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ABSTRACT 

The traditional architecture for a DBMS engine has the recovery, 

concurrency control and access method code tightly bound 

together in a storage engine for records. We propose a different 

approach, where the storage engine is factored into two layers 

(each of which might have multiple heterogeneous instances). A 

Transactional Component (TC) works at a logical level only: it 

knows about transactions and their ―logical‖ concurrency control 

and undo/redo recovery, but it does not know about page layout, 

B-trees etc. A Data Component (DC) knows about the physical 

storage structure. It supports a record oriented interface that 

provides atomic operations, but it does not know about 

transactions.  Providing atomic record operations may itself 

involve DC-local concurrency control and recovery, which can be 

implemented using system transactions. The interaction of the 

mechanisms in TC and DC leads to multi-level redo (unlike the 

repeat history paradigm for redo in integrated engines). This 

refactoring of the system architecture could allow easier 

deployment of application-specific physical structures and may 

also be helpful to exploit multi-core hardware. Particularly 

promising is its potential to enable flexible transactions in cloud 

database deployments. We describe the necessary principles for 

unbundled recovery, and discuss implementation issues. 

Categories and Subject Descriptors 

H.2.4 [Systems]: Concurrency, Transaction processing  

H.2.2 [Physical Design]: Recovery and restart, access methods 

General Terms 

Design, Reliability, Algorithms. 

Keywords 

System architecture, cloud computing, logical locking and logging 

1. INTRODUCTION 
DBMS decomposition has been suggested by several researchers 

[2, 8, 21], but has remained an elusive goal, ―up in the clouds‖, 

for two decades. One can indeed easily separate the query 

processing and optimization components from the storage engine. 

However, as observed in [10], ―The truly monolithic piece of a 

DBMS is the transactional storage manager that typically 

encompasses four deeply intertwined components: 

1. A lock manager for concurrency control. 

2. A log manager for recovery. 

3. A buffer pool for staging database I/Os. 

4. Access methods for organizing data on disk.‖ 

Folk wisdom, beginning with System R [6, 7], suggests that this 

integration is a requirement for high performance from these 

system elements, since they are exercised continuously during 

DBMS execution. Nevertheless, cloud computing re-introduces 

interest in and pressure for again tackling this challenge of 

unbundling transaction services and data management.  

1.1 Industry Trends 
Trends within the computing systems industry, especially for 

database systems, require us to rethink the database systems 

architecture and to consider disentangling the previously 

integrated aspects of the database kernel, transactional services 

going to a transactional component (TC) that is architecturally 

separate from data services (access methods and cache 

management) in a data component (DC). These imperatives are: 

1. Cloud computing opens up opportunities for easy 

deployment of new, perhaps application dependent, database 

management. Cloud deployments create new problems of 

scale and computing infrastructure. Separating TC 

functionality from DC functionality enables cloud platforms 

to support transactions with much greater flexibility, 

regardless of where in the cloud the data and its DCs reside.  

2. New, light-weight data-management engines for specific 

application areas ("one size does not fit all" [22]) call for a 

composable run-time infrastructure with low overhead. For 

example, one might build an RDF engine as a DC with 

transactional functionality added as a separate layer. 

3. The major hardware trends of our time are (1) increasing 

numbers of cores on processor chips, and (2) increasing main 

memory latency. This suggests a rethinking of database 

architecture (even for traditional database applications such 

as OLTP [9]) to enhance parallelism and improve cache hit 

ratios. The decomposition into TC and DC may improve 

both processor (core) utilization since each component could 

run on a separate core, and cache performance, since each 

component will have shorter code paths and may result in 

much higher hit rates for the instruction cache(s) of one core. 

4. Substantial processing power has existed for many years 

within the controllers for I/O subsystems.  One appealing 

notion has been to move part of database functionality out of 

the cpu and into these controllers.  Separating the data 

component as we are suggesting, permits moving this ―data 

centric‖ functionality to the storage controllers, enabling a 
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―disk‖ to support a record oriented interface instead of a page 

oriented interface. 

5. A classic goal has been extensible database management 

systems.  Adding a new access method to support new data 

types (e.g., shapes, avatars, etc. used in virtual worlds, for 

games, and 3D Internet) and their associated search needs is 

eased substantially when the type implementation (as DC) 

can rely on transactional services provided separately by  TC.  

1.2 Our Contribution 
What makes partitioning a database kernel difficult is that state-

of-the-art concurrency control and recovery relies on knowledge 

of the way that storage is paginated, and how records are assigned 

to pages. For example, physiological logging [6, 24] requires each 

log record to deal with a single page. Also, state-of-the-art access 

methods use sophisticated ways to get high concurrency. 

Our contribution is an architecture for database kernels in which 

transactional functionality in a TC is unbundled from the access 

methods and cache management in a DC. The TC does all locking 

for transactional concurrency control and logging for transaction 

abort and durability. All knowledge of pages is confined to a DC, 

which means that the TC must operate at the logical level on 

records. The TC invokes (and logs) logical operations of a DC. 

This is pictured in Figure 1. Our design differs from [21], where 

access methods are done on top of a transactional layer. 

DC1:
tables&indexes
storage&cache

DC4:
tables&indexes
storage&cache

DC5:
RDF & text

DC6:
3D-shape
index

Application 1 Application 2

Cloud Services

Applications

TC1:
transactional
recovery&CC

calls

TC3:
transactional
recovery&CC

calls deploys

Figure 1: Architecture of an unbundled database kernel.  

A DC knows nothing about transactions, their commit or abort. It 

is required to make the individual logical operations atomic and 

idempotent. Idempotence of DC operations permits the TC to 

resend operations to the DC, either during normal execution 

(perhaps after a response is lost) or later during recovery, while 

ensuring exactly-once execution of the overall system. 

Both the TC and DC are multi-threaded, which is essential for 

high performance, but which introduces a number of subtle issues 

with which both TC and DC must deal. For example, TC has an 

obligation to never send logically conflicting operations 

concurrently to a DC. In this way, the order of logical log records 

written by the TC can be guaranteed to be consistent with the 

physical ordering performed in a DC.  

Because a DC completely handles the pagination required for an 

access method like B-trees, it is the DC that must deal with page 

splits and deletes. Such structure modifications themselves require 

concurrency control and recovery. Integrating recovery across 

both transaction and access method levels is a characteristic of 

modern database systems [10], but providing them separately 

from each other requires thinking anew about multi-level 

recovery. We address this in Section 4.2. 

Providing separate TC and DC permits us to instantiate these 

components in a number of new and interesting ways. Because 

DCs have longer execution paths, one might deploy a larger 

number of DC instances on a multi-core platform than TC 

instances for better load balancing. In a cloud environment, one 

would want DCs to be close to the data, while the TCs might have 

a much looser coupling. While multiple TCs must never send 

conflicting operations to a DC (because the order of operations 

will not be logged at the DC), it is nonetheless possible for TCs to 

share data, especially when DCs provide a versioning capability. 

Deploying TCs that can share DCs in this way enables our 

architecture to support some of the interesting cloud scenarios, 

without introducing the need for two phase commit.  

2. APPLICATION PERSPECTIVE 
In the Web 2.0 landscape, there are new applications that desire 

fast and easy deployment on a care-free platform. Such 

applications include social-community forums (e.g., sharing 

photos, videos, reviews, ratings, etc.), Internet-based long-running 

games with many players, and information mashups that compose 

value-added portals from blogs, news, and other Internet sources. 

Cloud services are intended to provide a convenient solution for 

such applications. Unbundling, as we suggest, can help Web 2.0 

get fast transfer of original ideas into popular Internet sites.  

As one example, consider a Web 2.0 photo-sharing platform. On 

first thought, this may seem simple, merely needing persistent 

storage for large files. But the application also must manage users 

and their accounts, photo ownerships and access rights for other 

users, thematic groups for photos and users, friendships and other 

interactions among users, and so on. This should be consistent 

under high update rates; so there is a significant OLTP aspect.  

Photos are associated with annotations (tags) and reviews. This 

entails referential integrity constraints; corresponding operations 

must be guarded by transactions with appropriate scope. Reviews 

consist of natural-language text, and the application may have a 

non-standard index structure for this (e.g., for phrases that express 

opinions). Similarly, advanced visualizations of say the tag-cloud 

dynamics may require special data structures as well. Finally, 

imagine fancy functionality that finds photos of the same object 

(e.g., the Golden Gate Bridge) uploaded by different users and 

combines them into a 3D model which in turn would be made 

searchable using the latest index structures for geometric shapes.  

Of course, all this rich data could be mapped onto relational tables 

provided by a DBMS-style cloud service. But then the application 

could not utilize its advanced indexes for text phrases, 3D models, 

etc. Alternatively, it could use a simpler storage service, offered in 

the cloud, without transaction management. This service would 

just provide persistent store, with unlimited scalability and de-

facto perfect availability, and the application program would 

implement its index structures on top of it. But now the 

application would also have to implement its own transactional 

concurrency control and recovery.  The authors of [3] have shown 

how to do this with overhead; but we can do better by unbundling 

the transactional issues from the actual data management. The 
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photo-sharing application could use a combination of already 

available file and table managers and home-grown index 

managers as DCs. For transaction management it could directly 

use the services of a TC, offered in the cloud. This TC (or these 

TCs if we instantiate it multiple times for scaling up throughput) 

would be able to interact with the various DCs via interaction 

contracts as will be explained in later sections. There is no free 

lunch, though. The application's home-grown DCs would have to 

be written so as to satisfy the DC parts of the contracts. This is 

simpler than designing and coding a high-performance 

transactional storage subsystem. 

3. TECHNICAL CHALLENGES 
The existing industry-standard solutions to concurrency control 

and recovery do not work when transaction services are separated 

from access methods and cache management. Most of this paper is 

focused on dealing with recovery issues, which require a larger 

departure from current practice. However, we first outline how we 

would deal with concurrency control differences as well.  

3.1 Concurrency Control 
For many operations, splitting the database kernel into TC and 

DC causes little trouble for a two phase locking approach to 

transactional concurrency control. The operations that involve 

updating or reading of records that are named by record identifiers 

can easily lock these records within a TC, prior to the TC sending 

the request to the DC that accesses the page containing the record. 

It is harder when ranges of records are being locked. 

In existing systems where the database kernel is one integrated 

piece, a requested operation is actually executing within the page 

containing the data. Thus an operation dealing with a range can 

determine the keys involved, then lock them using, e.g., key range 

locking [13, 20], before performing the actual access. But in our 

unbundled approach, the TC needs to do the locking prior1 to 

sending a request to the DC. That is, the lock must be obtained 

before it is known which keys are present in (or just after) the 

range. Thus we need to invest our lock manager and the TC code 

that uses it with techniques for locking ranges. We know of two 

ways to deal with the locking of ranges of records. 

Fetch ahead protocol: Do an initial speculative probe to have the 

DC return the keys to the next (in order) collection of keys.  At 

this point, the TC can lock those records, and submit the next 

request to do the read or write, together with a speculative request 

for the following keys.  Should the records to be read or written 

be different from the ones that were locked based on the earlier 

request, this subsequent request becomes again a speculative 

request for the earlier records. 

Range locks: Introduce explicit range locks that partition the keys 

of any table.  Many systems currently support some form of this 

by permitting table locks or page locks, however our separation 

precludes us from locking pages.  Each range of the partition is 

locked prior to accessing the requested records.  There can be 

speculative record accesses at partition boundaries, but most 

accesses can proceed without this.  This protocol avoids key range 

locking, and hence gives up some concurrency. However it should 

also reduce locking overhead since fewer locks are needed.   

                                                                 

1 This is to enforce the requirement that the DC never have two 

conflicting operations executing concurrently. 

Either of these approaches can be made to work, so we now turn 

our attention to dealing with recovery. 

3.2 Recovery 
In an unbundled kernel, ARIES-style recovery [19, 20] does not 

work, even augmented with the usual multi-level recovery [14, 

23] with physical repeating-history redo of log records, and 

logical, multi-level undo (which allows fine-grained concurrency 

control).   

1. The DC provides only record-oriented logical operations 

where the TC knows nothing about pages. Hence, the TC log 

records cannot contain page identifiers. Redo needs to be 

done at a logical level. Pages and dealing with them is the 

exclusive province of the DC. Logical redo requires that, e.g. 

DC data structures be well formed (search correct) at the 

time that redo is performed, not simply when undo is 

performed While System R performed logical redo, it 

required operation-consistent checkpointing, which means 

that operation execution must be interrupted until no 

operations are active, at which point a checkpoint can be 

taken. This compromises both availability and performance.  

2. LSNs are the normal way of ensuring operation 

idempotence. This is very convenient in the conventional 

setting where the LSN is assigned after a page is latched for 

update. With the TC doing the transactional logging, the 

situation is more complicated. The separation of the TC from 

the DC together with the  independent multi-threading of 

TC and DC means that the TC will assign an LSN before the 

order in which operations access a page is determined. This 

can lead to out-of-order executions in which a later 

operation for a page with a higher LSN reaches the page 

before an earlier operation with a lower LSN. While these 

operations cannot conflict (see Section 2.1), the out-of-order 

LSNs must be dealt with.  

3. DCs may autonomously perform internal “system 

transactions” (e.g., page splits and other index tree 

reorganizations) that might not commute with TC-initiated 

logical operations. Despite this, the DC needs to restore its 

indexes to a well-formed state prior to the TC executing 

recovery. Thus, the DC structure modification operations 

will execute during recovery out of their original execution 

order. Further, the TC has no way of knowing about these 

DC-internal actions. All it can do is assign LSNs and ensure 

that its redo repeats history by delivering operations in the 

correct order to the DC. The burden is on the DC to manage 

LSNs on pages in such a way that this TC strategy will work. 

Conventional techniques fail for this. 

4. DC and TC may independently fail, and a crash of one of 

them should not force amnesia for the other component, e.g. 

by requiring the DC to discard all cached pages. 

4. UNBUNDLED RECOVERY PRINCIPLES 
We begin by describing the architecture of our separate TC and 

DC in terms of components which interact through exchange of 

particular messages. We then give the requirements on the 

interactions, to ensure that recovery can execute correctly. This is 

similar to our earlier work on recovery guarantees in distributed 

computing [1]. 
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4.1 Database Kernel as a Distributed System   
We envision the TC and the DC as two ―distributed‖ components 

that have an arms-length interaction.  We describe what the 

components do that are independent of each other, though both 

are important in providing a working system.  

4.1.1 Transactional component (TC) 
The TC acts as client to the DC. It wraps all requests to the kernel 

from higher in the database system or application stack. The TC 

needs to do the following: 

1. Transactional locking to ensure that transactions are properly 

isolated (serializable) and that there are no concurrent 

conflicting operation requests submitted to the DC. The 

locks cannot exploit knowledge of data pagination. 

2. Transaction atomicity, that is, ensuring that for every 

completed user transaction that is provided to TC from 

higher up the application stack, either 

a. The user transaction commits, after TC has caused DC 

to perform all the individual logical operations 

necessary to achieve the intended effect of the 

transaction, or 

b. The user transaction aborts, after TC has caused DC to 

perform a collection of logical operations whose 

combined effect is rollback, so there is no net change to 

the logical state. That is, TC must ensure that DC 

performs a (possibly empty) set of logical operations, 

followed in reverse chronological order by logical 

operations that are inverses of the earlier ones. 

3. Transactional logging, both undo and redo, after appropriate 

locking. Undo logging in the TC will enable rollback of a 

user transaction, by providing information TC can use to 

submit inverse logical operations to DC. Redo logging in TC 

allows TC to resubmit logical operations when it needs to, 

following a crash of DC. That there are no conflicting 

concurrent operation requests ensures that logical log 

records can be written in OPSR (order-preserving 

serializable) order, even for actual out-of-order executions in 

multi-threaded mode. This must hold for whatever 

concurrency control method the TC chooses to use including 

fine-grained locking as well as optimistic methods. 

4. Log forcing at appropriate times for transaction durability. 

4.1.2 Data component (DC) 
The DC acts as a server for requests from the TC. It is responsible 

for organizing, searching, updating, caching and durability for the 

data in the database. It supports a non-transactional, record 

oriented interface. The way in which the records are mapped to 

disk pages is known only to the DC itself, and is not revealed to 

the TC. It needs to do the following: 

1. Provide atomic operations on its data (relational records, 

XML documents, encapsulated objects, etc.). Atomicity for 

individual logical operations is a form of linearizing 

concurrent operations [11], conceptually isolating them so 

that they appear as if they were indivisible with regard to 

concurrent executions [12, 18, 24]. More precisely, operation 

atomicity means that there is a total order on all the 

operations, compatible with any externally observable order 

(where one operation has returned before another is 

requested for the first time) and compatible with the results 

returned (so each operation’s result reflects the state 

produced by all the operations ordered before that operation). 

Atomic operations ensure that serial replay of operations 

during recovery is possible. To allow multi-threading within 

DC, while still having atomic operations, each operation will 

need to latch whatever pages it operates on, until the 

operation has been performed on all the pages. However, as 

with page latches in traditional storage engines, these latches 

are held for very short periods, and latch deadlocks are 

avoided via the ordering of latch requests.  

2. Maintain indexes and storage structures behind the scenes. 

For simple storage structures, each record lies on a fixed 

page, and DC can maintain the indices easily.  However, for 

a structure like a B-tree, where a logical operation may lead 

to re-arrangements that affect multiple physical pages, the 

maintenance of indices must be done using system 

transactions that are not related in any way to user-invoked 

transactions known to the TC; implementation of system 

transactions may involve their own concurrency control and 

recovery.   

3. Provide cache management, staging the data pages to and 

from the disk as needed. 

4.2 TC:DC Interactions 
Our earlier work [1] described ―interaction contracts‖ which 

ensure that both sender and receiver of a message would agree on 

whether the message was sent, independently of system or 

communication failures. The principles listed below have similar 

intent, but there are differences, especially as in an unbundled 

database kernel, many interactions are not made stable 

immediately, but rather caching is used extensively, with state 

made stable lazily.   

Causality: Causality means, that the sender of a message 

remembers that it sent the message whenever the receiver 

remembers receiving the message. This must be true during 

normal execution (trivial to do with volatile execution state) as 

well as in the case that one or more parts of the system fail. It is 

causality that leads to the classical write-ahead logging protocol. 

Partial failures are possible, whereby either TC and/or DC fail.  

To respond to partial failures in a high performance way requires 

new cache management techniques for the DC (see Section 4.3 

and also [17]). 

Unique request IDs: The TC labels each of its operations with a 

unique, monotonically increasing request identifier (usually an 

LSN derived from the TC log). TC request IDs make it possible 

for the DC to provide idempotence. 

Idempotence: The DC manages request IDs within its data 

structures so that it can decide when its state already reflects the 

execution of the request, and when it does not. It must ensure that 

it can successfully execute all unexecuted requests so as to 

achieve their original results, both during normal execution and 

during restart. Providing idempotence in our setting is a 

substantial technological challenge requiring new techniques. 

(See Section 4.1) 

Resend Requests: The TC resends the requests until it receives 

some form of acknowledgment from the DC.  TC resend with 

unique request ids, working with DC idempotence, enable 

exactly-once execution of logical operations. 
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Recovery: The TC makes all requests to the DC in terms of 

logical (record-oriented) operations. The DC index structures 

must be well-formed for redo recovery to succeed. The DC must 

recover its storage structures first so that they are well-formed, 

before TC can perform redo recovery, not simply before undo 

recovery. Thus, system transactions need to be logged such that 

they can be executed during recovery out of their original 

execution order. (See Section 4.2) 

Contract termination: There needs to be a protocol between TC 

and DC that permits the guarantees for causality and idempotence 

to be released. For example, the TC will eventually refrain from 

resending operations during restart. This corresponds to 

checkpointing in a conventional kernel; it involves coordinating 

the stable part of the recovery log managed by the TC with the 

stable part of the database state managed by the DC. This does not 

require new techniques but we must expose functionality at the 

TC:DC interface. 

4.2.1 The TC/DC API 
Here we summarize the interface through which necessary 

information is passed between TC and DC. We present these as 

functions or methods of DC, to be invoked by TC; however we do 

not limit the implementation technology for information 

exchange, and indeed we expect that in a cloud environment 

asynchronous messages might be used with the request flowing in 

on direction, with a later reply in the reverse direction, while 

signals and shared variables might be more suited for a multi-core 

design. Also, while usually TC is driving each interaction, there 

are some situations where DC will need to spontaneously convey 

information to TC; for example, following a crash of DC, a 

prompt is needed so that TC will begin the restart function. 

perform_operation. TC needs to provide DC with the 

information about the logical operation, including the operation 

name and arguments (among which is the table name and the key 

for the record involved, or description of a range of keys as 

discussed in Section 3.1), and also a unique identifier (which is 

typically the LSN from the TC-log record for this operation). 

Resends of the request can be characterized by re-use of the 

operation identifier. The eventual reply for this request includes 

the operation identifier so it can be correlated to the request, as 

well as the return value of the operation itself. Note that the 

information given to DC does not carry any information about the 

user transaction of which it is a part, nor does DC know whether 

this operation is done as forward activity, or as an inverse during 

rollback of the user transaction. 

end_of_stable_log. An argument, EOSL, is the LSN for the last 

entry from the TC-log that has been made stable. DC knows that 

all operations with this operation identifier, or lower, will not be 

lost in a crash of DC, and so causality allows DC to make any 

such operation stable in DC. This function is how WAL is 

enforced in an unbundled engine.  A traditional storage engine 

performs exactly the same check but without using messages to 

convey the information. 

checkpoint. An argument, newRSSP, is an LSN to which TC 

wishes to advance its redo scan start point. DC will reply once it 

has made stable all pages that contain operations whose LSN is 

below newRSSP; this releases the contract requiring TC to be 

willing to resend these operations, and only at this point can TC 

actually advance its start point for replaying operations in 

subsequent restarts. DC may also proactively make pages stable, 

and  could spontaneously inform TC that the RSSP can advance 

to be after a given LSN. 

low_water_mark. This function informs DC that TC has received 

the response from every logical operation with LSN up to and 

including the argument LWM, and so DC can be sure that there 

are no gaps among the lower LSN operations which are reflected 

in cache pages. The use of this information is discussed in Section 

5.1.2. Like end_of-stable_log, this is important for deciding when 

pages in DC’s cache can be flushed to disk. Thus one might trade 

some flexibility in DC for simplicity of coding, by combining 

end_of-stable_log and low_water_mark into one function that 

simply informs DC of the operation id, for which it is safe to flush 

a page from the DC cache so long as the page contains no 

operation beyond this LSN.   

restart. We describe this as a single complicated function, but in 

practice the information passed would probably be batched and 

conveyed in several messages. TC informs DC that restart is 

commencing, and that it must discard any information about 

operations with LSNs higher than the last one in the stable TC log 

(these operations would be lost forever; causality ensures that any 

such information is not yet stable in DC) ; also the restart function 

includes resending all operations on the stable TC-log from the 

redo scan start point onwards; after they have been applied by the 

DC (which itself happens after DC resets its state, see Section 

5.3.2), then TC will send logical operations which are inverses for 

those operations of user transactions that need rollback; finally, 

once all have been applied in DC, DC can acknowledge 

completion of the restart function, allowing normal processing to 

resume. If DC fails, we assume an out-of-band prompt is passed to 

TC, so TC knows to begin restart. 

5. NEW  TECHNIQUES 
In this section, we describe some novel techniques to deal with 

the new complexities of providing ―unbundled‖ recovery. 

5.1 Out-of-Order Operation Execution 

5.1.1 Current Technique 
Because of the arms length separation of TC from DC, and their 

multi-threading, TC operation requests can arrive at the code 

accessing data on a page in an order that differs from the order of 

TC request ids (LSNs). This undermines the usual recovery test 

for idempotence in which a log operation’s LSN is compared to 

an LSN stored in the data page impacted by the operation. This 

traditional test is simply: Operation LSN <= Page LSN  

When this test is true in a monolithic system where logical log 

records are produced (and given LSNs) during a critical section in 

which the page is modified, it means that the page contains the 

effects of the operation, and redo is prohibited for the logged 

operation. Otherwise, the operation must be re-executed and the 

page (along with its LSN) is updated. 

Because of out-of-order execution in an unbundled system, this 

test is no longer suitable. If an operation Oj with LSNj executes 

before an operation Oi with LSNi, and LSNi < LSNj, and the page 

is immediately made stable after Oj’s execution, it will then 

contain a page LSN equal to LSNj. The traditional test will 

incorrectly indicate that Oi results are included in the page, and 

that there is no need to re-execute Oi.  
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This difficulty could be solved by introducing record level LSNs, 

since updates are conflicting record operations, and conflicting 

operations cannot execute concurrently. However, this is very 

expensive in the space required. Hence we prefer a page LSN 

oriented solution. 

5.1.2 Our New Technique 
To deal with out-of-order execution, we introduce the notion of an 

abstract page LSN denoted as abLSN. We then generalize the 

meaning of <= so that our test, showing when redo is not 

required, become Operation LSN <= Page abLSN.  

We describe how this is done here. An Operation LSN is 

unchanged from before. But an abLSN is more complicated, and 

hence the resulting <= test is more complicated as well. 

Abstract LSNs: We need to capture precisely which operations 

have results captured in the state of a page. We define our abLSN 

as accurately capturing every operation that has been executed 

and included in the state of the page. More precisely, it needs to 

indicate which operations’ results are not included on the page.  

Our abLSN consists of a low water LSNlw, whose value is such 

that no operation with an LSN < =LSNlw needs to be re-executed. 

We augment LSNlw with the set {LSNin} of LSNs of operations 

greater than LSNlw whose effects are also included on the page.  

Thus we have abLSN = <LSNlw, {LSNin}>. An operation with 

LSNi has results captured in the page with abLSN when LSNi <= 

abLSN where <= is defined as: 

LSNi <= abLSN iff LSNi<=LSNlw or LSNi in {LSNin} 

Establishing LSNlw: How can the DC know that a particular 

value is suitable as LSNlw? This means that the DC would have 

already performed every operation with lower LSN which might 

be applicable on that page. If DC has a pending unapplied 

operation with a lower LSN, it knows this, but because of 

multithreading, operations can come to the DC out of LSN order. 

Thus the DC can’t determine by itself which operations are not 

yet applied.  However, the TC knows which LSNs were generated 

for operations, and which have definitely been performed. So, 

from time to time, the TC will send the DC  LWM such that the 

TC has received replies from the DC for all operations with LSNs 

up to LWM. 

The DC can use the TC supplied LWM in any of its cached pages 

as the LSNlw for the page.  Simultaneously, the DC can discard 

from the abLSN for the page any element of {LSNin} such that 

LSNin <= LSNlw. 

Page Sync: During normal execution, we do not need to keep 

abLSN in the page itself, as long as it is available in volatile 

memory outside the page, to be tested as required. However, when 

the page is flushed to disk, the abLSN must be made stable 

atomically with the page. Traditionally, this is done by including 

LSN information in the page itself, and we focus on this approach 

here. We call this step a page sync, and require that all pages be 

synced before being written to volatile storage. 

There are two distinct ways that pages can be synced, and some 

combination of the two is also possible. When a page is to be 

flushed, we could follow any of these algorithms:  

1. We refuse to execute operations on the page with LSN’s 

greater than the highest valued LSNin. Eventually, the LSNlw 

sent by the TC will equal or exceed every LSNin, at which 

time we can set abLSN for the page to LSNlw. This delays 

the page flush. 

2. We include the entire existing abLSN on the page. This takes 

up more storage on the page than a single LSN would.   

3. We wait until the number of LSNs in {LSNin} is reduced to a 

manageable size using a TC supplied LSNlw, and then 

include the abLSN on the page which is then flushed.   

5.2 System Transaction Execution Order 

5.2.1 Current Technique 
Most modern database systems exploit some form of atomic 

action to provide recovery for access method structure 

modifications [16, 20].  Indeed Microsoft SQL Server uses a 

variant of multi-level recovery in which system transactions 

encapsulate structure modifications. The characteristic of existing 

system transactions [15] is that like open nested transactions, 

system transactions are redone in precisely their original 

execution order.   Undo recovery is done in two steps.  First, 

incomplete system transactions are undone, then user transaction 

level transactions are undone. This is the usual multi-step undo 

done for multi-level transactions and it ensures that logical user 

transaction undo operations find a search structure that is well 

formed when they are executed. 

5.2.2 Our New Technique 
When we split the kernel, it is the DC that handles all page related 

operations, including all structure modifications to an index 

structure.  These structure modification operations need to be 

atomic and recoverable.  Microsoft SQL Server uses latching and 

system transactions for this.  Because this is now done by the DC, 

both latching and the logging needed for system transactions must 

be done by the DC.   Further, the DC will use its own LSNs 

(dLSNs) to make structure modification recovery idempotent. That 

is, each page should contain both dLSN (indicating which 

structure modifications are reflected in this page) and abLSN as 

described in 5.1.2. 

Splitting the kernel requires that the TC submit logical redo as 

well as logical undo operations to the DC. Hence, indexes 

maintained by the DC need to be well-formed before considering 

any logical redo sent by TC.  That is, the DC needs to make its 

search structures well-formed by completing any redo and undo of 

system transactions from the DC-log, prior to the TC executing its 

redo recovery.  This moves system transaction recovery ahead of 

all TC level recovery. This change in the order of recovery means 

we need to manage LSN information correctly in order to indicate 

what operations (both from the DC-log and from the TC-log) are 

reflected in the page. To make this concrete we discuss the system 

transactions involved in page splits and page deletions in a B-tree. 

Page Splits: Page splits make additional storage available to a B-

tree. The DC-log has (among other log records) an entry that 

records the creation of the new page, and an entry that records the 

removal of keys from the pre-split page.  When these DC-log 

events are moved forward during recovery, the page split is 

executed earlier in the update sequence relative to the TC 

operations that triggered the split.  Repeat-history recovery can be 

made to work for this case.   

1. The DC-log record for the new page needs to capture the 

page’s abLSN at the time of the split since the log record for 

the new page contains the actual contents of the page. 
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2. The DC-log record for the pre-split page need only capture 

the split key value.  Whatever version of that page exists on 

stable storage, its abLSN captures the state of this page.  And 

we can use that abLSN validly for this page, whether we find 

it in a state prior to or later than the split. 

Page Deletes/Consolidates: When a page of an index structure is 

deleted, the search range for the page is logically consolidated 

with an adjacent page of the index structure. Such page deletes are 

moved forward in their execution during recovery as the DC-log 

is recovered before TC recovery, but this seriously complicates 

recovery. Page deletes reduce the amount of space available to the 

index structure. A consolidation that happens early may find that 

the versions of the pages involved during recovery don’t fit into a 

single page. When the DC executes internal system transactions 

that do not commute with previously executed TC-generated 

logical operations, the DC must provide a recoverable state that 

includes these prior operations (e.g., by generating a physical log 

record that encompasses the non-commutative prior operations). 

Thus, we can make an entry in DC-log for the deletion of the page 

whose space is to be returned to free space; this log record can be 

logical, indicating that the page is no longer needed.  But when 

we produce a DC-log entry for the consolidated page which 

inherits the deleted page’s key range and perhaps the remaining 

records in that range, we use a physical DC-log record that 

captures the entire page including using an abLSN for the 

consolidated page that is the maximum of abLSNs of the two 

pages; redoing the consolidation amounts to giving the 

consolidated page the contents and key-range that it had 

immediately after the consolidation originally happened.  That is, 

this logging/recovery technique forces the delete to keep its 

position in the execution order wrt TC-submitted operations 

which are on the key range of the consolidated page. Such 

physical logging of a consolidated page is more costly in log 

space than the traditional logical system transaction for page 

deletes. But page deletes are rare, so the extra cost should not be 

significant.    

5.3 Partial Failures 

5.3.1 Current Technique 
There are no current database techniques for this, as this situation 

cannot arise. Failures in a monolithic database kernel are never 

partial. Log and cache manager fail together.  

5.3.2 Our New Technique 
By splitting a database kernel, we need to face the possibility that 

TC and DC fail independently. The complete failure of both TC 

and DC returns us to the current fail-together situation and 

requires no new techniques. Now, consider separate (and hence 

partial) failures. 

DC Failure: When the DC fails, it loses its volatile (in-cache) 

state. The database state in the DC reverts to the state captured on 

stable storage. Once the TC has been notified, it resends 

operations forward from the redo scan start point (as indicated in 

the checkpoint). The DC re-applies any of these operations which 

are missing from the stable state. This is conventional recovery.  

An important point in an unbundled design is that the TC chooses 

the redo scan start point based on which operations have their 

idempotence-guarantee terminated, because the DC has 

checkpointed all these operations’ effects; communicating from 

the DC to the TC that this has happened requires an extension to 

the interface between the components. 

TC Failure: When the TC fails and loses its log buffers while the 

DC continues to run normally, the TC needs a way of resetting 

the state of the DC to an appropriate earlier state. The problem is 

that the TC loses the tail of its log that had not been forced to 

stable storage, and some of these operations may have been 

already performed in a DC. Note that such pages can only be in a 

DC’s cache; the causality principle enforces that no such pages 

are stable in a DC. That is, the DC cache may contain pages which 

reflect the effects of TC operations that have been lost. This must 

be reversed before the TC resends operations from its stable log to 

be re-applied in a DC.  

We can proceed in a number of ways to reset the DC state to an 

earlier appropriate state. One way is to turn a partial failure into a 

complete failure. This drops all pages from the DC cache and 

permits conventional recovery to work. However, there is no need 

to be this draconian. A more efficient method is to drop from the 

cache only those pages that contain the results of operations that 

have been lost. Once we do this, the TC can begin resending 

operations; the DC re-applies each, perhaps fetching the relevant 

page(s) from disk if they are no longer in the DC’s cache. The 

pages that the DC must drop from its cache to reset state correctly 

are exactly the pages whose abLSNs include operations that are 

later than LSNst, the largest LSN on the TC stable log. 

6. MULTIPLE TC’S FOR A DC 
It is possible to permit more than one TC to update data at a given 

DC. So long as the records of each application are disjoint (data is 

logically partitioned), having multiple TCs accessing data at a 

given DC can be supported, as the invariant that no conflicting 

operations are active simultaneously can be enforced separately by 

each TC. This does impose additional requirements on such a DC, 

however. 

6.1 DC Requirements 

6.1.1 Multiple Abstract LSNs 
A DC supporting multiple TCs must be prepared to provide 

idempotence for each of the TCs. Since TCs do not coordinate 

how they organize and manage their logs, the LSNs from each TC 

need to be tracked separately by the DC. Thus, each page would 

needs to include an abLSN for each TC that has data on the page. 

However, pages with data from only a single TC continue to have 

only one abLSN. So, only on pages containing data from multiple 

TCs would extra abLSN’s be needed. 

6.1.2 Resetting the Database Buffer 
When a TC crashes, it may lose the log records for requests that it 

sent to a DC. The DC must be able to reset the pages that it has in 

its volatile cache (the changes cannot have propagated to the 

disk). We have already described this for single TC sending 

requests to a DC. It is highly desirable that a DC be able to reset 

pages that are affected by a TC crash so that only the failing TC 

need resend requests and participate in recovery.  

The DC needs to reset pages where the abLSN of the failed TC 

has captured operations that were not on the stable log when the 

failed TC crashed. Identifying these pages is easy since the pages 

all have abLSN s for every TC with data on the page. However, 

unlike before, we cannot simply replace such a page with the disk 

version of the page and then ask the failed TC to resend the 

appropriate requests. The disk version of the page may also not 



8 

contain changes produced by non-failing TCs. Such a replacement 

from disk would require that the other TCs with updates that are 

removed replay their logs to restore these pages. This is exactly 

what we want to avoid. 

We need to identify the data on each page that is associated with 

our failed TC. We continue to not want to associate an LSN with 

each record, though that is less of a hardship with multiple TCs. 

However, we expect most pages to have updates from a single TC, 

so we want to optimize for this case. To reset the pages containing 

lost updates of our failed TC, we need to associate the failed TC’s 

abLSN on the page with the data to which it applies.  One way to 

accomplish this is to link the records related to a TC to the single 

occurrence of the TC’s abLSN on the page. Such links could, e.g., 

be two byte offsets that chain the records together. 

A page reset then consists of replacing the records on the page 

updated by a failed TC with the records from the disk version of 

the page. Records updated by other TCs would not be reset. 

6.2 Sharing Data Among TCs 
Recall that operations executing concurrently at a DC must not 

conflict. Hence, if we can limit the types of requests that multiple 

TCs execute at a given DC to ones that are non-conflicting, we 

can permit shared access to the data managed by a DC. In this 

case, the assignments of logical portions of the data to different 

TCs need not be disjoint.  We cannot permit arbitrary sharing, but 

some types of sharing can be provided, so long as the reads are at 

low isolation levels. We first describe types of TC shared access 

to data that can be supported without any additional mechanism. 

We then show how a good bit more sharing can be supported via 

versioned data. 

6.2.1 Non-versioned Data 
Read-Only: All reads commute, regardless of their source. So it 

is possible for multiple TCs to share read-only data with each 

other without difficulty. The data read will be transaction 

consistent because no TC can change the data.  

Dirty Reads: It is sometimes possible to share read and write 

access to mutable data. Dirty reads, where uncommitted data may 

be read, do not require any locking for reads. A writer may access 

and update data (―make it dirty‖) at any time without conflicting 

with a dirty read.  Because a DC provides operation atomicity, a 

reader of dirty data will always see ―well formed‖ data, though 

this data may be from uncommitted transactions. Dirty data can 

disappear should the updating transaction abort. Further, it can be 

modified subsequently, before its transaction commits. However 

reading dirty data can sometimes be useful despite these caveats. 

Note that the above functionality requires no special DC 

knowledge or implementation. 

6.2.2 Versioned Data 
Read Committed Access: With versioned data, we can permit 

TCs that update disjoint data partitions at a DC to perform ―read 

committed‖ reads of data updated by other TCs. With versioned 

data, an update produces a new uncommitted version of the 

record, while continuing to maintain an earlier before version. To 

provide an earlier version for inserts, one can insert two versions, 

a before ―null‖ version followed by the intended insert.    

When an updating TC commits the transaction, it sends updates to 

the DC to eliminate the before versions, making the later versions 

the committed versions.  Should the transaction abort, the TC 

sends operations to the DC instructing it to remove the latest 

versions that were updated by the transaction. 

A reader from another TC that encounters a record with a before 

version reads the before version.  If it encounters a record without 

a before version, it reads this single version. A TC executing a 

transaction can be permitted to see its own updates on its own 

disjoint updatable partition while also reading committed data 

from other TCs.  To do this requires that it issue a different flavor 

of read for its own partition of data.  

An important characteristic of this approach is that there is no 

classic (blocking) two phase commit protocol in this picture.  

Once the TC decides to commit, the transaction is committed 

everywhere and it is guaranteed that the earlier before versions of 

its updates will eventually be removed. An updating TC is only 

blocked when it is actually down, in which case, none of its data 

is updatable in any event. The situation is similar when an 

updating TC decides to abort. Readers are never blocked. 

Interestingly, this is non-blocking exactly because ―read 

committed‖ access is being used with versioning. 

6.3 Cloud Sharing Scenario 
An example that captures some of the kinds of sharing of data 

across TCs that is desired in a cloud setting is an online movie site 

that tracks information about movies and allows users to write 

reviews. The fundamental problem here is that we want to cluster 

every review with both its reviewer and with the movie it 

discusses. That permits high-performance clustered access for 

reading the reviews of a given movie (the most common operation 

in the system), as well as high-performance clustered access to a 

user and all her reviews.  Unclustered access in the cloud is 

enormously more expensive, requiring access to a potentially very 

large collection of computers.   However, at such a site the most 

common update transactions involve a single user’s data (reviews, 

profile, favorites, etc).  As such it is desirable to avoid distributed 

transactions when users update their data and add reviews while 

still providing full transaction semantics across updates that span 

machines in the cloud.   

There are four common transaction workloads to consider: 

1. W1: obtain all reviews for a particular movie 

2. W2: add a movie review written by a user 

3. W3: update profile information for a user 

4. W4: obtain all reviews written by a particular user 

There are four tables to support these workloads: 

1. Movies (primary key MId): contains general information 

about each movie.  Supports W1. 

2. Reviews (primary key MId, UId) contains movie reviews 

written by users.  Updated by W2 to support W1. 

3. Users (primary key UId): contains profile information about 

users.  Updated by W3. 

4. MyReviews (primary key UId, MId): contains a copy of 

reviews written by a particular user.  Updated by W2 to 

support W4.  Effectively this table is an index in the physical 

schema since it contains redundant data from the Reviews 

table. 
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Figure 2: TC and DC Partitioning 

Figure 2 illustrates how data and transactions can be partitioned 

across TCs and DCs to achieve the goals of running the above 

workload without distributed transactions and without a query 

needing to access more than two machines to retrieve the desired 

data. Users and their workload (W2-W4) are partitioned among 

TCs, in this case TC1 and TC2.  These TCs have full access rights 

to all information about a user in the Users table and also have 

access rights to insert (―post‖) reviews by that user in the Reviews 

table.  No one else has the right to post movie reviews by a 

particular user at any movie, so this is also a disjoint partitioning. 

Clearly, the updating TC can also read the user information as it 

has full access rights to it.  The Users table and MyReviews table 

may also be partitioned by user across DCs and this illustration 

shows DC3 containing a such a partition. 

With this partitioning, TC1 can add a movie review for a user by 

updating DC1 to insert the review in the Reviews table and DC3 

to insert it in the MyReviews table.  The transaction is completely 

local to TC1. Users can also obtain all of their reviews (W4) by 

simply querying a single partition of the MyReviews table.  

We also wish to enable TC3 to read all of the reviews for a movie 

in a single query (W1). Given that a movie may have a large 

number of reviews and that requests to read the reviews will be 

much more common than adding reviews, it is critical to cluster 

reviews with their corresponding movies on a single DC. To 

achieve this clustering the Movies and Reviews tables are 

partitioned by movie onto DC1 and DC2.   

In this example, TC3 requires shared access. We cannot use ―read 

only‖ access since we are permitting the data involved to be 

updated. We can solve this problem without versioning if dirty 

reads are acceptable, as they do not conflict with access by 

updaters. With versioning, we can provide read committed  access 

as well, since such versioned reads do not conflict with updates. 

We also see potential for providing snapshot isolation [4] and 

perhaps selectively strengthening it into serializability as needed 

by the applications [5]. 

Thus, with shared (non-conflicting) access, we can support some 

important scenarios that, on the surface look impossible to 

provide.     

7. Conclusion 
This paper suggests a paradigm shift in the way transactional 

recovery and concurrency control are provided in data 

management platforms. We have worked out our proposal in 

sufficient detail to be convinced that it is implementable and 

reasonably efficient. However, compared to a traditional storage 

kernel with integrated transaction management, our unbundling 

approach inevitably has longer code paths. Our working 

hypothesis is that this is justified by the flexibility of deploying 

adequately-grained cloud services. In addition, we speculate about 

possible throughput gains on multi-core processors: with more 

compact code for separate TC and DC, and the ability to 

instantiate each multiple times with configurable numbers of 

threads, we hope for more effective use of cores and better cache 

hit rates. Ongoing work is needed to demonstrate these effects.  
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