designating the direction of change with the ratio of experimental data.’Randomly designating the direction of change with the ratio of prediction

data.“Predictions for randomized networks, preserving in- and out-degree.

upregulation/downregulation as in the experimental data (con-
trol 1). The second null model was based on random designation
maintaining the ratio of upregulation/downregulation as in the
predictions (control 2). The third control executed the prediction
algorithm on a set of 1000 randomized networks that preserve the
in-degree and out-degree of each component (control 3). As seen
in Table 2, the prediction was highly significant with respect to all
three background models, (P <0.001 in multiple simulation tests
for all three cases).

3.2 Automated merging of regulatory networks and drug
perturbation data

To further explore the extent to which the wiring of the static
network allows the modeling of biological processes, we

attempted to automatically construct regulatory networks,
based on data-mining approaches, and to map experimental per-
turbations to these networks. Figure 2 illustrates this data mining
and integration process. Briefly, CMAP (Golub ez al., 2006) is a
collection of genome-wide transcriptional expression data from
cultured human cells treated with bioactive small molecules.
Thus, CMAP provides a large set of perturbations and their
experimental readouts. DrugBank (Wishart et al., 2006), identi-
fies biologically active molecules and their target proteins. Thus,
we mapped the small molecules used in CMAP to hundreds of
protein targets. STRING (Jensen er al., 2009) identifies pairwise
relationships in high-throughput data. As an example, we exam-
ined the TNF signaling pathway taken from the Pathway
Commons database (Cerami et al., 2011). We chose this
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Fig. 3. NCI network. The combined network composed of all pathways
in NCI was intersected with CMAP data, creating a subnetwork of
227 nodes and 466 edges [rendered using Cytoscape’s force directed
layout (Smoot et al., 2011)]. Solid nodes represent genes whose expression
was changed in CMAP as a result of a perturbation and for which we
provide predictions. This illustration emphasizes the difficulty of making
meaningful predictions on such a complex network. Nevertheless, the
performance on this large, automatically generated network was high

pathway, as many of its nodes were targets of a drug in CMAP.
Using DrugBank, we identified the 25 proteins in this pathway
that were targets of drugs in CMAP. We then used STRING to
identify regulatory interactions between these targets. Excluding
isolated nodes results in a network of 14 proteins/genes and 29
interactions (Table 1 and Fig. 1C). Merging this network with
the CMAP data resulted with 16 perturbation combinations
(nine single perturbations and seven dual ones, i.e. one drug
on two proteins) on 13 of the proteins/genes in the network
(see Methods, Fig. 1D).

3.3 Predicting the effect of perturbations on the TNF
regulatory network

Using our method, we attempted to reproduce the experimental
readouts of CMAP perturbation experiments on the TNF reg-
ulatory network, and determine whether each protein/gene
was upregulated or downregulated by each perturbation or
combinations thereof. Table 2 and Figure 1C and D show the
performance of our approach on this network. The static wiring
successfully predicted the experimentally measured effect of
perturbations for 72.1% (31/43) of the available experimental
data. We used the same three background models described
earlier as controls. Again, our results were significantly better
than all control models (Table 2 lists the P-values for each
model based on multiple simulation tests).

3.4 Predicting the effect of perturbations on a large net-
work of integrated pathways

Next, we show that our algorithm performs well on a large net-
work as well. We constructed a network based on all
NCl-curated pathways available in the PID (Schaefer er al.,
2009) (see Methods). Intersecting this network with CMAP
resulted with a network of 227 nodes and 466 interactions, and
202 experimental readouts on two perturbed nodes (Table 1).
Figure 3 illustrates this network and demonstrates the difficulty
of making meaningful predictions at such a high level of com-
plexity. Nevertheless, our suggested approach was able to cor-
rectly predict whether a gene was up- or downregulated as a
result of a drug perturbation in 71% (143/202) of the cases.
Again, this result is highly significant compared with the three
control models described earlier (P<0.001 for all three control
models, Table 2).

3.5 Relevant comparisons

A previous method by Yeang et al. (Yeang et al., 2004) predicts
the effect of a perturbation as the common effect of the connect-
ing paths and predicts the effect of a single path as the product of
+1/—1 effects of its member interactions. Although similar to
ours, this method is only applicable if no contradicting paths
exist. There are three possible scenarios for the paths between
a perturbed node and readout node: (1) a single path, (2) multiple
consistent paths and (3) multiple contradicting paths. Table 3
shows the number of occurrences and successful predictions for
each of these scenarios in our networks. For example, in the
EGFR/MAPK pathway, out of a total of 188 relevant experi-
ments, 108 (57%) have contradicting paths. Therefore, the ability
of our method to handle such rampant cases is essential.

Another difference between our method and the one of Yeang
et al. is the use of 4+0.5/—0.5 weights. Although we did not op-
timize the algorithm to these (or any other) specific weights, our
main point is to demonstrate the effect of using weights that are
<1. This causes the overall effect to decay exponentially along
the path and thus gives more influence to nearby nodes. This
stipulation is based on the biological intuition that distant nodes,
which require relaying the signal through more nodes, are more
likely to have a smaller effect than closer ones. Considering only
the sign of the path (i.e. assigning weights of +1/—1 to the edges)
results in predictions poorer than the ones we have shown. This
is demonstrated for all three networks (Table 3). For single path-
ways or multiple consistent pathway scenarios, using 4+0.5/—0.5
is the same as using the sign alone. The difference is only in cases
where multiple contradicting paths exist and must be ranked.
For example, the precision for multiple contradicting paths in
the EGFR/MAPK pathway was 73% with +0.5/—0.5 weights
and dropped to 62% using the sign alone.

Our method could also be assessed in comparison with an
intuitive approach that is based only on the direct interactions
in a regulatory network. Although such a method would have a
high precision, we would pay a steep price in recall. For example,
using only the direct interactions in the EGFR/MAPK network
would increase our precision from 81.4 to 85.7%, but will enable
only 56 predictions, instead of 188.

2816

2T0Z ‘Z JoquienoN uo Ariqi Aisealun abpuque) e /H10°seulnolployxo soifewlouiolg//:dny wouj pspeojumoq


http://bioinformatics.oxfordjournals.org/

Static network structure can be used to model the phenotypic effects of perturbations in regulatory networks

Table 3. Path scenarios

Single path Multiple consistent paths Contradicting paths Contradicting paths—Sign only

Precision % Precision % Precision Y% Precision Y%
EGFR/MAPK 21/23 91.3 53/57 93.0 79/108 73.1 67/108 62.0
TNF 20/25 80.0 1/1 100.0 10/17 58.8 717 41.2
NCI 64/94 68.0 55/71 77.0 23/37 62.0 20/37 54.0

4 DISCUSSION

Static network representations have been criticized as too sim-
plistic, as every network model ‘implies a set of dynamical rela-
tionships among its components and, therefore, demands to be
converted into a set of mathematical equations that describe the
temporal and spatial evolution’ (Tyson et al., 2001). The need to
complement static networks with logical constraints or other
mathematical and computational means that may capture the
complexity of biological processes is still frequently mentioned
as a major challenge in systems biology (Auffray ez al., 2010;
Fisher and Piterman, 2010). Indeed, integrative models that
added ODEs as an additional layer to network models have
provided novel insights (Alberghina et al., 2009; Hughey et al.,
2010; Shamir and Karlebach, 2008). In this study, we attempted
to determine to what extent the static, schematic network struc-
ture captures the complexity of dynamic biological processes.
Our results show that the schematic structure of regulatory net-
works captures most of the complexity of the biological process
and enables the prediction of most of the effects of perturbations
on proteins/genes in the network, without requiring dynamic and
kinetic data.

Notably, we applied our suggested simple approach to three
networks that represent different biological realities and different
kinds of pairwise relationships. In the EGFR/MAPK and PI3K/
AKT network, the edges represent protein signaling and depict a
cascade of direct interactions between proteins, where activation
usually refers to phosphorylation, and inhibition usually refers to
dephosphorylation. In contrast, the TNF network is a gene regu-
latory network that represents the direct or indirect relationship
(e.g. gene A upregulates gene B) between the expression of genes.
The NCl-based network is essentially an ensemble of pathways
representing catalytic and regulatory relationships. Although dis-
tinguishing between network types is generally important, in our
analysis, the same simple principle of summation of the effect of
perturbations was seamlessly applicable for all networks, as we
mainly consider the direction and the sign of the interactions. As
our algorithm assumes that the effect of multiple paths is addi-
tive, microarray data should be adjusted when analyzed in this
context. For example, using log transform of microarray expres-
sion levels is more appropriate than the original normalized
values.

Another important difference between the networks we ana-
lyze is the quality of the data and the method of curation. In the
EGFR/MAPK and PI3K/AKT, we relied on a carefully con-
structed network that is based on a wealth of experimental
data and on sophisticated ODE models. In a sense, what we

attempted to do in this case is to validate the static network
wiring suggested by the authors, using a much simpler compu-
tational apparatus. We have shown that even when we forgo the
ODEs and rely only on the static structure of the network, we
manage to correctly predict upregulation and downregulation
that is consistent with experimental measurements.

The two other processes we analyzed, namely the TNF and
the NCI networks, show that the wiring is surprisingly robust.
We constructed the TNF network based on an automatic data-
mining approach from electronic resources that are based mostly
on high-throughput data. Existing interaction/co-expression
data are notoriously noisy, partial and inaccurate. Indeed, the
experimental measurements we used (taken from the high-
throughput CMAP experiment) suffer from the same problems.
The fact that we were still able to make correct predictions based
on these networks and these experimental perturbations suggests
that even when the pairwise relationships that underlie the net-
work are dubious and partial, the wiring can still provide mean-
ingful predictions of the phenotype. The NCI example shows
that the method we suggest is both robust and scalable. This is
a large network with thousands of paths. Such networks are
prone to amplify even small errors and lead to meaningless re-
sults. Moreover, networks of this magnitude are much harder to
handle computationally. However, the analysis of the network
using our algorithm took seconds and the performance remained
high.

Our finding regarding the power of static wiring to account for
network-wide phenomena is consistent with previous studies that
have shown that the intramodular wiring is highly conserved
evolutionarily across different species (Ideker er al., 2008;
Zinman et al., 2011). One may hypothesize that the kinetic details
may be less conserved, yet the wiring itself is maintained.

There is no doubt that when quantitative approaches such as
ODEs or logic-based models are applicable, they can provide
more accurate predictions of the effect of perturbations.
Sophisticated regulatory circuits, which depend on a delicate bal-
ance of concentrations and precise timing, play an important role
in regulation (Kholodenko, 2006). For example, the EGFR/
MAPK signaling cascade is known to be controlled by a negative
feedback loop (Keyse, 2000). Although this negative regulation
is distinctly represented in the network we used, as seen in
Figure 1A (inhibition of ERK on EGFR and the self-inhibition
of MEK), our method failed to effectively model it. This may
explain why our predictions of the readouts for phosphorylated
MEK were somewhat less precise than the predictions for the
other proteins. However, in most cases quantitative approaches
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are not applicable owing to lack of logical and kinetic informa-
tion. Moreover, these modeling approaches typically require
heavy computations and are thus not trivially scalable for
larger networks.

Existing databases have tremendous amounts of data that may
enable the construction of reliable networks. But to construct
these networks, one needs to data mine and integrate data
from many sources. Clever methods for integrating pairwise in-
formation can lead to more accurate and comprehensive net-
works. Once such networks are obtained, our results suggest
they will enable some predictions without requiring kinetic and
logical information. Moreover, we demonstrate that even auto-
matically constructed networks may provide valuable predictions
of phenotype.

This study indicates that despite the importance of elaborate
control mechanisms, a large portion of the control over the
system lies solely in its schematic wiring. This important charac-
teristic enables the use of basic modeling methods like ours to get
an indication of a systems response to a set of perturbations for
the wide range of interaction data usually available only at a low
level of description.
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