Driving Semantic Parsing from the World’s Response

James Clarke, Dan Goldwasser, Ming-Wei Chang, Dan Roth

Cognitive Computation Group
University of Illinois at Urbana-Champaign

CoNLL 2010
What is Semantic Parsing?

Meaning Representation

I'd like a coffee with no sugar and just a little milk

\texttt{make(coffee, sugar=0, milk=0.3)}
What is Semantic Parsing?

Meaning Representation

I’d like a coffee with no sugar and just a little milk

make(coffee, sugar=0, milk=0.3)
Supervised Learning Problem

Challenges:

- Structured Prediction problem
- Model part of the structure as hidden?
Multiple approaches to the problem:

- **KRISP** (Kate & Mooney 2006)
 - SVM-based parser using string kernels.
- **Zettlemoyer & Collins 2005; Zettlemoyer & Collins 2007**
 - Probabilistic parser based on relaxed CCG grammars.
- **WASP** (Wong & Mooney 2006; Wong & Mooney 2007)
 - Based on Synchronous CFG.
- **Ge & Mooney 2009**
 - Integrated syntactic and semantic parser.
Multiple approaches to the problem:

- **KRISP (Kate & Mooney 2006)**
 - SVM-based parser using string kernels.
- **Zettlemoyer & Collins 2005; Zettlemoyer & Collins 2007**
 - Probabilistic parser based on relaxed CCG grammars.
- **WASP (Wong & Mooney 2006; Wong & Mooney 2007)**
 - Based on Synchronous CFG.
- **Ge & Mooney 2009**
 - Integrated syntactic and semantic parser.

Assumption: A training set consisting of natural language and meaning representation pairs.
Using the World’s response

Meaning Representation

make(coffee, sugar=0, milk=0.3)

I’d like a coffee with no sugar and just a little milk
Using the World’s response

Meaning Representation

make(coffee, sugar=0, milk=0.3)

I’d like a coffee with no sugar and just a little milk

Good!

Bad!
Using the World’s response

Meaning Representation

I’d like a coffee with no sugar and just a little milk

make(coffee, sugar=0, milk=0.3)

Good!

Bad!

Question: Can we use feedback based on the response to provide supervision?
We aim to:
- Reduce the burden of annotation for semantic parsing.

We focus on:
- Using the World’s response to learn a semantic parser.
- Developing new training algorithms to support this learning paradigm.
- A lightweight semantic parsing model that doesn’t require annotated data.

This results in:
- Learning a semantic parser using zero annotated meaning representations.
Outline

1. Semantic Parsing

2. Learning
 - DIRECT Approach
 - AGGRESSIVE Approach

3. Semantic Parsing Model

4. Experiments
Outline

1 Semantic Parsing

2 Learning
 - DIRECT Approach
 - AGGRESSIVE Approach

3 Semantic Parsing Model

4 Experiments
What is the largest state that borders Texas?

\[\text{largest(state(next_to(texas)))} \]
What is the largest state that borders Texas?

\[
\text{largest}(\text{state(next_to(texas))})
\]

\[
\hat{z} = F_w(x) = \arg \max_{y \in \mathcal{Y}, z \in \mathcal{Z}} w^T \phi(x, y, z)
\]

\[F : \mathcal{X} \rightarrow \mathcal{Z}\]
What is the largest state that borders Texas?

\[\text{largest}(\text{state}(\text{next_to}(\text{texas}))) \]

\[F : \mathcal{X} \rightarrow \mathcal{Z} \]

\[\hat{z} = F_w(x) = \arg \max_{y \in \mathcal{Y}, z \in \mathcal{Z}} w^T \phi(x, y, z) \]

- **Model** The nature of inference and feature functions.
- **Learning Strategy** How we obtain the weights.
What is the largest state that borders Texas?

\[
\text{largest(\text{state(next_to(texas))})}
\]

Response \(r \)

New Mexico

\[
F : \mathcal{X} \rightarrow \mathcal{Z}
\]

\[
\hat{z} = F_w(x) = \arg\max_{y \in \mathcal{Y}, z \in \mathcal{Z}} w^T \Phi(x, y, z)
\]

- **Model** The nature of inference and feature functions.
- **Learning Strategy** How we obtain the weights.
Outline

1. Semantic Parsing

2. Learning
 - DIRECT Approach
 - AGGRESSIVE Approach

3. Semantic Parsing Model

4. Experiments
Learning

Inputs:

- Natural language sentences.
- \(\text{Feedback} : \mathcal{X} \times \mathcal{Z} \rightarrow \{+1, -1\} \).
- Zero meaning representations.
Learning

Inputs:

- Natural language sentences.
- Feedback: $\mathcal{X} \times \mathcal{Z} \rightarrow \{+1, -1\}$.
- Zero meaning representations.

\[
\text{Feedback}(x, z) = \begin{cases}
+1 & \text{if } \text{execute}(z) = r \\
-1 & \text{otherwise}
\end{cases}
\]
Learning

Inputs:
- Natural language sentences.
- Feedback: $\mathcal{X} \times \mathcal{Z} \rightarrow \{+1, -1\}$.
- Zero meaning representations.

Goal: A weight vector that scores the correct meaning representation higher than all other meaning representations.

Response Driven Learning:

Input text \arrow{predict} Meaning Representation \arrow{apply to} World
Learning Strategies

\[\text{repeat} \quad \text{for all input sentences do} \]
\[\quad \text{Solve the inference problem} \]
\[\quad \text{Query } Feedback \text{ function} \]
\[\text{end for} \]
\[\text{Learn a new } w \text{ using feedback} \]
\[\text{until Convergence} \]
repeat
for all input sentences do
 Solve the inference problem
 Query Feedback function
end for
Learn a new \(w \) using feedback
until Convergence

\[y, z = \arg \max w^T \Phi(x, y, z) \]
repeat
 for all input sentences do
 Solve the inference problem
 Query Feedback function
 end for
until Convergence

Learn a new \(\mathbf{w} \) using feedback

\[
\begin{align*}
\mathbf{x}_1 &\rightarrow \mathbf{y}_1 \rightarrow \mathbf{z}_1 \rightarrow +1 \\
\mathbf{x}_2 &\rightarrow \mathbf{y}_2 \rightarrow \mathbf{z}_2 \rightarrow -1 \\
\mathbf{x}_3 &\rightarrow \mathbf{y}_3 \rightarrow \mathbf{z}_3 \rightarrow -1 \\
\vdots &\rightarrow \vdots \rightarrow \vdots \\
\mathbf{x}_n &\rightarrow \mathbf{y}_n \rightarrow \mathbf{z}_n \rightarrow -1
\end{align*}
\]
Learning Strategies

repeat
 for all input sentences do
 Solve the inference problem
 Query Feedback function
 end for
 Learn a new w using feedback
until Convergence

$y = \arg \max_w w^T \Phi(x, y, z)$

Clarke, Goldwasser, Chang, Roth
Outline

1. Semantic Parsing

2. Learning
 - DIRECT Approach
 - AGGRESSIVE Approach

3. Semantic Parsing Model

4. Experiments
DIRECT Approach

Learn a binary classifier to discriminate between good and bad meaning representations.
DIRECT Approach

Use \((x, y, z)\) as a training example with label from feedback.
DIRECT Approach

- Use \((x, y, z)\) as a training example with label from feedback.
- Find \(w\) such that \(f \cdot w^T \Phi(x, y, z) > 0\)
DIRECT Approach

Each point represented by $\Phi(x, y, x)$ normalized by $|x|$
Learn a binary classifier to discriminate between good and bad meaning representations.
DIRECT Approach

repeat
 for all input sentences do
 Solve the inference problem
 Query Feedback function
 end for
 Learn a new \(w \) using feedback
until Convergence
DIRECT Approach

repeat
 for all input sentences do
 Solve the inference problem
 Query Feedback function
 end for
 Learn a new w using feedback
until Convergence

\mathbf{x}_1

\mathbf{x}_2

\mathbf{x}_3

\vdots

\mathbf{x}_n
DIRECT Approach

```
repeat
  for all input sentences do
    Solve the inference problem
    Query Feedback function
  end for
  Learn a new $w$ using feedback
until Convergence

$y, z = \arg \max w^T \Phi(x, y, z)$
```
DIRECT Approach

\[
x_1 \rightarrow y'_1 \rightarrow z'_1 \rightarrow +1
\]

\[
x_2 \rightarrow y'_2 \rightarrow z'_2 \rightarrow +1
\]

\[
x_3 \rightarrow y'_3 \rightarrow z'_3 \rightarrow +1
\]

\[
\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots
\]

\[
x_n \rightarrow y'_n \rightarrow z'_n \rightarrow -1
\]

repeat

for all input sentences do

Solve the inference problem

Query Feedback function

end for

Learn a new \(w \) using feedback

until Convergence
DIRECT Approach

\[\begin{align*}
 x_1, y'_1, z'_1 & \rightarrow +1 \\
 x_2, y'_2, z'_2 & \rightarrow +1 \\
 x_3, y'_3, z'_3 & \rightarrow +1 \\
 \vdots & \quad \vdots \\
 x_n, y'_n, z'_n & \rightarrow -1
\end{align*} \]

repeat

for all input sentences do
 Solve the inference problem
 Query Feedback function
end for

Learn a new \(w \) using feedback

until Convergence

Clarke, Goldwasser, Chang, Roth
DIRECT Approach

Repeat until convergence!
Outline

1. Semantic Parsing

2. Learning
 - DIRECT Approach
 - AGGRESSIVE Approach

3. Semantic Parsing Model

4. Experiments
AGGRESSIVE Approach

Positive feedback is a good indicator of the correct meaning representation.

Use data with positive feedback as training data for structured learning.
AGGRESSIVE Approach

\[
\begin{align*}
 x_1 &\rightarrow y_1 \rightarrow z_1 \rightarrow +1 \\
 x_2 &\rightarrow y_2 \rightarrow z_2 \rightarrow -1 \\
 x_3 &\rightarrow y_3 \rightarrow z_3 \rightarrow -1 \\
 \vdots & \vdots \vdots \vdots \quad \vdots \\
 x_n &\rightarrow y_n \rightarrow z_n \rightarrow -1
\end{align*}
\]

repeat
for all input sentences do
 Solve the inference problem
 Query \textit{Feedback} function
end for
Learn a new \textbf{w} using feedback
until Convergence
AGGRESSIVE Approach

- Use items with positive feedback as training data for a structured learner.

\[
\begin{align*}
\mathbf{x}_1 & \rightarrow \mathbf{y}_1 \rightarrow \mathbf{z}_1 \rightarrow +1 \\
\mathbf{x}_2 & \rightarrow \mathbf{y}_2 \rightarrow \mathbf{z}_2 \rightarrow -1 \\
\mathbf{x}_3 & \rightarrow \mathbf{y}_3 \rightarrow \mathbf{z}_3 \rightarrow -1 \\
\vdots & \quad \vdots \quad \vdots \quad \vdots \quad \vdots \\
\mathbf{x}_n & \rightarrow \mathbf{y}_n \rightarrow \mathbf{z}_n \rightarrow -1
\end{align*}
\]
AGGRESSIVE Approach

Use items with positive feedback as training data for a structured learner.
AGGRESSIVE Approach

Use items with positive feedback as training data for a structured learner.

\[\mathbf{x}_1 \rightarrow \mathbf{y}_1 \rightarrow \mathbf{z}_1 \]

\[\mathbf{x}_2 \rightarrow \mathbf{y}_2 \rightarrow \mathbf{z}_2 \]

\[\mathbf{x}_3 \rightarrow \mathbf{y}_3 \rightarrow \mathbf{z}_3 \]

\[\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \]

\[\mathbf{x}_n \rightarrow \mathbf{y}_n \rightarrow \mathbf{z}_n \]
AGGRESSIVE Approach

Use items with positive feedback as training data for a structured learner.

Implicitly consider all other meaning representations for these examples as bad.

Find \mathbf{w} such that

$$\mathbf{w}^T \Phi(\mathbf{x}, \mathbf{y}^*, \mathbf{z}^*) > \mathbf{w}^T \Phi(\mathbf{x}, \mathbf{y}', \mathbf{z}')$$
AGGRESSIVE Approach

repeat
for all input sentences do
 Solve the inference problem
 Query Feedback function
end for
Learn a new \(w \) using feedback
until Convergence
AGGRESSIVE Approach

\[
\begin{align*}
x_1, x_2, x_3, \ldots, x_n
\end{align*}
\]

repeat
for all input sentences do
 Solve the inference problem
 Query Feedback function
end for
Learn a new \(w \) using feedback
until Convergence

Clarke, Goldwasser, Chang, Roth
AGGRESSIVE Approach

\[x_1 \rightarrow y'_1 \rightarrow z'_1 \]

\[x_2 \rightarrow y'_2 \rightarrow z'_2 \]

\[x_3 \rightarrow y'_3 \rightarrow z'_3 \]

\[\vdots \]

\[x_n \rightarrow y'_n \rightarrow z'_n \]

\[\text{repeat} \]
\[\text{for all input sentences do} \]
\[\text{Solve the inference problem} \]
\[\text{Query Feedback function} \]
\[\text{end for} \]
\[\text{Learn a new } w \text{ using feedback} \]
\[\text{until Convergence} \]

\[y, z = \arg \max w^T \Phi(x, y, z) \]
repeat
 for all input sentences do
 Solve the inference problem
 Query Feedback function
 end for
 Learn a new \(w \) using feedback
until Convergence
AGGRESSIVE Approach

repeat
 for all input sentences do
 Solve the inference problem
 Query *Feedback* function
 end for
 Learn a new w using feedback
until Convergence
AGGRESSIVE Approach

repeat
 for all input sentences do
 Solve the inference problem
 Query Feedback function
 end for
 Learn a new \(\mathbf{w} \) using feedback
until Convergence

\[\mathbf{x}_1 \rightarrow \mathbf{y}_1' \rightarrow \mathbf{z}_1' \]
\[\mathbf{x}_2 \rightarrow \mathbf{y}_2' \rightarrow \mathbf{z}_2' \]
\[\mathbf{x}_3 \rightarrow \mathbf{y}_3' \rightarrow \mathbf{z}_3' \]
\[\vdots \rightarrow \vdots \rightarrow \vdots \]
\[\mathbf{x}_n \rightarrow \mathbf{y}_n' \rightarrow \mathbf{z}_n' \]
AGGRESSIVE Approach

\[
\begin{align*}
 x_1 &\quad \rightarrow \quad y'_1 \quad z'_1 \\
 x_2 &\quad \rightarrow \quad y'_2 \quad z'_2 \\
 x_3 &\quad \rightarrow \quad y'_3 \quad z'_3 \\
 \vdots &\quad \quad \vdots \quad \quad \vdots \\
 x_n &\quad \rightarrow \quad y'_n \quad z'_n
\end{align*}
\]

repeat
 for all input sentences do
 Solve the inference problem
 Query Feedback function
 end for
 Learn a new \(w \) using feedback
until Convergence

Clark, Goldwasser, Chang, Roth
Summary of Learning Strategies

- **DIRECT** Uses both positive and negative feedback as examples to train a binary classifier.
- **AGGRESSIVE** Adapts the feedback signal and uses only positive feedback to train a structured predictor.

Clarke, Goldwasser, Chang, Roth
Outline

1. Semantic Parsing

2. Learning
 - DIRECT Approach
 - AGGRESSIVE Approach

3. Semantic Parsing Model

4. Experiments
What is the largest state that borders Texas?

\[
\hat{z} = F_w(x) = \arg \max_{y \in Y, z \in Z} w^T \Phi(x, y, z)
\]

- **First-order**: Map lexical items. \textit{largest} \rightarrow \textit{largest}
- **Second-order**: Composition. \textit{next_to} (\textit{state} (·)) or \textit{state} (\textit{next_to} (·))

Inference procedure leverages the typing information of the domain.
How many people live in the state of Texas?

Goal: \(\text{population}(\text{state(texas)}) \)
How many people live in the state of Texas?

Goal: `population(state(texas))`
First-order Decisions

How many people live in the state of Texas?

Goal: population(state(texas))
First-order Decisions

How many people live in the state of Texas?

- Use a simple lexicon to bootstrap the process.

Goal: \text{population(state(texas))}
How many people live in the state of Texas?

- Use a simple lexicon to bootstrap the process.

Goal: population(state(texas))
First-order Decisions

How many people live in the state of Texas?

- Use a simple lexicon to bootstrap the process.

Goal: \(\text{population}(\text{state}('texas')) \)
First-order Decisions

How many people live in the state of Texas?

- Use a simple lexicon to bootstrap the process.
- Lexical resources help us move beyond the lexicon.

\[\text{wordnet_sim(people,population)} \]

Goal: \(\text{population(state(texas))} \)
Use a simple lexicon to bootstrap the process.

Lexical resources help us move beyond the lexicon.

```python
wordnet_sim(people, population)
```

Goal: population(state(texas))
How many people live in the state of Texas?

- Use a simple lexicon to bootstrap the process.
- Lexical resources help us move beyond the lexicon.
 \[
 \text{wordnet_sim}(\text{people}, \text{population})
 \]
- Context helps disambiguate between choices.

\textbf{Goal:} \text{population}(\text{state(texas)})
Second-order Decisions

How do we compose the predicates and constants.

Domain dependent:
- Encode typing information inherent in the domain into the inference procedure.
- \(\text{population(state(\cdot)) vs state(population(\cdot))} \)

Features:
- Dependency path distance.
- Word position distance.
- Predicate “bigrams”.
- \(\text{next_to(state(\cdot)) vs state(next_to(\cdot))} \)
Outline

1. Semantic Parsing

2. Learning
 - DIRECT Approach
 - AGGRESSIVE Approach

3. Semantic Parsing Model

4. Experiments
Domain:
GEOQUERY U.S Geographical Questions.
- Response 250. \((x, r)\) pairs. Zero meaning representations.
- Query 250. \((x)\) sentences.

Evaluation metric:
Accuracy (percentage of meaning representations that return the correct answer).
<table>
<thead>
<tr>
<th>Algorithm</th>
<th>R250</th>
<th>Q250</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOLEARN</td>
<td>22.2</td>
<td>—</td>
</tr>
<tr>
<td>DIRECT AGGRESSIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPERVISED</td>
<td>87.6</td>
<td>80.4</td>
</tr>
<tr>
<td>Algorithm</td>
<td>R250</td>
<td>Q250</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>NOLEARN</td>
<td>22.2</td>
<td>—</td>
</tr>
<tr>
<td>DIRECT AGGRESSIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPERVISED</td>
<td>87.6</td>
<td>80.4</td>
</tr>
</tbody>
</table>

- NOLEARN used to initialize both learning approaches.
Q: How good is our model when trained in a fully supervised manner?

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>R250</th>
<th>Q250</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOLEARN</td>
<td>22.2</td>
<td>—</td>
</tr>
<tr>
<td>DIRECT AGGRESSIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPERVISED</td>
<td>87.6</td>
<td>80.4</td>
</tr>
</tbody>
</table>
Q: How good is our model when trained in a fully supervised manner?

A: 80% on test data. Other supervised methods range from 60% to 85% accuracy.
Learning Behavior

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>R250</th>
<th>Q250</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO LEARN</td>
<td>22.2</td>
<td>—</td>
</tr>
<tr>
<td>DIRECT AGGRESSIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPERVISED</td>
<td>87.6</td>
<td>80.4</td>
</tr>
</tbody>
</table>

Q: Is it possible to learn without any meaning representations?
Learning Behavior

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>R250</th>
<th>Q250</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO LEARN</td>
<td>22.2</td>
<td></td>
</tr>
<tr>
<td>DIRECT</td>
<td>75.2</td>
<td>69.2</td>
</tr>
<tr>
<td>AGGRESSIVE</td>
<td>82.4</td>
<td>73.2</td>
</tr>
<tr>
<td>SUPERVISED</td>
<td>87.6</td>
<td>80.4</td>
</tr>
</tbody>
</table>

- **Q:** Is it possible to learn without any meaning representations?
- **A:** Yes!
- **A:** Learns to cover more of the Response data set.
- **A:** And only 7% below the SUPERVISED upper bound.
Learning Behavior

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>R250</th>
<th>Q250</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOLEARN</td>
<td>22.2</td>
<td>—</td>
</tr>
<tr>
<td>DIRECT</td>
<td>75.2</td>
<td>69.2</td>
</tr>
<tr>
<td>AGGRESSIVE</td>
<td>82.4</td>
<td>73.2</td>
</tr>
<tr>
<td>SUPERVISED</td>
<td>87.6</td>
<td>80.4</td>
</tr>
</tbody>
</table>

Q: Is it possible to learn without any meaning representations?

A: Yes!

A: Learns to cover more of the Response data set.

A: And only 7% below the SUPERVISED upper bound.
AGGRESSIVE correctly interprets 16% that DIRECT does not. 9% vice-versa. Leaving only 9% incorrect.
Similar to indirect learning protocols:

- Learning a binary classifier with “hidden explanation”. Supervision only required for binary data. No labeled structures. NAACL 2010 (Chang, Goldwasser, Roth, Srikumar 2010a).

- Structured learning with binary and structured labels. Mix of supervision for binary data and structured data. Binary label indicates whether input has a “good” structure. ICML 2010 (Chang, Goldwasser, Roth, Srikumar 2010b).
Conclusions

Contributions:

- Response Driven Learning. A new learning paradigm that doesn’t rely on annotated meaning representations. Supervised at the response level. Natural supervision signal.
- Two learning algorithms capable of working within response driven learning.
- A shallow semantic parsing model.

Future work:

- Can we combine the two learning algorithms?
- Other semantic parsing domains?
- Response driven learning for other tasks?