Unbundling Transaction Services in the Cloud

Alan Fekete
University of Sydney

Sydney, Australia
+61-2-93514287
a.fekete@usyd.edu.au

David Lomet
Microsoft Research

Redmond, WA 98052
+01-425-703-1853
lomet@microsoft.com

Gerhard Weikum

Max Planck Institute
Saarbricken, Germany Redmond, WA 98052
+49-681-9325-500
weikum@mpi-sb.mpg.de mikezw@microsoft.com

Mike Zwilling
Microsoft Corporation

+01-425-703-6378

ABSTRACT

The traditional architecture for a DBMS engine has the recovery,
concurrency control and access method code tightly bound
together in a storage engine for records. We propose a different
approach, where the storage engine is factored into two layers
(each of which might have multiple heterogeneous instances). A
Transactional Component (TC) works at a logical level only: it
knows about transactions and their “logical” concurrency control
and undo/redo recovery, but it does not know about page layout,
B-trees etc. A Data Component (DC) knows about the physical
storage structure. It supports a record oriented interface that
provides atomic operations, but it does not know about
transactions. Providing atomic record operations may itself
involve DC-local concurrency control and recovery, which can be
implemented using system transactions. The interaction of the
mechanisms in TC and DC leads to multi-level redo (unlike the
repeat history paradigm for redo in integrated engines). This
refactoring of the system architecture could allow easier
deployment of application-specific physical structures and may
also be helpful to exploit multi-core hardware. Particularly
promising is its potential to enable flexible transactions in cloud
database deployments. We describe the necessary principles for
unbundled recovery, and discuss implementation issues.

Categories and Subject Descriptors
H.2.4 [Systems]: Concurrency, Transaction processing

H.2.2 [Physical Design]: Recovery and restart, access methods

General Terms
Design, Reliability, Algorithms.

Keywords
System architecture, cloud computing, logical locking and logging

1. INTRODUCTION

DBMS decomposition has been suggested by several researchers
[2, 8, 21], but has remained an elusive goal, “up in the clouds”,
for two decades. One can indeed easily separate the query
processing and optimization components from the storage engine.
However, as observed in [10], “The truly monolithic piece of a

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/3.0/).

You may copy, distribute, display, and perform the work, make
derivative works and make commercial use of the work, but you must
attribute the work to the author and CIDR 2009.

4" Biennial Conference on Innovative Data Systems Research (CIDR)
January 4-7, 2009, Asilomar, California, USA.

DBMS is the transactional storage manager that typically
encompasses four deeply intertwined components:

1. A lock manager for concurrency control.

2. A log manager for recovery.

3. A buffer pool for staging database 1/0s.

4. Access methods for organizing data on disk.”

Folk wisdom, beginning with System R [6, 7], suggests that this
integration is a requirement for high performance from these
system elements, since they are exercised continuously during
DBMS execution. Nevertheless, cloud computing re-introduces
interest in and pressure for again tackling this challenge of
unbundling transaction services and data management.

1.1 Industry Trends

Trends within the computing systems industry, especially for
database systems, require us to rethink the database systems
architecture and to consider disentangling the previously
integrated aspects of the database kernel, transactional services
going to a transactional component (TC) that is architecturally
separate from data services (access methods and cache
management) in a data component (DC). These imperatives are:

1. Cloud computing opens up opportunities for easy
deployment of new, perhaps application dependent, database
management. Cloud deployments create new problems of
scale and computing infrastructure. Separating TC
functionality from DC functionality enables cloud platforms
to support transactions with much greater flexibility,
regardless of where in the cloud the data and its DCs reside.

2. New, light-weight data-management engines for specific
application areas (“one size does not fit all" [22]) call for a
composable run-time infrastructure with low overhead. For
example, one might build an RDF engine as a DC with
transactional functionality added as a separate layer.

3. The major hardware trends of our time are (1) increasing
numbers of cores on processor chips, and (2) increasing main
memory latency. This suggests a rethinking of database
architecture (even for traditional database applications such
as OLTP [9]) to enhance parallelism and improve cache hit
ratios. The decomposition into TC and DC may improve
both processor (core) utilization since each component could
run on a separate core, and cache performance, since each
component will have shorter code paths and may result in
much higher hit rates for the instruction cache(s) of one core.

Substantial processing power has existed for many years
within the controllers for 1/O subsystems. One appealing
notion has been to move part of database functionality out of
the cpu and into these controllers. Separating the data
component as we are suggesting, permits moving this “data
centric” functionality to the storage controllers, enabling a

mailto:lomet@microsoft.com
mailto:a.fekete@usyd.edu.au
mailto:weikum@mpi-sb.mpg.de
mailto:mikezw@microsoft.com

“disk” to support a record oriented interface instead of a page
oriented interface.

5. A classic goal has been extensible database management
systems. Adding a new access method to support new data
types (e.g., shapes, avatars, etc. used in virtual worlds, for
games, and 3D Internet) and their associated search needs is
eased substantially when the type implementation (as DC)
can rely on transactional services provided separately by TC.

1.2 Our Contribution

What makes partitioning a database kernel difficult is that state-
of-the-art concurrency control and recovery relies on knowledge
of the way that storage is paginated, and how records are assigned
to pages. For example, physiological logging [6, 24] requires each
log record to deal with a single page. Also, state-of-the-art access
methods use sophisticated ways to get high concurrency.

Our contribution is an architecture for database kernels in which
transactional functionality in a TC is unbundled from the access
methods and cache management in a DC. The TC does all locking
for transactional concurrency control and logging for transaction
abort and durability. All knowledge of pages is confined to a DC,
which means that the TC must operate at the logical level on
records. The TC invokes (and logs) logical operations of a DC.
This is pictured in Figure 1. Our design differs from [21], where
access methods are done on top of a transactional layer.

Application 1

Application 2

Applications

deployg‘ul

Cloud Services

transactional
recovery&CC

transactional
recovery&CC

Dl:
tables&indexes
storage&cache

DC4:

C. DC5:
tables&indexes RDF & text
storage&cache

DCe:
3D-shape
index

Figure 1: Architecture of an unbundled database kernel.

A DC knows nothing about transactions, their commit or abort. It
is required to make the individual logical operations atomic and
idempotent. ldempotence of DC operations permits the TC to
resend operations to the DC, either during normal execution
(perhaps after a response is lost) or later during recovery, while
ensuring exactly-once execution of the overall system.

Both the TC and DC are multi-threaded, which is essential for
high performance, but which introduces a number of subtle issues
with which both TC and DC must deal. For example, TC has an
obligation to never send logically conflicting operations
concurrently to a DC. In this way, the order of logical log records
written by the TC can be guaranteed to be consistent with the
physical ordering performed in a DC.

Because a DC completely handles the pagination required for an
access method like B-trees, it is the DC that must deal with page
splits and deletes. Such structure modifications themselves require

concurrency control and recovery. Integrating recovery across
both transaction and access method levels is a characteristic of
modern database systems [10], but providing them separately
from each other requires thinking anew about multi-level
recovery. We address this in Section 4.2.

Providing separate TC and DC permits us to instantiate these
components in a number of new and interesting ways. Because
DCs have longer execution paths, one might deploy a larger
number of DC instances on a multi-core platform than TC
instances for better load balancing. In a cloud environment, one
would want DCs to be close to the data, while the TCs might have
a much looser coupling. While multiple TCs must never send
conflicting operations to a DC (because the order of operations
will not be logged at the DC), it is nonetheless possible for TCs to
share data, especially when DCs provide a versioning capability.
Deploying TCs that can share DCs in this way enables our
architecture to support some of the interesting cloud scenarios,
without introducing the need for two phase commit.

2. APPLICATION PERSPECTIVE

In the Web 2.0 landscape, there are new applications that desire
fast and easy deployment on a care-free platform. Such
applications include social-community forums (e.g., sharing
photos, videos, reviews, ratings, etc.), Internet-based long-running
games with many players, and information mashups that compose
value-added portals from blogs, news, and other Internet sources.
Cloud services are intended to provide a convenient solution for
such applications. Unbundling, as we suggest, can help Web 2.0
get fast transfer of original ideas into popular Internet sites.

As one example, consider a Web 2.0 photo-sharing platform. On
first thought, this may seem simple, merely needing persistent
storage for large files. But the application also must manage users
and their accounts, photo ownerships and access rights for other
users, thematic groups for photos and users, friendships and other
interactions among users, and so on. This should be consistent
under high update rates; so there is a significant OLTP aspect.

Photos are associated with annotations (tags) and reviews. This
entails referential integrity constraints; corresponding operations
must be guarded by transactions with appropriate scope. Reviews
consist of natural-language text, and the application may have a
non-standard index structure for this (e.g., for phrases that express
opinions). Similarly, advanced visualizations of say the tag-cloud
dynamics may require special data structures as well. Finally,
imagine fancy functionality that finds photos of the same object
(e.g., the Golden Gate Bridge) uploaded by different users and
combines them into a 3D model which in turn would be made
searchable using the latest index structures for geometric shapes.

Of course, all this rich data could be mapped onto relational tables
provided by a DBMS-style cloud service. But then the application
could not utilize its advanced indexes for text phrases, 3D models,
etc. Alternatively, it could use a simpler storage service, offered in
the cloud, without transaction management. This service would
just provide persistent store, with unlimited scalability and de-
facto perfect availability, and the application program would
implement its index structures on top of it. But now the
application would also have to implement its own transactional
concurrency control and recovery. The authors of [3] have shown
how to do this with overhead; but we can do better by unbundling
the transactional issues from the actual data management. The

photo-sharing application could use a combination of already
available file and table managers and home-grown index
managers as DCs. For transaction management it could directly
use the services of a TC, offered in the cloud. This TC (or these
TCs if we instantiate it multiple times for scaling up throughput)
would be able to interact with the various DCs via interaction
contracts as will be explained in later sections. There is no free
lunch, though. The application's home-grown DCs would have to
be written so as to satisfy the DC parts of the contracts. This is
simpler than designing and coding a high-performance
transactional storage subsystem.

3. TECHNICAL CHALLENGES

The existing industry-standard solutions to concurrency control
and recovery do not work when transaction services are separated
from access methods and cache management. Most of this paper is
focused on dealing with recovery issues, which require a larger
departure from current practice. However, we first outline how we
would deal with concurrency control differences as well.

3.1 Concurrency Control

For many operations, splitting the database kernel into TC and
DC causes little trouble for a two phase locking approach to
transactional concurrency control. The operations that involve
updating or reading of records that are named by record identifiers
can easily lock these records within a TC, prior to the TC sending
the request to the DC that accesses the page containing the record.
It is harder when ranges of records are being locked.

In existing systems where the database kernel is one integrated
piece, a requested operation is actually executing within the page
containing the data. Thus an operation dealing with a range can
determine the keys involved, then lock them using, e.g., key range
locking [13, 20], before performing the actual access. But in our
unbundled approach, the TC needs to do the locking prior! to
sending a request to the DC. That is, the lock must be obtained
before it is known which keys are present in (or just after) the
range. Thus we need to invest our lock manager and the TC code
that uses it with techniques for locking ranges. We know of two
ways to deal with the locking of ranges of records.

Fetch ahead protocol: Do an initial speculative probe to have the
DC return the keys to the next (in order) collection of keys. At
this point, the TC can lock those records, and submit the next
request to do the read or write, together with a speculative request
for the following keys. Should the records to be read or written
be different from the ones that were locked based on the earlier
request, this subsequent request becomes again a speculative
request for the earlier records.

Range locks: Introduce explicit range locks that partition the keys
of any table. Many systems currently support some form of this
by permitting table locks or page locks, however our separation
precludes us from locking pages. Each range of the partition is
locked prior to accessing the requested records. There can be
speculative record accesses at partition boundaries, but most
accesses can proceed without this. This protocol avoids key range
locking, and hence gives up some concurrency. However it should
also reduce locking overhead since fewer locks are needed.

! This is to enforce the requirement that the DC never have two
conflicting operations executing concurrently.

Either of these approaches can be made to work, so we now turn
our attention to dealing with recovery.

3.2 Recovery

In an unbundled kernel, ARIES-style recovery [19, 20] does not
work, even augmented with the usual multi-level recovery [14,
23] with physical repeating-history redo of log records, and
logical, multi-level undo (which allows fine-grained concurrency
control).

1. The DC provides only record-oriented logical operations
where the TC knows nothing about pages. Hence, the TC log
records cannot contain page identifiers. Redo needs to be
done at a logical level. Pages and dealing with them is the
exclusive province of the DC. Logical redo requires that, e.g.
DC data structures be well formed (search correct) at the
time that redo is performed, not simply when undo is
performed While System R performed logical redo, it
required operation-consistent checkpointing, which means
that operation execution must be interrupted until no
operations are active, at which point a checkpoint can be
taken. This compromises both availability and performance.

2. LSNs are the normal way of ensuring operation
idempotence. This is very convenient in the conventional
setting where the LSN is assigned after a page is latched for
update. With the TC doing the transactional logging, the
situation is more complicated. The separation of the TC from
the DC together with the independent multi-threading of
TC and DC means that the TC will assign an LSN before the
order in which operations access a page is determined. This
can lead to out-of-order executions in which a later
operation for a page with a higher LSN reaches the page
before an earlier operation with a lower LSN. While these
operations cannot conflict (see Section 2.1), the out-of-order
LSNs must be dealt with.

3. DCs may autonomously perform internal “system
transactions” (e.g., page splits and other index tree
reorganizations) that might not commute with TC-initiated
logical operations. Despite this, the DC needs to restore its
indexes to a well-formed state prior to the TC executing
recovery. Thus, the DC structure modification operations
will execute during recovery out of their original execution
order. Further, the TC has no way of knowing about these
DC-internal actions. All it can do is assign LSNs and ensure
that its redo repeats history by delivering operations in the
correct order to the DC. The burden is on the DC to manage
LSNs on pages in such a way that this TC strategy will work.
Conventional techniques fail for this.

4. DC and TC may independently fail, and a crash of one of
them should not force amnesia for the other component, e.g.
by requiring the DC to discard all cached pages.

4. UNBUNDLED RECOVERY PRINCIPLES
We begin by describing the architecture of our separate TC and
DC in terms of components which interact through exchange of
particular messages. We then give the requirements on the
interactions, to ensure that recovery can execute correctly. This is
similar to our earlier work on recovery guarantees in distributed
computing [1].

4.1 Database Kernel as a Distributed System
We envision the TC and the DC as two “distributed” components
that have an arms-length interaction. We describe what the
components do that are independent of each other, though both
are important in providing a working system.

4.1.1 Transactional component (TC)

The TC acts as client to the DC. It wraps all requests to the kernel
from higher in the database system or application stack. The TC
needs to do the following:

1. Transactional locking to ensure that transactions are properly
isolated (serializable) and that there are no concurrent
conflicting operation requests submitted to the DC. The
locks cannot exploit knowledge of data pagination.

2. Transaction atomicity, that is, ensuring that for every
completed user transaction that is provided to TC from
higher up the application stack, either

a. The user transaction commits, after TC has caused DC
to perform all the individual logical operations
necessary to achieve the intended effect of the
transaction, or

b. The user transaction aborts, after TC has caused DC to
perform a collection of logical operations whose
combined effect is rollback, so there is no net change to
the logical state. That is, TC must ensure that DC
performs a (possibly empty) set of logical operations,
followed in reverse chronological order by logical
operations that are inverses of the earlier ones.

3. Transactional logging, both undo and redo, after appropriate
locking. Undo logging in the TC will enable rollback of a
user transaction, by providing information TC can use to
submit inverse logical operations to DC. Redo logging in TC
allows TC to resubmit logical operations when it needs to,
following a crash of DC. That there are no conflicting
concurrent operation requests ensures that logical log
records can be written in OPSR (order-preserving
serializable) order, even for actual out-of-order executions in
multi-threaded mode. This must hold for whatever
concurrency control method the TC chooses to use including
fine-grained locking as well as optimistic methods.

4. Log forcing at appropriate times for transaction durability.

4.1.2 Data component (DC)

The DC acts as a server for requests from the TC. It is responsible
for organizing, searching, updating, caching and durability for the
data in the database. It supports a non-transactional, record
oriented interface. The way in which the records are mapped to
disk pages is known only to the DC itself, and is not revealed to
the TC. It needs to do the following:

1. Provide atomic operations on its data (relational records,
XML documents, encapsulated objects, etc.). Atomicity for
individual logical operations is a form of linearizing
concurrent operations [11], conceptually isolating them so
that they appear as if they were indivisible with regard to
concurrent executions [12, 18, 24]. More precisely, operation
atomicity means that there is a total order on all the
operations, compatible with any externally observable order
(where one operation has returned before another is

requested for the first time) and compatible with the results
returned (so each operation’s result reflects the state
produced by all the operations ordered before that operation).
Atomic operations ensure that serial replay of operations
during recovery is possible. To allow multi-threading within
DC, while still having atomic operations, each operation will
need to latch whatever pages it operates on, until the
operation has been performed on all the pages. However, as
with page latches in traditional storage engines, these latches
are held for very short periods, and latch deadlocks are
avoided via the ordering of latch requests.

2. Maintain indexes and storage structures behind the scenes.
For simple storage structures, each record lies on a fixed
page, and DC can maintain the indices easily. However, for
a structure like a B-tree, where a logical operation may lead
to re-arrangements that affect multiple physical pages, the
maintenance of indices must be done using system
transactions that are not related in any way to user-invoked
transactions known to the TC; implementation of system
transactions may involve their own concurrency control and
recovery.

3. Provide cache management, staging the data pages to and
from the disk as needed.

4.2 TC:DC Interactions

Our earlier work [1] described “interaction contracts” which
ensure that both sender and receiver of a message would agree on
whether the message was sent, independently of system or
communication failures. The principles listed below have similar
intent, but there are differences, especially as in an unbundled
database kernel, many interactions are not made stable
immediately, but rather caching is used extensively, with state
made stable lazily.

Causality: Causality means, that the sender of a message
remembers that it sent the message whenever the receiver
remembers receiving the message. This must be true during
normal execution (trivial to do with volatile execution state) as
well as in the case that one or more parts of the system fail. It is
causality that leads to the classical write-ahead logging protocol.
Partial failures are possible, whereby either TC and/or DC fail.
To respond to partial failures in a high performance way requires
new cache management techniques for the DC (see Section 4.3
and also [17]).

Unique request IDs: The TC labels each of its operations with a
unique, monotonically increasing request identifier (usually an
LSN derived from the TC log). TC request IDs make it possible
for the DC to provide idempotence.

Idempotence: The DC manages request IDs within its data
structures so that it can decide when its state already reflects the
execution of the request, and when it does not. It must ensure that
it can successfully execute all unexecuted requests so as to
achieve their original results, both during normal execution and
during restart. Providing idempotence in our setting is a
substantial technological challenge requiring new techniques.
(See Section 4.1)

Resend Requests: The TC resends the requests until it receives
some form of acknowledgment from the DC. TC resend with
unique request ids, working with DC idempotence, enable
exactly-once execution of logical operations.

Recovery: The TC makes all requests to the DC in terms of
logical (record-oriented) operations. The DC index structures
must be well-formed for redo recovery to succeed. The DC must
recover its storage structures first so that they are well-formed,
before TC can perform redo recovery, not simply before undo
recovery. Thus, system transactions need to be logged such that
they can be executed during recovery out of their original
execution order. (See Section 4.2)

Contract termination: There needs to be a protocol between TC
and DC that permits the guarantees for causality and idempotence
to be released. For example, the TC will eventually refrain from
resending operations during restart. This corresponds to
checkpointing in a conventional kernel; it involves coordinating
the stable part of the recovery log managed by the TC with the
stable part of the database state managed by the DC. This does not
require new techniques but we must expose functionality at the
TC:DC interface.

4.2.1 The TC/DC API

Here we summarize the interface through which necessary
information is passed between TC and DC. We present these as
functions or methods of DC, to be invoked by TC; however we do
not limit the implementation technology for information
exchange, and indeed we expect that in a cloud environment
asynchronous messages might be used with the request flowing in
on direction, with a later reply in the reverse direction, while
signals and shared variables might be more suited for a multi-core
design. Also, while usually TC is driving each interaction, there
are some situations where DC will need to spontaneously convey
information to TC; for example, following a crash of DC, a
prompt is needed so that TC will begin the restart function.

perform_operation. TC needs to provide DC with the
information about the logical operation, including the operation
name and arguments (among which is the table name and the key
for the record involved, or description of a range of keys as
discussed in Section 3.1), and also a unique identifier (which is
typically the LSN from the TC-log record for this operation).
Resends of the request can be characterized by re-use of the
operation identifier. The eventual reply for this request includes
the operation identifier so it can be correlated to the request, as
well as the return value of the operation itself. Note that the
information given to DC does not carry any information about the
user transaction of which it is a part, nor does DC know whether
this operation is done as forward activity, or as an inverse during
rollback of the user transaction.

end_of stable_log. An argument, EOSL, is the LSN for the last
entry from the TC-log that has been made stable. DC knows that
all operations with this operation identifier, or lower, will not be
lost in a crash of DC, and so causality allows DC to make any
such operation stable in DC. This function is how WAL is
enforced in an unbundled engine. A traditional storage engine
performs exactly the same check but without using messages to
convey the information.

checkpoint. An argument, newRSSP, is an LSN to which TC
wishes to advance its redo scan start point. DC will reply once it
has made stable all pages that contain operations whose LSN is
below newRSSP; this releases the contract requiring TC to be
willing to resend these operations, and only at this point can TC
actually advance its start point for replaying operations in

subsequent restarts. DC may also proactively make pages stable,
and could spontaneously inform TC that the RSSP can advance
to be after a given LSN.

low_water_mark. This function informs DC that TC has received
the response from every logical operation with LSN up to and
including the argument LWM, and so DC can be sure that there
are no gaps among the lower LSN operations which are reflected
in cache pages. The use of this information is discussed in Section
5.1.2. Like end_of-stable_log, this is important for deciding when
pages in DC’s cache can be flushed to disk. Thus one might trade
some flexibility in DC for simplicity of coding, by combining
end_of-stable_log and low_water_mark into one function that
simply informs DC of the operation id, for which it is safe to flush
a page from the DC cache so long as the page contains no
operation beyond this LSN.

restart. We describe this as a single complicated function, but in
practice the information passed would probably be batched and
conveyed in several messages. TC informs DC that restart is
commencing, and that it must discard any information about
operations with LSNs higher than the last one in the stable TC log
(these operations would be lost forever; causality ensures that any
such information is not yet stable in DC) ; also the restart function
includes resending all operations on the stable TC-log from the
redo scan start point onwards; after they have been applied by the
DC (which itself happens after DC resets its state, see Section
5.3.2), then TC will send logical operations which are inverses for
those operations of user transactions that need rollback; finally,
once all have been applied in DC, DC can acknowledge
completion of the restart function, allowing normal processing to
resume. If DC fails, we assume an out-of-band prompt is passed to
TC, so TC knows to begin restart.

5. NEW TECHNIQUES
In this section, we describe some novel techniques to deal with
the new complexities of providing “unbundled” recovery.

5.1 Out-of-Order Operation Execution

5.1.1 Current Technique

Because of the arms length separation of TC from DC, and their
multi-threading, TC operation requests can arrive at the code
accessing data on a page in an order that differs from the order of
TC request ids (LSNs). This undermines the usual recovery test
for idempotence in which a log operation’s LSN is compared to
an LSN stored in the data page impacted by the operation. This
traditional test is simply: Operation LSN <= Page LSN

When this test is true in a monolithic system where logical log
records are produced (and given LSNSs) during a critical section in
which the page is modified, it means that the page contains the
effects of the operation, and redo is prohibited for the logged
operation. Otherwise, the operation must be re-executed and the
page (along with its LSN) is updated.

Because of out-of-order execution in an unbundled system, this
test is no longer suitable. If an operation Oj with LSNj executes
before an operation Oi with LSNi, and LSNi < LSNj, and the page
is immediately made stable after Oj’s execution, it will then
contain a page LSN equal to LSNj. The traditional test will
incorrectly indicate that Oi results are included in the page, and
that there is no need to re-execute Oi.

This difficulty could be solved by introducing record level LSNs,
since updates are conflicting record operations, and conflicting
operations cannot execute concurrently. However, this is very
expensive in the space required. Hence we prefer a page LSN
oriented solution.

5.1.2 Our New Technique

To deal with out-of-order execution, we introduce the notion of an
abstract page LSN denoted as abLSN. We then generalize the
meaning of <= so that our test, showing when redo is not
required, become Operation LSN <= Page abLSN.

We describe how this is done here. An Operation LSN is
unchanged from before. But an abLSN is more complicated, and
hence the resulting <= test is more complicated as well.

Abstract LSNs: We need to capture precisely which operations
have results captured in the state of a page. We define our abLSN
as accurately capturing every operation that has been executed
and included in the state of the page. More precisely, it needs to
indicate which operations’ results are not included on the page.
Our abLSN consists of a low water LSNIw, whose value is such
that no operation with an LSN < =LSNIw needs to be re-executed.
We augment LSNIw with the set {LSNin} of LSNs of operations
greater than LSNIw whose effects are also included on the page.
Thus we have abLSN = <LSNIw, {LSNin}>. An operation with
LSNi has results captured in the page with abLSN when LSNi <=
abLSN where <= is defined as:

LSNi <= abLSN iff LSNi<=LSNIw or LSNi in {LSNin}

Establishing LSNIw: How can the DC know that a particular
value is suitable as LSNIw? This means that the DC would have
already performed every operation with lower LSN which might
be applicable on that page. If DC has a pending unapplied
operation with a lower LSN, it knows this, but because of
multithreading, operations can come to the DC out of LSN order.
Thus the DC can’t determine by itself which operations are not
yet applied. However, the TC knows which LSNs were generated
for operations, and which have definitely been performed. So,
from time to time, the TC will send the DC LWM such that the
TC has received replies from the DC for all operations with LSNs
up to LWM.

The DC can use the TC supplied LWM in any of its cached pages
as the LSNIw for the page. Simultaneously, the DC can discard
from the abLSN for the page any element of {LSNin} such that
LSNin <= LSNIw.

Page Sync: During normal execution, we do not need to keep
abLSN in the page itself, as long as it is available in volatile
memory outside the page, to be tested as required. However, when
the page is flushed to disk, the abLSN must be made stable
atomically with the page. Traditionally, this is done by including
LSN information in the page itself, and we focus on this approach
here. We call this step a page sync, and require that all pages be
synced before being written to volatile storage.

There are two distinct ways that pages can be synced, and some
combination of the two is also possible. When a page is to be
flushed, we could follow any of these algorithms:

1. We refuse to execute operations on the page with LSN’s
greater than the highest valued LSNin. Eventually, the LSNIw
sent by the TC will equal or exceed every LSNin, at which

time we can set abLSN for the page to LSNIw. This delays
the page flush.

2. We include the entire existing abLSN on the page. This takes
up more storage on the page than a single LSN would.

3. We wait until the number of LSNs in {LSNin} is reduced to a
manageable size using a TC supplied LSNIw, and then
include the abLSN on the page which is then flushed.

5.2 System Transaction Execution Order

5.2.1 Current Technique

Most modern database systems exploit some form of atomic
action to provide recovery for access method structure
modifications [16, 20]. Indeed Microsoft SQL Server uses a
variant of multi-level recovery in which system transactions
encapsulate structure modifications. The characteristic of existing
system transactions [15] is that like open nested transactions,
system transactions are redone in precisely their original
execution order. Undo recovery is done in two steps. First,
incomplete system transactions are undone, then user transaction
level transactions are undone. This is the usual multi-step undo
done for multi-level transactions and it ensures that logical user
transaction undo operations find a search structure that is well
formed when they are executed.

5.2.2 Our New Technique

When we split the kernel, it is the DC that handles all page related
operations, including all structure modifications to an index
structure. These structure modification operations need to be
atomic and recoverable. Microsoft SQL Server uses latching and
system transactions for this. Because this is now done by the DC,
both latching and the logging needed for system transactions must
be done by the DC. Further, the DC will use its own LSNs
(dLSNs) to make structure modification recovery idempotent. That
is, each page should contain both dLSN (indicating which
structure modifications are reflected in this page) and abLSN as
described in 5.1.2.

Splitting the kernel requires that the TC submit logical redo as
well as logical undo operations to the DC. Hence, indexes
maintained by the DC need to be well-formed before considering
any logical redo sent by TC. That is, the DC needs to make its
search structures well-formed by completing any redo and undo of
system transactions from the DC-log, prior to the TC executing its
redo recovery. This moves system transaction recovery ahead of
all TC level recovery. This change in the order of recovery means
we need to manage LSN information correctly in order to indicate
what operations (both from the DC-log and from the TC-log) are
reflected in the page. To make this concrete we discuss the system
transactions involved in page splits and page deletions in a B-tree.

Page Splits: Page splits make additional storage available to a B-
tree. The DC-log has (among other log records) an entry that
records the creation of the new page, and an entry that records the
removal of keys from the pre-split page. When these DC-log
events are moved forward during recovery, the page split is
executed earlier in the update sequence relative to the TC
operations that triggered the split. Repeat-history recovery can be
made to work for this case.

1. The DC-log record for the new page needs to capture the
page’s abLSN at the time of the split since the log record for
the new page contains the actual contents of the page.

2. The DC-log record for the pre-split page need only capture
the split key value. Whatever version of that page exists on
stable storage, its abLSN captures the state of this page. And
we can use that abLSN validly for this page, whether we find
it in a state prior to or later than the split.

Page Deletes/Consolidates: When a page of an index structure is
deleted, the search range for the page is logically consolidated
with an adjacent page of the index structure. Such page deletes are
moved forward in their execution during recovery as the DC-log
is recovered before TC recovery, but this seriously complicates
recovery. Page deletes reduce the amount of space available to the
index structure. A consolidation that happens early may find that
the versions of the pages involved during recovery don’t fit into a
single page. When the DC executes internal system transactions
that do not commute with previously executed TC-generated
logical operations, the DC must provide a recoverable state that
includes these prior operations (e.g., by generating a physical log
record that encompasses the non-commutative prior operations).
Thus, we can make an entry in DC-log for the deletion of the page
whose space is to be returned to free space; this log record can be
logical, indicating that the page is no longer needed. But when
we produce a DC-log entry for the consolidated page which
inherits the deleted page’s key range and perhaps the remaining
records in that range, we use a physical DC-log record that
captures the entire page including using an abLSN for the
consolidated page that is the maximum of abLSNs of the two
pages; redoing the consolidation amounts to giving the
consolidated page the contents and key-range that it had
immediately after the consolidation originally happened. That is,
this logging/recovery technique forces the delete to keep its
position in the execution order wrt TC-submitted operations
which are on the key range of the consolidated page. Such
physical logging of a consolidated page is more costly in log
space than the traditional logical system transaction for page
deletes. But page deletes are rare, so the extra cost should not be
significant.

5.3 Partial Failures

5.3.1 Current Technique

There are no current database techniques for this, as this situation
cannot arise. Failures in a monolithic database kernel are never
partial. Log and cache manager fail together.

5.3.2 Our New Technique

By splitting a database kernel, we need to face the possibility that
TC and DC fail independently. The complete failure of both TC
and DC returns us to the current fail-together situation and
requires no new techniques. Now, consider separate (and hence
partial) failures.

DC Failure: When the DC fails, it loses its volatile (in-cache)
state. The database state in the DC reverts to the state captured on
stable storage. Once the TC has been notified, it resends
operations forward from the redo scan start point (as indicated in
the checkpoint). The DC re-applies any of these operations which
are missing from the stable state. This is conventional recovery.

An important point in an unbundled design is that the TC chooses
the redo scan start point based on which operations have their
idempotence-guarantee terminated, because the DC has
checkpointed all these operations’ effects; communicating from
the DC to the TC that this has happened requires an extension to

the interface between the components.

TC Failure: When the TC fails and loses its log buffers while the
DC continues to run normally, the TC needs a way of resetting
the state of the DC to an appropriate earlier state. The problem is
that the TC loses the tail of its log that had not been forced to
stable storage, and some of these operations may have been
already performed in a DC. Note that such pages can only be in a
DC’s cache; the causality principle enforces that no such pages
are stable in a DC. That is, the DC cache may contain pages which
reflect the effects of TC operations that have been lost. This must
be reversed before the TC resends operations from its stable log to
be re-applied in a DC.

We can proceed in a number of ways to reset the DC state to an
earlier appropriate state. One way is to turn a partial failure into a
complete failure. This drops all pages from the DC cache and
permits conventional recovery to work. However, there is no need
to be this draconian. A more efficient method is to drop from the
cache only those pages that contain the results of operations that
have been lost. Once we do this, the TC can begin resending
operations; the DC re-applies each, perhaps fetching the relevant
page(s) from disk if they are no longer in the DC’s cache. The
pages that the DC must drop from its cache to reset state correctly
are exactly the pages whose abLSNs include operations that are
later than LSNst, the largest LSN on the TC stable log.

6. MULTIPLE TC’SFOR ADC

It is possible to permit more than one TC to update data at a given
DC. So long as the records of each application are disjoint (data is
logically partitioned), having multiple TCs accessing data at a
given DC can be supported, as the invariant that no conflicting
operations are active simultaneously can be enforced separately by
each TC. This does impose additional requirements on such a DC,
however.

6.1 DC Requirements

6.1.1 Multiple Abstract LSNs

A DC supporting multiple TCs must be prepared to provide
idempotence for each of the TCs. Since TCs do not coordinate
how they organize and manage their logs, the LSNs from each TC
need to be tracked separately by the DC. Thus, each page would
needs to include an abLSN for each TC that has data on the page.
However, pages with data from only a single TC continue to have
only one abLSN. So, only on pages containing data from multiple
TCs would extra abLSN’s be needed.

6.1.2 Resetting the Database Buffer

When a TC crashes, it may lose the log records for requests that it
sent to a DC. The DC must be able to reset the pages that it has in
its volatile cache (the changes cannot have propagated to the
disk). We have already described this for single TC sending
requests to a DC. It is highly desirable that a DC be able to reset
pages that are affected by a TC crash so that only the failing TC
need resend requests and participate in recovery.

The DC needs to reset pages where the abLSN of the failed TC
has captured operations that were not on the stable log when the
failed TC crashed. Identifying these pages is easy since the pages
all have abLSN s for every TC with data on the page. However,
unlike before, we cannot simply replace such a page with the disk
version of the page and then ask the failed TC to resend the
appropriate requests. The disk version of the page may also not

contain changes produced by non-failing TCs. Such a replacement
from disk would require that the other TCs with updates that are
removed replay their logs to restore these pages. This is exactly
what we want to avoid.

We need to identify the data on each page that is associated with
our failed TC. We continue to not want to associate an LSN with
each record, though that is less of a hardship with multiple TCs.
However, we expect most pages to have updates from a single TC,
so we want to optimize for this case. To reset the pages containing
lost updates of our failed TC, we need to associate the failed TC’s
abLSN on the page with the data to which it applies. One way to
accomplish this is to link the records related to a TC to the single
occurrence of the TC’s abLSN on the page. Such links could, e.g.,
be two byte offsets that chain the records together.

A page reset then consists of replacing the records on the page
updated by a failed TC with the records from the disk version of
the page. Records updated by other TCs would not be reset.

6.2 Sharing Data Among TCs

Recall that operations executing concurrently at a DC must not
conflict. Hence, if we can limit the types of requests that multiple
TCs execute at a given DC to ones that are non-conflicting, we
can permit shared access to the data managed by a DC. In this
case, the assignments of logical portions of the data to different
TCs need not be disjoint. We cannot permit arbitrary sharing, but
some types of sharing can be provided, so long as the reads are at
low isolation levels. We first describe types of TC shared access
to data that can be supported without any additional mechanism.
We then show how a good bit more sharing can be supported via
versioned data.

6.2.1 Non-versioned Data

Read-Only: All reads commute, regardless of their source. So it
is possible for multiple TCs to share read-only data with each
other without difficulty. The data read will be transaction
consistent because no TC can change the data.

Dirty Reads: It is sometimes possible to share read and write
access to mutable data. Dirty reads, where uncommitted data may
be read, do not require any locking for reads. A writer may access
and update data (“make it dirty”) at any time without conflicting
with a dirty read. Because a DC provides operation atomicity, a
reader of dirty data will always see “well formed” data, though
this data may be from uncommitted transactions. Dirty data can
disappear should the updating transaction abort. Further, it can be
modified subsequently, before its transaction commits. However
reading dirty data can sometimes be useful despite these caveats.

Note that the above functionality requires no special DC
knowledge or implementation.

6.2.2 Versioned Data

Read Committed Access: With versioned data, we can permit
TCs that update disjoint data partitions at a DC to perform “read
committed” reads of data updated by other TCs. With versioned
data, an update produces a new uncommitted version of the
record, while continuing to maintain an earlier before version. To
provide an earlier version for inserts, one can insert two versions,
a before “null” version followed by the intended insert.

When an updating TC commits the transaction, it sends updates to
the DC to eliminate the before versions, making the later versions

the committed versions. Should the transaction abort, the TC
sends operations to the DC instructing it to remove the latest
versions that were updated by the transaction.

A reader from another TC that encounters a record with a before
version reads the before version. If it encounters a record without
a before version, it reads this single version. A TC executing a
transaction can be permitted to see its own updates on its own
disjoint updatable partition while also reading committed data
from other TCs. To do this requires that it issue a different flavor
of read for its own partition of data.

An important characteristic of this approach is that there is no
classic (blocking) two phase commit protocol in this picture.
Once the TC decides to commit, the transaction is committed
everywhere and it is guaranteed that the earlier before versions of
its updates will eventually be removed. An updating TC is only
blocked when it is actually down, in which case, none of its data
is updatable in any event. The situation is similar when an
updating TC decides to abort. Readers are never blocked.
Interestingly, this is non-blocking exactly because ‘read
committed” access is being used with versioning.

6.3 Cloud Sharing Scenario

An example that captures some of the kinds of sharing of data
across TCs that is desired in a cloud setting is an online movie site
that tracks information about movies and allows users to write
reviews. The fundamental problem here is that we want to cluster
every review with both its reviewer and with the movie it
discusses. That permits high-performance clustered access for
reading the reviews of a given movie (the most common operation
in the system), as well as high-performance clustered access to a
user and all her reviews. Unclustered access in the cloud is
enormously more expensive, requiring access to a potentially very
large collection of computers. However, at such a site the most
common update transactions involve a single user’s data (reviews,
profile, favorites, etc). As such it is desirable to avoid distributed
transactions when users update their data and add reviews while
still providing full transaction semantics across updates that span
machines in the cloud.

There are four common transaction workloads to consider:
1. Wa1: obtain all reviews for a particular movie

2. W2: add a movie review written by a user

3. Wa3: update profile information for a user

4. W4: obtain all reviews written by a particular user
There are four tables to support these workloads:

1. Movies (primary key MId): contains general information
about each movie. Supports W1.

2. Reviews (primary key MId, Uld) contains movie reviews
written by users. Updated by W2 to support W1.

3. Users (primary key Uld): contains profile information about
users. Updated by W3.

4. MyReviews (primary key Uld, MId): contains a copy of
reviews written by a particular user. Updated by W2 to
support W4. Effectively this table is an index in the physical
schema since it contains redundant data from the Reviews
table.

Application W1:
Retrieve Reviews for
aMovie

Application W2:
Add Movie Review

TC3; :
Retrieve reviews

calls
(reads)

TCL:
responsible for
Uld mod 2=0

TC2:
responsible for
Uld mod 2=1

(updates)

DC1: storage for subset of
Movies (Mid, ...)

Reviews (Mld, Uld, ...)
Partitioned on Mid

DC2: storage for subset of
Movies (Mid, ...)
Reviews (Mld, Uld, ...)

Paritioned on Mid

DC3: storage for subset of:
Users (Uld, ...)
MyReviews(Uld, Mid,...)

Partitioned on Uld

Figure 2: TC and DC Partitioning

Figure 2 illustrates how data and transactions can be partitioned
across TCs and DCs to achieve the goals of running the above
workload without distributed transactions and without a query
needing to access more than two machines to retrieve the desired
data. Users and their workload (W2-W4) are partitioned among
TCs, in this case TC1 and TC2. These TCs have full access rights
to all information about a user in the Users table and also have
access rights to insert (“post”) reviews by that user in the Reviews
table. No one else has the right to post movie reviews by a
particular user at any movie, so this is also a disjoint partitioning.
Clearly, the updating TC can also read the user information as it
has full access rights to it. The Users table and MyReviews table
may also be partitioned by user across DCs and this illustration
shows DC3 containing a such a partition.

With this partitioning, TC1 can add a movie review for a user by
updating DC1 to insert the review in the Reviews table and DC3
to insert it in the MyReviews table. The transaction is completely
local to TC1. Users can also obtain all of their reviews (W4) by
simply querying a single partition of the MyReviews table.

We also wish to enable TC3 to read all of the reviews for a movie
in a single query (W1). Given that a movie may have a large
number of reviews and that requests to read the reviews will be
much more common than adding reviews, it is critical to cluster
reviews with their corresponding movies on a single DC. To
achieve this clustering the Movies and Reviews tables are
partitioned by movie onto DC1 and DC2.

In this example, TC3 requires shared access. We cannot use “read
only” access since we are permitting the data involved to be
updated. We can solve this problem without versioning if dirty
reads are acceptable, as they do not conflict with access by
updaters. With versioning, we can provide read committed access
as well, since such versioned reads do not conflict with updates.
We also see potential for providing snapshot isolation [4] and
perhaps selectively strengthening it into serializability as needed
by the applications [5].

Thus, with shared (non-conflicting) access, we can support some
important scenarios that, on the surface look impossible to
provide.

7. Conclusion

This paper suggests a paradigm shift in the way transactional
recovery and concurrency control are provided in data
management platforms. We have worked out our proposal in
sufficient detail to be convinced that it is implementable and
reasonably efficient. However, compared to a traditional storage
kernel with integrated transaction management, our unbundling
approach inevitably has longer code paths. Our working
hypothesis is that this is justified by the flexibility of deploying
adequately-grained cloud services. In addition, we speculate about
possible throughput gains on multi-core processors: with more
compact code for separate TC and DC, and the ability to
instantiate each multiple times with configurable numbers of
threads, we hope for more effective use of cores and better cache
hit rates. Ongoing work is needed to demonstrate these effects.

References

1. R. Barga, D. Lomet, G. Shegalov, G. Weikum. Recovery
Guarantees for Internet Applications. ACM TOIT 4(3):289-
328 (2004).

2. D. Batory, J. Barnett, J. Garza, K. Smith, K. Tsukuda, B.
Twichell, T. Wise. GENESIS: An Extensible Database
Management System. IEEE Trans. Software Eng. 14(11):
1711-1730 (1988)

3. M. Brantner, D. Florescu, D. Graf, D. Kossmann, T. Kraska.
Building a database on S3. SIGMOD 2008: 251-264.

4. H. Berenson, P.A. Bernstein, J. Gray, J. Melton, E.J. O'Neil,
P.E. O'Neil: A Critique of ANSI SQL Isolation Levels.
SIGMOD 1995: 1-10

5. M.J. Cahill, U. Roehm, A.D. Fekete: Serializable Isolation
for Snapshot Databases. SIGMOD 2008: 729-738

6. J. Gray, A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

7. J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T.
Price, F. Putzolu. The Recovery Manager of the System R
Database Manager. ACM Computing Surveys, 13(2):223-242
(1981).

8. S. Harizopoulos, A. Ailamaki. The Case for Staged Database
Systems. CIDR 2003.

9. S. Harizopoulos, D.J. Abadi, S. Madden, M. Stonebraker.
OLTP Through the Looking Glass, and What We Found
There. SIGMOD 2008: 981-992

10. J. Hellerstein, M. Stonebraker, J. Hamilton. Architecture of a
Database System. Foundations and Trends in Databases
1(2):141-259 (2007).

11. M. Herlihy, J. Wing. Linearizability: a Correctness Criterion
for Concurrent Objects. ACM TOPLAS 12(3):463-492
(1990).

12. C.B. Jones et al.: The Atomic Manifesto: a Story in Four
Quarks. SIGMOD Record 34(1): 63-69 (2005)

13. D.B. Lomet. Key Range Locking Strategies for Improved
Concurrency. VLDB 1993: 655-664.

14. D.B. Lomet. MLR: A Recovery Method for Multi-Level
Systems. SIGMOD 1992: 185-194.

15. D.B. Lomet. Advanced Recovery Techniques in Practice. in
Recovery Mechanisms in Database Systems (V. Kumar and
M. Hsu, eds.) Prentice Hall PTR 1998

16. D.B. Lomet, B. Salzberg. Concurrency and Recovery for
Index Trees. SIGMOD 1992: 351-360.

17. D.B. Lomet, M.R. Tuttle: A Theory of Redo Recovery.
SIGMOD 2003: 397-406

18.

19.

20.

21.

22.

23.

24.

N.A. Lynch, M. Merritt, W.E. Weihl, A. Fekete. Atomic
Transactions, Morgan Kaufmann 1993.

C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, P. Schwarz.
ARIES: A transaction recovery method supporting fine-
granularity locking and partial rollbacks using write-ahead
logging. ACM TODS, 17(1):94-162 (1992).

C. Mohan, F. Levine. ARIES/IM: An Efficient and High
Concurrency Index Management Method Using Write-ahead
Logging. SIGMOD 1992: 371—380.

R. Sears, E. Brewer. Stasis: Flexible Transactional Storage.
OSDI 2006: 29-44.

M. Stonebraker, U. Cetintemel. "One Size Fits All": An Idea
Whose Time Has Come and Gone. ICDE 2005: 2-11.

G. Weikum, C. Hasse, P. Broessler, P. Muth. Multi-Level
Recovery. PODS 1990: 109-123

G. Weikum, G. Vossen. Transactional Information Systems,
Morgan Kaufmann, 2001.

10

