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ABSTRACT

Motivation: Biological processes are dynamic, whereas the networks

that depict them are typically static. Quantitative modeling using dif-

ferential equations or logic-based functions can offer quantitative pre-

dictions of the behavior of biological systems, but they require detailed

experimental characterization of interaction kinetics, which is typically

unavailable. To determine to what extent complex biological pro-

cesses can be modeled and analyzed using only the static structure

of the network (i.e. the direction and sign of the edges), we attempt to

predict the phenotypic effect of perturbations in biological networks

from the static network structure.

Results: We analyzed three networks from different sources: The

EGFR/MAPK and PI3K/AKT network from a detailed experimental

study, the TNF regulatory network from the STRING database and a

large network of all NCI-curated pathways from the Protein Interaction

Database. Altogether, we predicted the effect of 39 perturbations

(e.g. by one or two drugs) on 433 target proteins/genes. In up to

82% of the cases, an algorithm that used only the static structure of

the network correctly predicted whether any given protein/gene is

upregulated or downregulated as a result of perturbations of other

proteins/genes.

Conclusion: While quantitative modeling requires detailed experimen-

tal data and heavy computations, which limit its scalability for large

networks, a wiring-based approach can use available data from path-

way and interaction databases and may be scalable. These results lay

the foundations for a large-scale approach of predicting phenotypes

based on the schematic structure of networks.
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1 INTRODUCTION

Analysis of regulatory networks has been used to explore the

molecular mechanisms that underlie biological processes and to

identify new regulatory modules (Hughey et al., 2010; Przytycka
et al., 2010; Shamir and Karlebach, 2008). Network-based mod-

eling tools are often used to account for the difference between

healthy and diseased cells (Sorger et al., 2011). They have also

been used to predict the effect of perturbations, e.g. inhibiting

one protein/gene or more, on other proteins/genes in the network

(Li et al., 2010; Maslov and Ispolatov, 2007; Mitsos et al., 2009;

Prill et al., 2010; Wang et al., 2009). For example, Ruths et al.

successfully predicted changes in protein levels in the MAPK/

AKT signaling network in breast tumor cells in response to per-

turbation of two genes (Ruths et al., 2008). A wide variety of

methods have been developed to analyze regulatory networks

and provide predictions at different levels of detail (Fisher and

Piterman, 2010; Shamir and Karlebach, 2008). The input for

these methods ranges from quantitative kinetic parameters,

such as reaction rates, to logical constraints defining the inter-

actions (e.g. AND/OR relationships). Continuous methods such

as ordinary differential equations (ODEs) model the rate of

change of each component in the network and provide detailed

quantitative information regarding the networks dynamics

(Hughey et al., 2010; Shamir and Karlebach, 2008). However,

ODEs require comprehensive knowledge of kinetic parameters,

which are unknown for most networks, and therefore their

applicability is limited (Arisi et al., 2006; Bailey, 2001; Papin

et al., 2005).
Alternatively, in discrete logic-based models, each component

in the network has a discrete level, which is determined at every

time step through a logical function. Two main methods in this

category are Boolean networks (Glass and Kauffman, 1973;

Thomas, 1973) and Petri nets (Reddy et al., 1996). Both have

been used to model regulatory networks and proven useful for

gaining mechanistic insights and for predicting phenotypes

(Chaouiya, 2007; Morris et al., 2010). Such approaches do not

depend on quantitative data but rather on the structure of the

network along with a set of logical constraints. Although the low

resolution of logic-based models imposes limitations on their

predictive power, they are applicable to systems that could not

be modeled with ODEs owing to lack of kinetic information

(Ruths et al., 2008).

High-throughput technologies are being used extensively to

identify physical and functional relationships between proteins

and genes on a large scale. These data are often deposited in

interaction databases such as IntAct (Hermjakob et al., 2010),

Biogrid (Tyers et al., 2011) and STRING (Jensen et al., 2009).

Pathway databases such as KEGG (Kanehisa et al., 2010) and

the Pathway Interaction Database (PID) (Schaefer et al., 2009),

which are manually curated, also rely on these data. They are

typically represented by schematic diagrams, with no quantita-

tive parameters or logical constraints. Consequently, continuous

models or logic-based models are not applicable to most of the

available interaction data and to most known networks.*To whom correspondence should be addressed.
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Despite this limitation, these data have previously been used to
gain insight and suggest novel molecular mechanisms. For ex-
ample, Ideker et al. used binary protein–protein and protein–

DNA interactions to generate mechanistic hypotheses that
explain experimental expression data (Ideker et al., 2002). This
work was later extended and used to infer regulatory pathways

from subsets of candidate genes using a literature-derived net-
work of biological relationships (Rajagopalan and Agarwal,
2005). More recently, an elegant method applying edge consist-

ency in directed and signed networks was used to infer causal
perturbations (Chindelevitch et al., 2012; Enayetallah et al.,
2011).
Although the representation of biological networks as sche-

matic diagrams is widespread, it is clearly a harsh oversimplifi-
cation of reality and can only give a partial view of the real chain
of events (Tyson et al., 2001). However, as a large portion of

physical and functional interaction data are available only at this
level of abstraction, it is important to explore to what extent
these networks capture the complexity of biological processes.

To this end, we devised a simple algorithm for modeling regula-
tory networks, based on their schematic wiring alone. In particu-
lar, given a regulatory network that depicts known pairwise

relationships within a biological process, this algorithm predicts,
for each protein/gene, whether it will be upregulated, downregu-
lated or will remain unchanged if one or more of the proteins/

genes in the network is perturbed (e.g. inhibited by a drug). To
determine the effect of a perturbation of one protein/gene on
another protein/gene in the network, all the paths between

them are assessed. We tested this approach on three different
networks from three independent sources, for which experimen-
tal perturbation data were available. First, we attempted to pre-

dict the effect of drug perturbations on a relatively small but
carefully constructed protein signaling network that originated
in a detailed experimental study by Nelander et al. (Nelander

et al., 2008). This study also included a comprehensive set of
drug perturbations and their experimental readouts that were
used to validate our predictions. Next, we tested a small gene

regulatory network derived from STRING (Jensen et al., 2009).
Finally, we predicted the effect of drug perturbations on a large
network of hundreds of nodes, including all the National Cancer

Institute (NCI)–curated pathways available in the Protein
Interaction Database (Schaefer et al., 2009). The experimental
drug perturbation data used to evaluate our predictions for the

two last networks were gleaned from microarray data from the
connectivity map (CMAP) project (Golub et al., 2006).
Our approach was able to correctly predict between 71% and

82% of experimental readouts, depending on the quality of the
pairwise data that were used to construct the network. This
shows that the network structure itself captures a significant

part of the dynamic behavior of the network. We compare our
approach with a method proposed by Yeang et al. (Yeang et al.,
2004) who used network structure to predict the effect of per-

turbations where the paths between the perturbed node and the
readout are consistent. Our method provides correct predictions
in many cases where the previous method could not be applied

(e.g. when there are multiple contradicting paths, which in some
networks constitute450% of the cases).
Finally, our analysis demonstrates how it is possible to inte-

grate data from a variety of databases and repositories, such as

high-throughput microarray experiments, drug-target informa-

tion and interaction databases, to create a useful platform to

predict and evaluate the effect of perturbations in the cell.

2 METHODS

2.1 Algorithm

The input to our algorithm is a directed weighted network and a pair of

nodes (x,y), where x is the target of a perturbation and y is the node to be

evaluated. The algorithm predicts whether node y is upregulated, down-

regulated or unchanged as the result of inhibiting node x. The acyclic

paths between node x and node y are computed through recursive ex-

haustive search.

The effect (E) of inhibiting node x, on the level of node y, is defined as

the sum of individual effects of all paths from x to y, multiplied by �1:

Eðx, yÞ ¼ �
Xn
i¼1

Fðx, yÞi

where n is the number of acyclic paths from x to y, and F(x,y) is the

function that quantifies the effect of the ith path. In turn, F(x,y)i is defined

as the multiplication of weights along the ith path:

Fðx, yÞi ¼
Yl
j¼1

wj

where l is the length of the ith path, and wj is the weight of the j
th edge. The

combined effect (CE) of multiple perturbations is defined as the sum of

individual perturbations:

CEðx1, x2:::xp, yÞ ¼
Xp

k¼1

Eðx, yÞk

where p is the number of perturbations, and E(x,y)k is the effect of the k
th

perturbation. As our algorithm aims to predict the direction of change

(DOC) of the combined effect, we transform the data as follows:

DOC ¼
up� regulated ð"Þ if CE 4 T
down� regulated ð#Þ if CE5 T
unchanged ð�Þ O:W:

8<
:

where T is a predefined threshold. Here, we did not optimize the param-

eters, and, somewhat arbitrarily, set the threshold T to be zero and the

weights (wj ) to be þ0.5 and �0.5 for activating and inhibiting inter-

actions, respectively. Using T¼ 0 dictates that in most cases, a perturb-

ation would affect all genes. Choosing other values for T will allow one to

ignore small changes. Obviously, the choice of optimal thresholds may

change according to the system, the network and the desired specificity

and sensitivity.

2.2 Control and background models

We created three null models as controls for assessing the significance

of the predictions. Two of the null models are based on 1000 simulations

in which the ‘predictions’ were made randomly maintaining either

the ratio of upregulation/downregulation as in the experimental data

(control 1) or that ratio as in results obtained from the algorithm (con-

trol 2). The third control was based on running the algorithms on 1000

randomized networks that preserve the in- and out-degree of each net-

work node (control 3).

2.3 EGFR/MAPK and PI3K/AKT network

To test our algorithm, we used a model created by Nelander et al.

(Nelander et al., 2008), based on a computational and experimental plat-

form regarding MCF7 human breast carcinoma cells. In this model, the
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authors inhibited key components in the network and measured the re-

sulting phenotypic effects. Additionally, they used these measurements to

infer regulatory interactions and construct a regulatory network. The cells

were treated with six inhibitors that were used to target EGFR (ZD1839),

mTOR (rapamycin), MEK (PD0325901), PKC-delta (rottlerin), PI3

kinase (LY294002) and IGF1R (A12). Inhibitors were administered

singly and in pairs, followed by stimulation with epidermal growth

factor. As relevant readouts of phenotypic responses, phosphor-protein

levels of seven regulators (p-AKT, p-ERK, p-MEK, p-eIF4E, p-RAF,

p-P70S6K and pS6) were measured, as well as cell-cycle arrest and apop-

tosis. These readouts are given as quantitative levels of treated versus

untreated cells standardized to an interval between �1 and þ1. Using

these readouts, the authors developed a computational strategy to infer

the regulatory interactions between the network components. They

inferred 23 interactions between 14 nodes, nine of which were designated

as ‘low significance’ interactions. To create a network with a single con-

nected component, we included all 23 interactions (Table 1 and Fig. 1A).

Additionally, we binned the experimental readout values to either upre-

gulated (value40) or downregulated (value50).

2.4 Using CMAP expression data

Normalized ratios of treated/untreated expression levels from the CMAP

project (Golub et al., 2006) were used. The original CMAP data set

included 6100 instances, each representing the expression profile of cells

treated with a small molecule at a specific concentration. Overall, 1310

small molecules were used at different concentrations and on different cell

types. We mapped the small molecules used in CMAP to their known

targets through the ‘Drug Target’ field in the DrugBank database (Knox

et al., 2011). In all, 2861 CMAP instances comprising 548 small molecules

were found to have a known target (Supplementary Table S1). Overall,

552 gene targets were identified. In this study, we used only instances of

MCF7 cells at their highest concentration of treatment.

Each expression profile in CMAP comprises normalized ratios of trea-

ted/untreated expression levels for 22 283 probes on Affymetrix gene

chips. However, the expression level of a single gene may be represented

by multiple, often contradictive, datapoints in CMAP. This can occur if

more than one probe on the microarray is mapped to the same gene, or if

the same experiment was duplicated at different (or the same) concentra-

tions. Therefore, we defined the following policy to determine whether a

gene is over- or underexpressed as a result of treatment: a probe on the

microarray is considered regulated, only if the ratio of treated/untreated

41.25 (upregulated) or treated/untreated50.8 (downregulated). A gene is

considered regulated if 70% of its probes change in the same direction.

Additionally, at least 50% of the probes must be either up- or down-

regulated. Using this policy, we tagged each gene as either upregulated,

downregulated or as having no change. To further filter the data, a target

gene was considered valid only if 50% of its direct neighbors in the

regulatory network were regulated in the anticipated direction according

to the sign of the edge. As this last filter dramatically reduces the amount

of data, we used it only for the large NCI network, and not for the small

TNF network.

2.5 TNF network

We identified the 25 proteins from the TGF-� receptor signaling pathway

in Pathway Commons (Cerami et al., 2011) that were targets of a drug in

the CMAP project. The STRING server (Jensen et al., 2009) was used to

determine the regulatory interactions between this subset of proteins.

First, we used the STRING web interface to get a full list of links between

these components and then used the STRING data file (protein.ac-

tions.detailed.v9.0.txt) with information regarding interaction types to

identify regulatory interactions. Removing isolated nodes left us with a

regulatory network of 14 nodes and 29 edges (Table 1 and Fig. 1C).

Merging this data with CMAP revealed a set of 16 perturbations over

13 proteins. Although the remaining (14th) protein was also targeted by a

drug in CMAP, it is excluded because it did not cause a change in the

expression of any of the other network nodes. Similarly, only 10 of the

proteins are analyzed as readouts, as the remaining four did not show any

change for any of the perturbations. We note that four interactions ap-

peared twice with opposite signs. As both interactions may be true under

different biological circumstances, we left both edges in the network.

Many of the interactions in this network involve TNF, therefore we

refer to this network as the TNF network.

2.6 NCI pathways network

The integrated XML file of all NCI pathways was downloaded from PID

(Schaefer et al., 2009). Generally, interactions in this file are described

using the following edge types: input biomolecule (input), negative regu-

lator (inhibitor), positive regulator (agent) and output. The input, agent

and inhibitor edges point from a set of molecules to a specific process

type, which in turn points with an output edge to the output molecule. To

transform this network to a set of binary interactions, we connected each

molecule from the source of the input agent and inhibitor edges to the

target of the output edge. For interactions where no output edge exists,

e.g. when the interaction triggers a biological process, edges were created

from the molecules to the process. This procedure resulted in a network

of 5916 nodes (many of which are complexes) and 13 050 interactions.

For this network, we computed all paths of up to six nodes.

Considering only nodes that were either targets or readouts in CMAP,

or part of the paths connecting them, resulted in a network of 227 nodes

and 466 interactions (Table 1 and Results). Seven edges that were both

activating and inhibiting were treated as described earlier. The network

was rendered using Cytoscape with the force directed layout algorithm

(Smoot et al., 2011).

2.7 Comparing predictions with experimental results

When comparing our predictions with the experimental results, we only

used experimental data points that were either upregulated or downregu-

lated, and not points that had no change. Additionally, we excluded cases

in which there was no path between the perturbed node and the readout

node. Our assumption being that when experimental results imply a regu-

latory relationship between two nodes, but no pathway connects them, it

proves that the pathway is not fully represented, and therefore our

method cannot be tested on such a case.

3 RESULTS

3.1 Predicting the effect of perturbations on a protein

signaling pathway

We first predicted the effects of perturbations on the EGFR/

MAPK and PI3K/AKT signaling pathway. To this end, we
relied on the experiments of Nelander et al. (Nelander et al.,

2008) who used drugs to inhibit different proteins in these path-

ways, either one at a time or in pairs, inMCF7 breast cancer cells.

Table 1. Network statistics

Nodes Interactions Source

EGFR/MAPK 14 23 Nelander et al.

TNF 14 29 STRING

NCI 227 466 PID
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For each such perturbation or a combination thereof, they mea-

sured phenotypic readouts of phosphor-protein levels for seven

regulators in these pathways. They also measured the effect of the

perturbations on cell-cycle arrest and apoptosis. The authors then

developed an algorithm that searched for a set of ODEs that will

explain the measurements. Their best model comprised 23 inter-

actions amongst 14 components of the EGFR/MAPK and PI3K/

AKT signaling pathways (see Methods). Table 1 summarizes the

network characteristics. We used this network to predict the

phenotypic effects that were measured in the experiment. The re-

sults of our predictions are presented in Table 2 and illustrated in

Figure 1. Our method correctly predicted the experimental results

(i.e. if a protein is upregulated or downregulated) for 81% (153/

188) of the readouts (Table 2 and Fig. 1A and B). To assess the

significance of these predictions, we compared them to three

background null models (see Methods). Briefly, one null model

was based on randomly designating the effect for each node (e.g.

upregulation or downregulation), preserving the ratio of

Fig. 1. Predicting perturbation effects on regulatory networks. Panels A and C depict the EGFR/MAPK and PI3K/AKT signaling network as derived

from Nelander et al. (A), and the TNF network constructed using STRING (C). Solid arrowed edges denote activation, dashed blocked edges denote

inhibition and faint dotted edges denote contradictive information regarding the sign of the interaction. Circles denote genes or proteins, whereas

diamonds denote phenotypic processes. The prediction matrix of our method compared with the experimental readouts for the networks are shown in

panels B and D. The experimental readouts for the EGFR/MAPK and PI3K/AKT signaling network were taken from Nelander et al. and discretized

(B). The experimental readouts for the perturbations on the TNF network were extracted from expression data in the CMAP project (D). The top tables

in these panels present the experimental layout, i.e. which proteins/genes were targeted by a drug (or a pair of drugs) in each experiment. The bottom

tables present our predictions, where arrows indicate the direction of change (up- or downregulated) for each protein/gene, and the shade indicates

whether the prediction agrees with the experimental readout (light grey) or not (dark grey). Results that could not be determined, as either no path exists

between the perturbed node and the readout node or the expression data was inconclusive,are marked with diagonal stripes
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upregulation/downregulation as in the experimental data (con-

trol 1). The second null model was based on random designation
maintaining the ratio of upregulation/downregulation as in the

predictions (control 2). The third control executed the prediction
algorithm on a set of 1000 randomized networks that preserve the
in-degree and out-degree of each component (control 3). As seen

in Table 2, the prediction was highly significant with respect to all
three background models, (P50.001 in multiple simulation tests

for all three cases).

3.2 Automated merging of regulatory networks and drug

perturbation data

To further explore the extent to which the wiring of the static

network allows the modeling of biological processes, we

attempted to automatically construct regulatory networks,

based on data-mining approaches, and to map experimental per-

turbations to these networks. Figure 2 illustrates this data mining

and integration process. Briefly, CMAP (Golub et al., 2006) is a

collection of genome-wide transcriptional expression data from

cultured human cells treated with bioactive small molecules.

Thus, CMAP provides a large set of perturbations and their

experimental readouts. DrugBank (Wishart et al., 2006), identi-

fies biologically active molecules and their target proteins. Thus,

we mapped the small molecules used in CMAP to hundreds of

protein targets. STRING (Jensen et al., 2009) identifies pairwise

relationships in high-throughput data. As an example, we exam-

ined the TNF signaling pathway taken from the Pathway

Commons database (Cerami et al., 2011). We chose this

Fig. 2. Integrating data from different bioinformatics resources. In the Connectivity Map (CMAP) Project, cells were treated (perturbed) with hundreds

of small molecules, some of which are drugs, and expression profiles were measured. The ratios of treated/untreated profiles are used to assign each

protein/gene as upregulated, downregulated or unchanged in each experiment (Left). The small molecules used in CMAP can be mapped to their protein/

gene target through DrugBank. In turn, this information can be integrated with regulatory networks through pathway and interaction databases e.g.

STRING and PID Right. Finally, predictions can be made regarding the effect of perturbations on the components of the regulatory networks and then

validated with the expression data in CMAP

Table 2. Prediction results

Regulatory networks Control 1a Control 2b Control 3c

Precision % % P-value % P-value % P-value

EGFR/MAPK 153/188 81.4 52.0 (�0.04) 50.001 56.5 (�0.03) 50.001 48.7 (�0.08) 50.001

TNF 31/43 72.1 50.0 (�0.08) 0.014 50.2 (�0.08) 0.014 48.4 (�0.07) 0.002

NCI 143/202 70.8 54.0 (�0.03) 50.001 53.2 (�0.03) 50.001 46.0 (�0.09) 50.001

aRandomly designating the direction of change with the ratio of experimental data.bRandomly designating the direction of change with the ratio of prediction

data.cPredictions for randomized networks, preserving in- and out-degree.
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pathway, as many of its nodes were targets of a drug in CMAP.

Using DrugBank, we identified the 25 proteins in this pathway

that were targets of drugs in CMAP. We then used STRING to

identify regulatory interactions between these targets. Excluding

isolated nodes results in a network of 14 proteins/genes and 29

interactions (Table 1 and Fig. 1C). Merging this network with

the CMAP data resulted with 16 perturbation combinations

(nine single perturbations and seven dual ones, i.e. one drug

on two proteins) on 13 of the proteins/genes in the network

(see Methods, Fig. 1D).

3.3 Predicting the effect of perturbations on the TNF

regulatory network

Using our method, we attempted to reproduce the experimental

readouts of CMAP perturbation experiments on the TNF reg-

ulatory network, and determine whether each protein/gene

was upregulated or downregulated by each perturbation or

combinations thereof. Table 2 and Figure 1C and D show the

performance of our approach on this network. The static wiring

successfully predicted the experimentally measured effect of

perturbations for 72.1% (31/43) of the available experimental

data. We used the same three background models described

earlier as controls. Again, our results were significantly better

than all control models (Table 2 lists the P-values for each

model based on multiple simulation tests).

3.4 Predicting the effect of perturbations on a large net-

work of integrated pathways

Next, we show that our algorithm performs well on a large net-

work as well. We constructed a network based on all

NCI-curated pathways available in the PID (Schaefer et al.,

2009) (see Methods). Intersecting this network with CMAP

resulted with a network of 227 nodes and 466 interactions, and

202 experimental readouts on two perturbed nodes (Table 1).

Figure 3 illustrates this network and demonstrates the difficulty

of making meaningful predictions at such a high level of com-

plexity. Nevertheless, our suggested approach was able to cor-

rectly predict whether a gene was up- or downregulated as a

result of a drug perturbation in 71% (143/202) of the cases.

Again, this result is highly significant compared with the three

control models described earlier (P50.001 for all three control

models, Table 2).

3.5 Relevant comparisons

A previous method by Yeang et al. (Yeang et al., 2004) predicts

the effect of a perturbation as the common effect of the connect-

ing paths and predicts the effect of a single path as the product of

þ1/�1 effects of its member interactions. Although similar to

ours, this method is only applicable if no contradicting paths

exist. There are three possible scenarios for the paths between

a perturbed node and readout node: (1) a single path, (2) multiple

consistent paths and (3) multiple contradicting paths. Table 3

shows the number of occurrences and successful predictions for

each of these scenarios in our networks. For example, in the

EGFR/MAPK pathway, out of a total of 188 relevant experi-

ments, 108 (57%) have contradicting paths. Therefore, the ability

of our method to handle such rampant cases is essential.

Another difference between our method and the one of Yeang

et al. is the use of þ0.5/�0.5 weights. Although we did not op-

timize the algorithm to these (or any other) specific weights, our

main point is to demonstrate the effect of using weights that are

51. This causes the overall effect to decay exponentially along

the path and thus gives more influence to nearby nodes. This

stipulation is based on the biological intuition that distant nodes,

which require relaying the signal through more nodes, are more

likely to have a smaller effect than closer ones. Considering only

the sign of the path (i.e. assigning weights of þ1/�1 to the edges)

results in predictions poorer than the ones we have shown. This

is demonstrated for all three networks (Table 3). For single path-

ways or multiple consistent pathway scenarios, using þ0.5/�0.5

is the same as using the sign alone. The difference is only in cases

where multiple contradicting paths exist and must be ranked.

For example, the precision for multiple contradicting paths in

the EGFR/MAPK pathway was 73% with þ0.5/�0.5 weights

and dropped to 62% using the sign alone.
Our method could also be assessed in comparison with an

intuitive approach that is based only on the direct interactions

in a regulatory network. Although such a method would have a

high precision, we would pay a steep price in recall. For example,

using only the direct interactions in the EGFR/MAPK network

would increase our precision from 81.4 to 85.7%, but will enable

only 56 predictions, instead of 188.

Fig. 3. NCI network. The combined network composed of all pathways

in NCI was intersected with CMAP data, creating a subnetwork of

227 nodes and 466 edges [rendered using Cytoscape’s force directed

layout (Smoot et al., 2011)]. Solid nodes represent genes whose expression

was changed in CMAP as a result of a perturbation and for which we

provide predictions. This illustration emphasizes the difficulty of making

meaningful predictions on such a complex network. Nevertheless, the

performance on this large, automatically generated network was high
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4 DISCUSSION

Static network representations have been criticized as too sim-

plistic, as every network model ‘implies a set of dynamical rela-

tionships among its components and, therefore, demands to be

converted into a set of mathematical equations that describe the

temporal and spatial evolution’ (Tyson et al., 2001). The need to

complement static networks with logical constraints or other

mathematical and computational means that may capture the

complexity of biological processes is still frequently mentioned

as a major challenge in systems biology (Auffray et al., 2010;

Fisher and Piterman, 2010). Indeed, integrative models that

added ODEs as an additional layer to network models have

provided novel insights (Alberghina et al., 2009; Hughey et al.,

2010; Shamir and Karlebach, 2008). In this study, we attempted

to determine to what extent the static, schematic network struc-

ture captures the complexity of dynamic biological processes.

Our results show that the schematic structure of regulatory net-

works captures most of the complexity of the biological process

and enables the prediction of most of the effects of perturbations

on proteins/genes in the network, without requiring dynamic and

kinetic data.
Notably, we applied our suggested simple approach to three

networks that represent different biological realities and different

kinds of pairwise relationships. In the EGFR/MAPK and PI3K/

AKT network, the edges represent protein signaling and depict a

cascade of direct interactions between proteins, where activation

usually refers to phosphorylation, and inhibition usually refers to

dephosphorylation. In contrast, the TNF network is a gene regu-

latory network that represents the direct or indirect relationship

(e.g. gene A upregulates gene B) between the expression of genes.

The NCI-based network is essentially an ensemble of pathways

representing catalytic and regulatory relationships. Although dis-

tinguishing between network types is generally important, in our

analysis, the same simple principle of summation of the effect of

perturbations was seamlessly applicable for all networks, as we

mainly consider the direction and the sign of the interactions. As

our algorithm assumes that the effect of multiple paths is addi-

tive, microarray data should be adjusted when analyzed in this

context. For example, using log transform of microarray expres-

sion levels is more appropriate than the original normalized

values.
Another important difference between the networks we ana-

lyze is the quality of the data and the method of curation. In the

EGFR/MAPK and PI3K/AKT, we relied on a carefully con-

structed network that is based on a wealth of experimental

data and on sophisticated ODE models. In a sense, what we

attempted to do in this case is to validate the static network

wiring suggested by the authors, using a much simpler compu-

tational apparatus. We have shown that even when we forgo the

ODEs and rely only on the static structure of the network, we

manage to correctly predict upregulation and downregulation

that is consistent with experimental measurements.
The two other processes we analyzed, namely the TNF and

the NCI networks, show that the wiring is surprisingly robust.

We constructed the TNF network based on an automatic data-

mining approach from electronic resources that are based mostly

on high-throughput data. Existing interaction/co-expression

data are notoriously noisy, partial and inaccurate. Indeed, the

experimental measurements we used (taken from the high-

throughput CMAP experiment) suffer from the same problems.

The fact that we were still able to make correct predictions based

on these networks and these experimental perturbations suggests

that even when the pairwise relationships that underlie the net-

work are dubious and partial, the wiring can still provide mean-

ingful predictions of the phenotype. The NCI example shows

that the method we suggest is both robust and scalable. This is

a large network with thousands of paths. Such networks are

prone to amplify even small errors and lead to meaningless re-

sults. Moreover, networks of this magnitude are much harder to

handle computationally. However, the analysis of the network

using our algorithm took seconds and the performance remained

high.
Our finding regarding the power of static wiring to account for

network-wide phenomena is consistent with previous studies that

have shown that the intramodular wiring is highly conserved

evolutionarily across different species (Ideker et al., 2008;

Zinman et al., 2011). One may hypothesize that the kinetic details

may be less conserved, yet the wiring itself is maintained.
There is no doubt that when quantitative approaches such as

ODEs or logic-based models are applicable, they can provide

more accurate predictions of the effect of perturbations.

Sophisticated regulatory circuits, which depend on a delicate bal-

ance of concentrations and precise timing, play an important role

in regulation (Kholodenko, 2006). For example, the EGFR/

MAPK signaling cascade is known to be controlled by a negative

feedback loop (Keyse, 2000). Although this negative regulation

is distinctly represented in the network we used, as seen in

Figure 1A (inhibition of ERK on EGFR and the self-inhibition

of MEK), our method failed to effectively model it. This may

explain why our predictions of the readouts for phosphorylated

MEK were somewhat less precise than the predictions for the

other proteins. However, in most cases quantitative approaches

Table 3. Path scenarios

Single path Multiple consistent paths Contradicting paths Contradicting paths—Sign only

Precision % Precision % Precision % Precision %

EGFR/MAPK 21/23 91.3 53/57 93.0 79/108 73.1 67/108 62.0

TNF 20/25 80.0 1/1 100.0 10/17 58.8 7/17 41.2

NCI 64/94 68.0 55/71 77.0 23/37 62.0 20/37 54.0
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are not applicable owing to lack of logical and kinetic informa-
tion. Moreover, these modeling approaches typically require
heavy computations and are thus not trivially scalable for
larger networks.

Existing databases have tremendous amounts of data that may
enable the construction of reliable networks. But to construct
these networks, one needs to data mine and integrate data

from many sources. Clever methods for integrating pairwise in-
formation can lead to more accurate and comprehensive net-
works. Once such networks are obtained, our results suggest

they will enable some predictions without requiring kinetic and
logical information. Moreover, we demonstrate that even auto-
matically constructed networks may provide valuable predictions

of phenotype.
This study indicates that despite the importance of elaborate

control mechanisms, a large portion of the control over the
system lies solely in its schematic wiring. This important charac-

teristic enables the use of basic modeling methods like ours to get
an indication of a systems response to a set of perturbations for
the wide range of interaction data usually available only at a low

level of description.
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