
1

Unbundling Transaction Services in the Cloud
David Lomet
Microsoft Research
Redmond, WA 98052
+01-425-703-1853

lomet@microsoft.com

Alan Fekete
University of Sydney

Sydney, Australia
+61-2-93514287

a.fekete@usyd.edu.au

Gerhard Weikum
Max Planck Institute

Saarbrücken, Germany
+49-681-9325-500

weikum@mpi-sb.mpg.de

Mike Zwilling
Microsoft Corporation
Redmond, WA 98052
+01-425-703-6378

mikezw@microsoft.com

ABSTRACT

The traditional architecture for a DBMS engine has the recovery,

concurrency control and access method code tightly bound

together in a storage engine for records. We propose a different

approach, where the storage engine is factored into two layers

(each of which might have multiple heterogeneous instances). A

Transactional Component (TC) works at a logical level only: it

knows about transactions and their ―logical‖ concurrency control

and undo/redo recovery, but it does not know about page layout,

B-trees etc. A Data Component (DC) knows about the physical

storage structure. It supports a record oriented interface that

provides atomic operations, but it does not know about

transactions. Providing atomic record operations may itself

involve DC-local concurrency control and recovery, which can be

implemented using system transactions. The interaction of the

mechanisms in TC and DC leads to multi-level redo (unlike the

repeat history paradigm for redo in integrated engines). This

refactoring of the system architecture could allow easier

deployment of application-specific physical structures and may

also be helpful to exploit multi-core hardware. Particularly

promising is its potential to enable flexible transactions in cloud

database deployments. We describe the necessary principles for

unbundled recovery, and discuss implementation issues.

Categories and Subject Descriptors

H.2.4 [Systems]: Concurrency, Transaction processing

H.2.2 [Physical Design]: Recovery and restart, access methods

General Terms

Design, Reliability, Algorithms.

Keywords

System architecture, cloud computing, logical locking and logging

1. INTRODUCTION
DBMS decomposition has been suggested by several researchers

[2, 8, 21], but has remained an elusive goal, ―up in the clouds‖,

for two decades. One can indeed easily separate the query

processing and optimization components from the storage engine.

However, as observed in [10], ―The truly monolithic piece of a

DBMS is the transactional storage manager that typically

encompasses four deeply intertwined components:

1. A lock manager for concurrency control.

2. A log manager for recovery.

3. A buffer pool for staging database I/Os.

4. Access methods for organizing data on disk.‖

Folk wisdom, beginning with System R [6, 7], suggests that this

integration is a requirement for high performance from these

system elements, since they are exercised continuously during

DBMS execution. Nevertheless, cloud computing re-introduces

interest in and pressure for again tackling this challenge of

unbundling transaction services and data management.

1.1 Industry Trends
Trends within the computing systems industry, especially for

database systems, require us to rethink the database systems

architecture and to consider disentangling the previously

integrated aspects of the database kernel, transactional services

going to a transactional component (TC) that is architecturally

separate from data services (access methods and cache

management) in a data component (DC). These imperatives are:

1. Cloud computing opens up opportunities for easy

deployment of new, perhaps application dependent, database

management. Cloud deployments create new problems of

scale and computing infrastructure. Separating TC

functionality from DC functionality enables cloud platforms

to support transactions with much greater flexibility,

regardless of where in the cloud the data and its DCs reside.

2. New, light-weight data-management engines for specific

application areas ("one size does not fit all" [22]) call for a

composable run-time infrastructure with low overhead. For

example, one might build an RDF engine as a DC with

transactional functionality added as a separate layer.

3. The major hardware trends of our time are (1) increasing

numbers of cores on processor chips, and (2) increasing main

memory latency. This suggests a rethinking of database

architecture (even for traditional database applications such

as OLTP [9]) to enhance parallelism and improve cache hit

ratios. The decomposition into TC and DC may improve

both processor (core) utilization since each component could

run on a separate core, and cache performance, since each

component will have shorter code paths and may result in

much higher hit rates for the instruction cache(s) of one core.

4. Substantial processing power has existed for many years

within the controllers for I/O subsystems. One appealing

notion has been to move part of database functionality out of

the cpu and into these controllers. Separating the data

component as we are suggesting, permits moving this ―data

centric‖ functionality to the storage controllers, enabling a

This article is published under a Creative Commons License Agreement

(http://creativecommons.org/licenses/by/3.0/).

You may copy, distribute, display, and perform the work, make

derivative works and make commercial use of the work, but you must

attribute the work to the author and CIDR 2009.

4th Biennial Conference on Innovative Data Systems Research (CIDR)

January 4-7, 2009, Asilomar, California, USA.

mailto:lomet@microsoft.com
mailto:a.fekete@usyd.edu.au
mailto:weikum@mpi-sb.mpg.de
mailto:mikezw@microsoft.com

2

―disk‖ to support a record oriented interface instead of a page

oriented interface.

5. A classic goal has been extensible database management

systems. Adding a new access method to support new data

types (e.g., shapes, avatars, etc. used in virtual worlds, for

games, and 3D Internet) and their associated search needs is

eased substantially when the type implementation (as DC)

can rely on transactional services provided separately by TC.

1.2 Our Contribution
What makes partitioning a database kernel difficult is that state-

of-the-art concurrency control and recovery relies on knowledge

of the way that storage is paginated, and how records are assigned

to pages. For example, physiological logging [6, 24] requires each

log record to deal with a single page. Also, state-of-the-art access

methods use sophisticated ways to get high concurrency.

Our contribution is an architecture for database kernels in which

transactional functionality in a TC is unbundled from the access

methods and cache management in a DC. The TC does all locking

for transactional concurrency control and logging for transaction

abort and durability. All knowledge of pages is confined to a DC,

which means that the TC must operate at the logical level on

records. The TC invokes (and logs) logical operations of a DC.

This is pictured in Figure 1. Our design differs from [21], where

access methods are done on top of a transactional layer.

DC1:
tables&indexes
storage&cache

DC4:
tables&indexes
storage&cache

DC5:
RDF & text

DC6:
3D-shape
index

Application 1 Application 2

Cloud Services

Applications

TC1:
transactional
recovery&CC

calls

TC3:
transactional
recovery&CC

calls deploys

Figure 1: Architecture of an unbundled database kernel.

A DC knows nothing about transactions, their commit or abort. It

is required to make the individual logical operations atomic and

idempotent. Idempotence of DC operations permits the TC to

resend operations to the DC, either during normal execution

(perhaps after a response is lost) or later during recovery, while

ensuring exactly-once execution of the overall system.

Both the TC and DC are multi-threaded, which is essential for

high performance, but which introduces a number of subtle issues

with which both TC and DC must deal. For example, TC has an

obligation to never send logically conflicting operations

concurrently to a DC. In this way, the order of logical log records

written by the TC can be guaranteed to be consistent with the

physical ordering performed in a DC.

Because a DC completely handles the pagination required for an

access method like B-trees, it is the DC that must deal with page

splits and deletes. Such structure modifications themselves require

concurrency control and recovery. Integrating recovery across

both transaction and access method levels is a characteristic of

modern database systems [10], but providing them separately

from each other requires thinking anew about multi-level

recovery. We address this in Section 4.2.

Providing separate TC and DC permits us to instantiate these

components in a number of new and interesting ways. Because

DCs have longer execution paths, one might deploy a larger

number of DC instances on a multi-core platform than TC

instances for better load balancing. In a cloud environment, one

would want DCs to be close to the data, while the TCs might have

a much looser coupling. While multiple TCs must never send

conflicting operations to a DC (because the order of operations

will not be logged at the DC), it is nonetheless possible for TCs to

share data, especially when DCs provide a versioning capability.

Deploying TCs that can share DCs in this way enables our

architecture to support some of the interesting cloud scenarios,

without introducing the need for two phase commit.

2. APPLICATION PERSPECTIVE
In the Web 2.0 landscape, there are new applications that desire

fast and easy deployment on a care-free platform. Such

applications include social-community forums (e.g., sharing

photos, videos, reviews, ratings, etc.), Internet-based long-running

games with many players, and information mashups that compose

value-added portals from blogs, news, and other Internet sources.

Cloud services are intended to provide a convenient solution for

such applications. Unbundling, as we suggest, can help Web 2.0

get fast transfer of original ideas into popular Internet sites.

As one example, consider a Web 2.0 photo-sharing platform. On

first thought, this may seem simple, merely needing persistent

storage for large files. But the application also must manage users

and their accounts, photo ownerships and access rights for other

users, thematic groups for photos and users, friendships and other

interactions among users, and so on. This should be consistent

under high update rates; so there is a significant OLTP aspect.

Photos are associated with annotations (tags) and reviews. This

entails referential integrity constraints; corresponding operations

must be guarded by transactions with appropriate scope. Reviews

consist of natural-language text, and the application may have a

non-standard index structure for this (e.g., for phrases that express

opinions). Similarly, advanced visualizations of say the tag-cloud

dynamics may require special data structures as well. Finally,

imagine fancy functionality that finds photos of the same object

(e.g., the Golden Gate Bridge) uploaded by different users and

combines them into a 3D model which in turn would be made

searchable using the latest index structures for geometric shapes.

Of course, all this rich data could be mapped onto relational tables

provided by a DBMS-style cloud service. But then the application

could not utilize its advanced indexes for text phrases, 3D models,

etc. Alternatively, it could use a simpler storage service, offered in

the cloud, without transaction management. This service would

just provide persistent store, with unlimited scalability and de-

facto perfect availability, and the application program would

implement its index structures on top of it. But now the

application would also have to implement its own transactional

concurrency control and recovery. The authors of [3] have shown

how to do this with overhead; but we can do better by unbundling

the transactional issues from the actual data management. The

3

photo-sharing application could use a combination of already

available file and table managers and home-grown index

managers as DCs. For transaction management it could directly

use the services of a TC, offered in the cloud. This TC (or these

TCs if we instantiate it multiple times for scaling up throughput)

would be able to interact with the various DCs via interaction

contracts as will be explained in later sections. There is no free

lunch, though. The application's home-grown DCs would have to

be written so as to satisfy the DC parts of the contracts. This is

simpler than designing and coding a high-performance

transactional storage subsystem.

3. TECHNICAL CHALLENGES
The existing industry-standard solutions to concurrency control

and recovery do not work when transaction services are separated

from access methods and cache management. Most of this paper is

focused on dealing with recovery issues, which require a larger

departure from current practice. However, we first outline how we

would deal with concurrency control differences as well.

3.1 Concurrency Control
For many operations, splitting the database kernel into TC and

DC causes little trouble for a two phase locking approach to

transactional concurrency control. The operations that involve

updating or reading of records that are named by record identifiers

can easily lock these records within a TC, prior to the TC sending

the request to the DC that accesses the page containing the record.

It is harder when ranges of records are being locked.

In existing systems where the database kernel is one integrated

piece, a requested operation is actually executing within the page

containing the data. Thus an operation dealing with a range can

determine the keys involved, then lock them using, e.g., key range

locking [13, 20], before performing the actual access. But in our

unbundled approach, the TC needs to do the locking prior1 to

sending a request to the DC. That is, the lock must be obtained

before it is known which keys are present in (or just after) the

range. Thus we need to invest our lock manager and the TC code

that uses it with techniques for locking ranges. We know of two

ways to deal with the locking of ranges of records.

Fetch ahead protocol: Do an initial speculative probe to have the

DC return the keys to the next (in order) collection of keys. At

this point, the TC can lock those records, and submit the next

request to do the read or write, together with a speculative request

for the following keys. Should the records to be read or written

be different from the ones that were locked based on the earlier

request, this subsequent request becomes again a speculative

request for the earlier records.

Range locks: Introduce explicit range locks that partition the keys

of any table. Many systems currently support some form of this

by permitting table locks or page locks, however our separation

precludes us from locking pages. Each range of the partition is

locked prior to accessing the requested records. There can be

speculative record accesses at partition boundaries, but most

accesses can proceed without this. This protocol avoids key range

locking, and hence gives up some concurrency. However it should

also reduce locking overhead since fewer locks are needed.

1 This is to enforce the requirement that the DC never have two

conflicting operations executing concurrently.

Either of these approaches can be made to work, so we now turn

our attention to dealing with recovery.

3.2 Recovery
In an unbundled kernel, ARIES-style recovery [19, 20] does not

work, even augmented with the usual multi-level recovery [14,

23] with physical repeating-history redo of log records, and

logical, multi-level undo (which allows fine-grained concurrency

control).

1. The DC provides only record-oriented logical operations

where the TC knows nothing about pages. Hence, the TC log

records cannot contain page identifiers. Redo needs to be

done at a logical level. Pages and dealing with them is the

exclusive province of the DC. Logical redo requires that, e.g.

DC data structures be well formed (search correct) at the

time that redo is performed, not simply when undo is

performed While System R performed logical redo, it

required operation-consistent checkpointing, which means

that operation execution must be interrupted until no

operations are active, at which point a checkpoint can be

taken. This compromises both availability and performance.

2. LSNs are the normal way of ensuring operation

idempotence. This is very convenient in the conventional

setting where the LSN is assigned after a page is latched for

update. With the TC doing the transactional logging, the

situation is more complicated. The separation of the TC from

the DC together with the independent multi-threading of

TC and DC means that the TC will assign an LSN before the

order in which operations access a page is determined. This

can lead to out-of-order executions in which a later

operation for a page with a higher LSN reaches the page

before an earlier operation with a lower LSN. While these

operations cannot conflict (see Section 2.1), the out-of-order

LSNs must be dealt with.

3. DCs may autonomously perform internal “system

transactions” (e.g., page splits and other index tree

reorganizations) that might not commute with TC-initiated

logical operations. Despite this, the DC needs to restore its

indexes to a well-formed state prior to the TC executing

recovery. Thus, the DC structure modification operations

will execute during recovery out of their original execution

order. Further, the TC has no way of knowing about these

DC-internal actions. All it can do is assign LSNs and ensure

that its redo repeats history by delivering operations in the

correct order to the DC. The burden is on the DC to manage

LSNs on pages in such a way that this TC strategy will work.

Conventional techniques fail for this.

4. DC and TC may independently fail, and a crash of one of

them should not force amnesia for the other component, e.g.

by requiring the DC to discard all cached pages.

4. UNBUNDLED RECOVERY PRINCIPLES
We begin by describing the architecture of our separate TC and

DC in terms of components which interact through exchange of

particular messages. We then give the requirements on the

interactions, to ensure that recovery can execute correctly. This is

similar to our earlier work on recovery guarantees in distributed

computing [1].

4

4.1 Database Kernel as a Distributed System
We envision the TC and the DC as two ―distributed‖ components

that have an arms-length interaction. We describe what the

components do that are independent of each other, though both

are important in providing a working system.

4.1.1 Transactional component (TC)
The TC acts as client to the DC. It wraps all requests to the kernel

from higher in the database system or application stack. The TC

needs to do the following:

1. Transactional locking to ensure that transactions are properly

isolated (serializable) and that there are no concurrent

conflicting operation requests submitted to the DC. The

locks cannot exploit knowledge of data pagination.

2. Transaction atomicity, that is, ensuring that for every

completed user transaction that is provided to TC from

higher up the application stack, either

a. The user transaction commits, after TC has caused DC

to perform all the individual logical operations

necessary to achieve the intended effect of the

transaction, or

b. The user transaction aborts, after TC has caused DC to

perform a collection of logical operations whose

combined effect is rollback, so there is no net change to

the logical state. That is, TC must ensure that DC

performs a (possibly empty) set of logical operations,

followed in reverse chronological order by logical

operations that are inverses of the earlier ones.

3. Transactional logging, both undo and redo, after appropriate

locking. Undo logging in the TC will enable rollback of a

user transaction, by providing information TC can use to

submit inverse logical operations to DC. Redo logging in TC

allows TC to resubmit logical operations when it needs to,

following a crash of DC. That there are no conflicting

concurrent operation requests ensures that logical log

records can be written in OPSR (order-preserving

serializable) order, even for actual out-of-order executions in

multi-threaded mode. This must hold for whatever

concurrency control method the TC chooses to use including

fine-grained locking as well as optimistic methods.

4. Log forcing at appropriate times for transaction durability.

4.1.2 Data component (DC)
The DC acts as a server for requests from the TC. It is responsible

for organizing, searching, updating, caching and durability for the

data in the database. It supports a non-transactional, record

oriented interface. The way in which the records are mapped to

disk pages is known only to the DC itself, and is not revealed to

the TC. It needs to do the following:

1. Provide atomic operations on its data (relational records,

XML documents, encapsulated objects, etc.). Atomicity for

individual logical operations is a form of linearizing

concurrent operations [11], conceptually isolating them so

that they appear as if they were indivisible with regard to

concurrent executions [12, 18, 24]. More precisely, operation

atomicity means that there is a total order on all the

operations, compatible with any externally observable order

(where one operation has returned before another is

requested for the first time) and compatible with the results

returned (so each operation’s result reflects the state

produced by all the operations ordered before that operation).

Atomic operations ensure that serial replay of operations

during recovery is possible. To allow multi-threading within

DC, while still having atomic operations, each operation will

need to latch whatever pages it operates on, until the

operation has been performed on all the pages. However, as

with page latches in traditional storage engines, these latches

are held for very short periods, and latch deadlocks are

avoided via the ordering of latch requests.

2. Maintain indexes and storage structures behind the scenes.

For simple storage structures, each record lies on a fixed

page, and DC can maintain the indices easily. However, for

a structure like a B-tree, where a logical operation may lead

to re-arrangements that affect multiple physical pages, the

maintenance of indices must be done using system

transactions that are not related in any way to user-invoked

transactions known to the TC; implementation of system

transactions may involve their own concurrency control and

recovery.

3. Provide cache management, staging the data pages to and

from the disk as needed.

4.2 TC:DC Interactions
Our earlier work [1] described ―interaction contracts‖ which

ensure that both sender and receiver of a message would agree on

whether the message was sent, independently of system or

communication failures. The principles listed below have similar

intent, but there are differences, especially as in an unbundled

database kernel, many interactions are not made stable

immediately, but rather caching is used extensively, with state

made stable lazily.

Causality: Causality means, that the sender of a message

remembers that it sent the message whenever the receiver

remembers receiving the message. This must be true during

normal execution (trivial to do with volatile execution state) as

well as in the case that one or more parts of the system fail. It is

causality that leads to the classical write-ahead logging protocol.

Partial failures are possible, whereby either TC and/or DC fail.

To respond to partial failures in a high performance way requires

new cache management techniques for the DC (see Section 4.3

and also [17]).

Unique request IDs: The TC labels each of its operations with a

unique, monotonically increasing request identifier (usually an

LSN derived from the TC log). TC request IDs make it possible

for the DC to provide idempotence.

Idempotence: The DC manages request IDs within its data

structures so that it can decide when its state already reflects the

execution of the request, and when it does not. It must ensure that

it can successfully execute all unexecuted requests so as to

achieve their original results, both during normal execution and

during restart. Providing idempotence in our setting is a

substantial technological challenge requiring new techniques.

(See Section 4.1)

Resend Requests: The TC resends the requests until it receives

some form of acknowledgment from the DC. TC resend with

unique request ids, working with DC idempotence, enable

exactly-once execution of logical operations.

5

Recovery: The TC makes all requests to the DC in terms of

logical (record-oriented) operations. The DC index structures

must be well-formed for redo recovery to succeed. The DC must

recover its storage structures first so that they are well-formed,

before TC can perform redo recovery, not simply before undo

recovery. Thus, system transactions need to be logged such that

they can be executed during recovery out of their original

execution order. (See Section 4.2)

Contract termination: There needs to be a protocol between TC

and DC that permits the guarantees for causality and idempotence

to be released. For example, the TC will eventually refrain from

resending operations during restart. This corresponds to

checkpointing in a conventional kernel; it involves coordinating

the stable part of the recovery log managed by the TC with the

stable part of the database state managed by the DC. This does not

require new techniques but we must expose functionality at the

TC:DC interface.

4.2.1 The TC/DC API
Here we summarize the interface through which necessary

information is passed between TC and DC. We present these as

functions or methods of DC, to be invoked by TC; however we do

not limit the implementation technology for information

exchange, and indeed we expect that in a cloud environment

asynchronous messages might be used with the request flowing in

on direction, with a later reply in the reverse direction, while

signals and shared variables might be more suited for a multi-core

design. Also, while usually TC is driving each interaction, there

are some situations where DC will need to spontaneously convey

information to TC; for example, following a crash of DC, a

prompt is needed so that TC will begin the restart function.

perform_operation. TC needs to provide DC with the

information about the logical operation, including the operation

name and arguments (among which is the table name and the key

for the record involved, or description of a range of keys as

discussed in Section 3.1), and also a unique identifier (which is

typically the LSN from the TC-log record for this operation).

Resends of the request can be characterized by re-use of the

operation identifier. The eventual reply for this request includes

the operation identifier so it can be correlated to the request, as

well as the return value of the operation itself. Note that the

information given to DC does not carry any information about the

user transaction of which it is a part, nor does DC know whether

this operation is done as forward activity, or as an inverse during

rollback of the user transaction.

end_of_stable_log. An argument, EOSL, is the LSN for the last

entry from the TC-log that has been made stable. DC knows that

all operations with this operation identifier, or lower, will not be

lost in a crash of DC, and so causality allows DC to make any

such operation stable in DC. This function is how WAL is

enforced in an unbundled engine. A traditional storage engine

performs exactly the same check but without using messages to

convey the information.

checkpoint. An argument, newRSSP, is an LSN to which TC

wishes to advance its redo scan start point. DC will reply once it

has made stable all pages that contain operations whose LSN is

below newRSSP; this releases the contract requiring TC to be

willing to resend these operations, and only at this point can TC

actually advance its start point for replaying operations in

subsequent restarts. DC may also proactively make pages stable,

and could spontaneously inform TC that the RSSP can advance

to be after a given LSN.

low_water_mark. This function informs DC that TC has received

the response from every logical operation with LSN up to and

including the argument LWM, and so DC can be sure that there

are no gaps among the lower LSN operations which are reflected

in cache pages. The use of this information is discussed in Section

5.1.2. Like end_of-stable_log, this is important for deciding when

pages in DC’s cache can be flushed to disk. Thus one might trade

some flexibility in DC for simplicity of coding, by combining

end_of-stable_log and low_water_mark into one function that

simply informs DC of the operation id, for which it is safe to flush

a page from the DC cache so long as the page contains no

operation beyond this LSN.

restart. We describe this as a single complicated function, but in

practice the information passed would probably be batched and

conveyed in several messages. TC informs DC that restart is

commencing, and that it must discard any information about

operations with LSNs higher than the last one in the stable TC log

(these operations would be lost forever; causality ensures that any

such information is not yet stable in DC) ; also the restart function

includes resending all operations on the stable TC-log from the

redo scan start point onwards; after they have been applied by the

DC (which itself happens after DC resets its state, see Section

5.3.2), then TC will send logical operations which are inverses for

those operations of user transactions that need rollback; finally,

once all have been applied in DC, DC can acknowledge

completion of the restart function, allowing normal processing to

resume. If DC fails, we assume an out-of-band prompt is passed to

TC, so TC knows to begin restart.

5. NEW TECHNIQUES
In this section, we describe some novel techniques to deal with

the new complexities of providing ―unbundled‖ recovery.

5.1 Out-of-Order Operation Execution

5.1.1 Current Technique
Because of the arms length separation of TC from DC, and their

multi-threading, TC operation requests can arrive at the code

accessing data on a page in an order that differs from the order of

TC request ids (LSNs). This undermines the usual recovery test

for idempotence in which a log operation’s LSN is compared to

an LSN stored in the data page impacted by the operation. This

traditional test is simply: Operation LSN <= Page LSN

When this test is true in a monolithic system where logical log

records are produced (and given LSNs) during a critical section in

which the page is modified, it means that the page contains the

effects of the operation, and redo is prohibited for the logged

operation. Otherwise, the operation must be re-executed and the

page (along with its LSN) is updated.

Because of out-of-order execution in an unbundled system, this

test is no longer suitable. If an operation Oj with LSNj executes

before an operation Oi with LSNi, and LSNi < LSNj, and the page

is immediately made stable after Oj’s execution, it will then

contain a page LSN equal to LSNj. The traditional test will

incorrectly indicate that Oi results are included in the page, and

that there is no need to re-execute Oi.

6

This difficulty could be solved by introducing record level LSNs,

since updates are conflicting record operations, and conflicting

operations cannot execute concurrently. However, this is very

expensive in the space required. Hence we prefer a page LSN

oriented solution.

5.1.2 Our New Technique
To deal with out-of-order execution, we introduce the notion of an

abstract page LSN denoted as abLSN. We then generalize the

meaning of <= so that our test, showing when redo is not

required, become Operation LSN <= Page abLSN.

We describe how this is done here. An Operation LSN is

unchanged from before. But an abLSN is more complicated, and

hence the resulting <= test is more complicated as well.

Abstract LSNs: We need to capture precisely which operations

have results captured in the state of a page. We define our abLSN

as accurately capturing every operation that has been executed

and included in the state of the page. More precisely, it needs to

indicate which operations’ results are not included on the page.

Our abLSN consists of a low water LSNlw, whose value is such

that no operation with an LSN < =LSNlw needs to be re-executed.

We augment LSNlw with the set {LSNin} of LSNs of operations

greater than LSNlw whose effects are also included on the page.

Thus we have abLSN = <LSNlw, {LSNin}>. An operation with

LSNi has results captured in the page with abLSN when LSNi <=

abLSN where <= is defined as:

LSNi <= abLSN iff LSNi<=LSNlw or LSNi in {LSNin}

Establishing LSNlw: How can the DC know that a particular

value is suitable as LSNlw? This means that the DC would have

already performed every operation with lower LSN which might

be applicable on that page. If DC has a pending unapplied

operation with a lower LSN, it knows this, but because of

multithreading, operations can come to the DC out of LSN order.

Thus the DC can’t determine by itself which operations are not

yet applied. However, the TC knows which LSNs were generated

for operations, and which have definitely been performed. So,

from time to time, the TC will send the DC LWM such that the

TC has received replies from the DC for all operations with LSNs

up to LWM.

The DC can use the TC supplied LWM in any of its cached pages

as the LSNlw for the page. Simultaneously, the DC can discard

from the abLSN for the page any element of {LSNin} such that

LSNin <= LSNlw.

Page Sync: During normal execution, we do not need to keep

abLSN in the page itself, as long as it is available in volatile

memory outside the page, to be tested as required. However, when

the page is flushed to disk, the abLSN must be made stable

atomically with the page. Traditionally, this is done by including

LSN information in the page itself, and we focus on this approach

here. We call this step a page sync, and require that all pages be

synced before being written to volatile storage.

There are two distinct ways that pages can be synced, and some

combination of the two is also possible. When a page is to be

flushed, we could follow any of these algorithms:

1. We refuse to execute operations on the page with LSN’s

greater than the highest valued LSNin. Eventually, the LSNlw

sent by the TC will equal or exceed every LSNin, at which

time we can set abLSN for the page to LSNlw. This delays

the page flush.

2. We include the entire existing abLSN on the page. This takes

up more storage on the page than a single LSN would.

3. We wait until the number of LSNs in {LSNin} is reduced to a

manageable size using a TC supplied LSNlw, and then

include the abLSN on the page which is then flushed.

5.2 System Transaction Execution Order

5.2.1 Current Technique
Most modern database systems exploit some form of atomic

action to provide recovery for access method structure

modifications [16, 20]. Indeed Microsoft SQL Server uses a

variant of multi-level recovery in which system transactions

encapsulate structure modifications. The characteristic of existing

system transactions [15] is that like open nested transactions,

system transactions are redone in precisely their original

execution order. Undo recovery is done in two steps. First,

incomplete system transactions are undone, then user transaction

level transactions are undone. This is the usual multi-step undo

done for multi-level transactions and it ensures that logical user

transaction undo operations find a search structure that is well

formed when they are executed.

5.2.2 Our New Technique
When we split the kernel, it is the DC that handles all page related

operations, including all structure modifications to an index

structure. These structure modification operations need to be

atomic and recoverable. Microsoft SQL Server uses latching and

system transactions for this. Because this is now done by the DC,

both latching and the logging needed for system transactions must

be done by the DC. Further, the DC will use its own LSNs

(dLSNs) to make structure modification recovery idempotent. That

is, each page should contain both dLSN (indicating which

structure modifications are reflected in this page) and abLSN as

described in 5.1.2.

Splitting the kernel requires that the TC submit logical redo as

well as logical undo operations to the DC. Hence, indexes

maintained by the DC need to be well-formed before considering

any logical redo sent by TC. That is, the DC needs to make its

search structures well-formed by completing any redo and undo of

system transactions from the DC-log, prior to the TC executing its

redo recovery. This moves system transaction recovery ahead of

all TC level recovery. This change in the order of recovery means

we need to manage LSN information correctly in order to indicate

what operations (both from the DC-log and from the TC-log) are

reflected in the page. To make this concrete we discuss the system

transactions involved in page splits and page deletions in a B-tree.

Page Splits: Page splits make additional storage available to a B-

tree. The DC-log has (among other log records) an entry that

records the creation of the new page, and an entry that records the

removal of keys from the pre-split page. When these DC-log

events are moved forward during recovery, the page split is

executed earlier in the update sequence relative to the TC

operations that triggered the split. Repeat-history recovery can be

made to work for this case.

1. The DC-log record for the new page needs to capture the

page’s abLSN at the time of the split since the log record for

the new page contains the actual contents of the page.

7

2. The DC-log record for the pre-split page need only capture

the split key value. Whatever version of that page exists on

stable storage, its abLSN captures the state of this page. And

we can use that abLSN validly for this page, whether we find

it in a state prior to or later than the split.

Page Deletes/Consolidates: When a page of an index structure is

deleted, the search range for the page is logically consolidated

with an adjacent page of the index structure. Such page deletes are

moved forward in their execution during recovery as the DC-log

is recovered before TC recovery, but this seriously complicates

recovery. Page deletes reduce the amount of space available to the

index structure. A consolidation that happens early may find that

the versions of the pages involved during recovery don’t fit into a

single page. When the DC executes internal system transactions

that do not commute with previously executed TC-generated

logical operations, the DC must provide a recoverable state that

includes these prior operations (e.g., by generating a physical log

record that encompasses the non-commutative prior operations).

Thus, we can make an entry in DC-log for the deletion of the page

whose space is to be returned to free space; this log record can be

logical, indicating that the page is no longer needed. But when

we produce a DC-log entry for the consolidated page which

inherits the deleted page’s key range and perhaps the remaining

records in that range, we use a physical DC-log record that

captures the entire page including using an abLSN for the

consolidated page that is the maximum of abLSNs of the two

pages; redoing the consolidation amounts to giving the

consolidated page the contents and key-range that it had

immediately after the consolidation originally happened. That is,

this logging/recovery technique forces the delete to keep its

position in the execution order wrt TC-submitted operations

which are on the key range of the consolidated page. Such

physical logging of a consolidated page is more costly in log

space than the traditional logical system transaction for page

deletes. But page deletes are rare, so the extra cost should not be

significant.

5.3 Partial Failures

5.3.1 Current Technique
There are no current database techniques for this, as this situation

cannot arise. Failures in a monolithic database kernel are never

partial. Log and cache manager fail together.

5.3.2 Our New Technique
By splitting a database kernel, we need to face the possibility that

TC and DC fail independently. The complete failure of both TC

and DC returns us to the current fail-together situation and

requires no new techniques. Now, consider separate (and hence

partial) failures.

DC Failure: When the DC fails, it loses its volatile (in-cache)

state. The database state in the DC reverts to the state captured on

stable storage. Once the TC has been notified, it resends

operations forward from the redo scan start point (as indicated in

the checkpoint). The DC re-applies any of these operations which

are missing from the stable state. This is conventional recovery.

An important point in an unbundled design is that the TC chooses

the redo scan start point based on which operations have their

idempotence-guarantee terminated, because the DC has

checkpointed all these operations’ effects; communicating from

the DC to the TC that this has happened requires an extension to

the interface between the components.

TC Failure: When the TC fails and loses its log buffers while the

DC continues to run normally, the TC needs a way of resetting

the state of the DC to an appropriate earlier state. The problem is

that the TC loses the tail of its log that had not been forced to

stable storage, and some of these operations may have been

already performed in a DC. Note that such pages can only be in a

DC’s cache; the causality principle enforces that no such pages

are stable in a DC. That is, the DC cache may contain pages which

reflect the effects of TC operations that have been lost. This must

be reversed before the TC resends operations from its stable log to

be re-applied in a DC.

We can proceed in a number of ways to reset the DC state to an

earlier appropriate state. One way is to turn a partial failure into a

complete failure. This drops all pages from the DC cache and

permits conventional recovery to work. However, there is no need

to be this draconian. A more efficient method is to drop from the

cache only those pages that contain the results of operations that

have been lost. Once we do this, the TC can begin resending

operations; the DC re-applies each, perhaps fetching the relevant

page(s) from disk if they are no longer in the DC’s cache. The

pages that the DC must drop from its cache to reset state correctly

are exactly the pages whose abLSNs include operations that are

later than LSNst, the largest LSN on the TC stable log.

6. MULTIPLE TC’S FOR A DC
It is possible to permit more than one TC to update data at a given

DC. So long as the records of each application are disjoint (data is

logically partitioned), having multiple TCs accessing data at a

given DC can be supported, as the invariant that no conflicting

operations are active simultaneously can be enforced separately by

each TC. This does impose additional requirements on such a DC,

however.

6.1 DC Requirements

6.1.1 Multiple Abstract LSNs
A DC supporting multiple TCs must be prepared to provide

idempotence for each of the TCs. Since TCs do not coordinate

how they organize and manage their logs, the LSNs from each TC

need to be tracked separately by the DC. Thus, each page would

needs to include an abLSN for each TC that has data on the page.

However, pages with data from only a single TC continue to have

only one abLSN. So, only on pages containing data from multiple

TCs would extra abLSN’s be needed.

6.1.2 Resetting the Database Buffer
When a TC crashes, it may lose the log records for requests that it

sent to a DC. The DC must be able to reset the pages that it has in

its volatile cache (the changes cannot have propagated to the

disk). We have already described this for single TC sending

requests to a DC. It is highly desirable that a DC be able to reset

pages that are affected by a TC crash so that only the failing TC

need resend requests and participate in recovery.

The DC needs to reset pages where the abLSN of the failed TC

has captured operations that were not on the stable log when the

failed TC crashed. Identifying these pages is easy since the pages

all have abLSN s for every TC with data on the page. However,

unlike before, we cannot simply replace such a page with the disk

version of the page and then ask the failed TC to resend the

appropriate requests. The disk version of the page may also not

8

contain changes produced by non-failing TCs. Such a replacement

from disk would require that the other TCs with updates that are

removed replay their logs to restore these pages. This is exactly

what we want to avoid.

We need to identify the data on each page that is associated with

our failed TC. We continue to not want to associate an LSN with

each record, though that is less of a hardship with multiple TCs.

However, we expect most pages to have updates from a single TC,

so we want to optimize for this case. To reset the pages containing

lost updates of our failed TC, we need to associate the failed TC’s

abLSN on the page with the data to which it applies. One way to

accomplish this is to link the records related to a TC to the single

occurrence of the TC’s abLSN on the page. Such links could, e.g.,

be two byte offsets that chain the records together.

A page reset then consists of replacing the records on the page

updated by a failed TC with the records from the disk version of

the page. Records updated by other TCs would not be reset.

6.2 Sharing Data Among TCs
Recall that operations executing concurrently at a DC must not

conflict. Hence, if we can limit the types of requests that multiple

TCs execute at a given DC to ones that are non-conflicting, we

can permit shared access to the data managed by a DC. In this

case, the assignments of logical portions of the data to different

TCs need not be disjoint. We cannot permit arbitrary sharing, but

some types of sharing can be provided, so long as the reads are at

low isolation levels. We first describe types of TC shared access

to data that can be supported without any additional mechanism.

We then show how a good bit more sharing can be supported via

versioned data.

6.2.1 Non-versioned Data
Read-Only: All reads commute, regardless of their source. So it

is possible for multiple TCs to share read-only data with each

other without difficulty. The data read will be transaction

consistent because no TC can change the data.

Dirty Reads: It is sometimes possible to share read and write

access to mutable data. Dirty reads, where uncommitted data may

be read, do not require any locking for reads. A writer may access

and update data (―make it dirty‖) at any time without conflicting

with a dirty read. Because a DC provides operation atomicity, a

reader of dirty data will always see ―well formed‖ data, though

this data may be from uncommitted transactions. Dirty data can

disappear should the updating transaction abort. Further, it can be

modified subsequently, before its transaction commits. However

reading dirty data can sometimes be useful despite these caveats.

Note that the above functionality requires no special DC

knowledge or implementation.

6.2.2 Versioned Data
Read Committed Access: With versioned data, we can permit

TCs that update disjoint data partitions at a DC to perform ―read

committed‖ reads of data updated by other TCs. With versioned

data, an update produces a new uncommitted version of the

record, while continuing to maintain an earlier before version. To

provide an earlier version for inserts, one can insert two versions,

a before ―null‖ version followed by the intended insert.

When an updating TC commits the transaction, it sends updates to

the DC to eliminate the before versions, making the later versions

the committed versions. Should the transaction abort, the TC

sends operations to the DC instructing it to remove the latest

versions that were updated by the transaction.

A reader from another TC that encounters a record with a before

version reads the before version. If it encounters a record without

a before version, it reads this single version. A TC executing a

transaction can be permitted to see its own updates on its own

disjoint updatable partition while also reading committed data

from other TCs. To do this requires that it issue a different flavor

of read for its own partition of data.

An important characteristic of this approach is that there is no

classic (blocking) two phase commit protocol in this picture.

Once the TC decides to commit, the transaction is committed

everywhere and it is guaranteed that the earlier before versions of

its updates will eventually be removed. An updating TC is only

blocked when it is actually down, in which case, none of its data

is updatable in any event. The situation is similar when an

updating TC decides to abort. Readers are never blocked.

Interestingly, this is non-blocking exactly because ―read

committed‖ access is being used with versioning.

6.3 Cloud Sharing Scenario
An example that captures some of the kinds of sharing of data

across TCs that is desired in a cloud setting is an online movie site

that tracks information about movies and allows users to write

reviews. The fundamental problem here is that we want to cluster

every review with both its reviewer and with the movie it

discusses. That permits high-performance clustered access for

reading the reviews of a given movie (the most common operation

in the system), as well as high-performance clustered access to a

user and all her reviews. Unclustered access in the cloud is

enormously more expensive, requiring access to a potentially very

large collection of computers. However, at such a site the most

common update transactions involve a single user’s data (reviews,

profile, favorites, etc). As such it is desirable to avoid distributed

transactions when users update their data and add reviews while

still providing full transaction semantics across updates that span

machines in the cloud.

There are four common transaction workloads to consider:

1. W1: obtain all reviews for a particular movie

2. W2: add a movie review written by a user

3. W3: update profile information for a user

4. W4: obtain all reviews written by a particular user

There are four tables to support these workloads:

1. Movies (primary key MId): contains general information

about each movie. Supports W1.

2. Reviews (primary key MId, UId) contains movie reviews

written by users. Updated by W2 to support W1.

3. Users (primary key UId): contains profile information about

users. Updated by W3.

4. MyReviews (primary key UId, MId): contains a copy of

reviews written by a particular user. Updated by W2 to

support W4. Effectively this table is an index in the physical

schema since it contains redundant data from the Reviews

table.

9

DC1: storage for subset of
Movies (MId, …)
Reviews (MId, UId, …)

Partitioned on MId

Application W2:

Add Movie Review

TC1:
responsible for
UId mod 2 = 0

calls

TC2:
responsible for
UId mod 2 = 1

TC3:
Retrieve reviews

calls
(updates) calls

(updates)

calls
(reads)

DC2: storage for subset of
Movies (MId, …)
Reviews (MId, UId, …)

Paritioned on MId

DC3: storage for subset of:
Users (UId, …)
MyReviews(UId, MId,...)

Partitioned on UId

Application W1:

Retrieve Reviews for

a Movie

calls

Figure 2: TC and DC Partitioning

Figure 2 illustrates how data and transactions can be partitioned

across TCs and DCs to achieve the goals of running the above

workload without distributed transactions and without a query

needing to access more than two machines to retrieve the desired

data. Users and their workload (W2-W4) are partitioned among

TCs, in this case TC1 and TC2. These TCs have full access rights

to all information about a user in the Users table and also have

access rights to insert (―post‖) reviews by that user in the Reviews

table. No one else has the right to post movie reviews by a

particular user at any movie, so this is also a disjoint partitioning.

Clearly, the updating TC can also read the user information as it

has full access rights to it. The Users table and MyReviews table

may also be partitioned by user across DCs and this illustration

shows DC3 containing a such a partition.

With this partitioning, TC1 can add a movie review for a user by

updating DC1 to insert the review in the Reviews table and DC3

to insert it in the MyReviews table. The transaction is completely

local to TC1. Users can also obtain all of their reviews (W4) by

simply querying a single partition of the MyReviews table.

We also wish to enable TC3 to read all of the reviews for a movie

in a single query (W1). Given that a movie may have a large

number of reviews and that requests to read the reviews will be

much more common than adding reviews, it is critical to cluster

reviews with their corresponding movies on a single DC. To

achieve this clustering the Movies and Reviews tables are

partitioned by movie onto DC1 and DC2.

In this example, TC3 requires shared access. We cannot use ―read

only‖ access since we are permitting the data involved to be

updated. We can solve this problem without versioning if dirty

reads are acceptable, as they do not conflict with access by

updaters. With versioning, we can provide read committed access

as well, since such versioned reads do not conflict with updates.

We also see potential for providing snapshot isolation [4] and

perhaps selectively strengthening it into serializability as needed

by the applications [5].

Thus, with shared (non-conflicting) access, we can support some

important scenarios that, on the surface look impossible to

provide.

7. Conclusion
This paper suggests a paradigm shift in the way transactional

recovery and concurrency control are provided in data

management platforms. We have worked out our proposal in

sufficient detail to be convinced that it is implementable and

reasonably efficient. However, compared to a traditional storage

kernel with integrated transaction management, our unbundling

approach inevitably has longer code paths. Our working

hypothesis is that this is justified by the flexibility of deploying

adequately-grained cloud services. In addition, we speculate about

possible throughput gains on multi-core processors: with more

compact code for separate TC and DC, and the ability to

instantiate each multiple times with configurable numbers of

threads, we hope for more effective use of cores and better cache

hit rates. Ongoing work is needed to demonstrate these effects.

References
1. R. Barga, D. Lomet, G. Shegalov, G. Weikum. Recovery

Guarantees for Internet Applications. ACM TOIT 4(3):289-

328 (2004).

2. D. Batory, J. Barnett, J. Garza, K. Smith, K. Tsukuda, B.

Twichell, T. Wise. GENESIS: An Extensible Database

Management System. IEEE Trans. Software Eng. 14(11):

1711-1730 (1988)

3. M. Brantner, D. Florescu, D. Graf, D. Kossmann, T. Kraska.

Building a database on S3. SIGMOD 2008: 251-264.

4. H. Berenson, P.A. Bernstein, J. Gray, J. Melton, E.J. O'Neil,

P.E. O'Neil: A Critique of ANSI SQL Isolation Levels.

SIGMOD 1995: 1-10

5. M.J. Cahill, U. Roehm, A.D. Fekete: Serializable Isolation

for Snapshot Databases. SIGMOD 2008: 729-738

6. J. Gray, A. Reuter. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, 1993.

7. J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T.

Price, F. Putzolu. The Recovery Manager of the System R

Database Manager. ACM Computing Surveys, 13(2):223-242

(1981).

8. S. Harizopoulos, A. Ailamaki. The Case for Staged Database

Systems. CIDR 2003.

9. S. Harizopoulos, D.J. Abadi, S. Madden, M. Stonebraker.

OLTP Through the Looking Glass, and What We Found

There. SIGMOD 2008: 981-992

10. J. Hellerstein, M. Stonebraker, J. Hamilton. Architecture of a

Database System. Foundations and Trends in Databases

1(2):141–259 (2007).

11. M. Herlihy, J. Wing. Linearizability: a Correctness Criterion

for Concurrent Objects. ACM TOPLAS 12(3):463-492

(1990).

12. C.B. Jones et al.: The Atomic Manifesto: a Story in Four

Quarks. SIGMOD Record 34(1): 63-69 (2005)

13. D.B. Lomet. Key Range Locking Strategies for Improved

Concurrency. VLDB 1993: 655-664.

14. D.B. Lomet. MLR: A Recovery Method for Multi-Level

Systems. SIGMOD 1992: 185-194.

15. D.B. Lomet. Advanced Recovery Techniques in Practice. in

Recovery Mechanisms in Database Systems (V. Kumar and

M. Hsu, eds.) Prentice Hall PTR 1998

16. D.B. Lomet, B. Salzberg. Concurrency and Recovery for

Index Trees. SIGMOD 1992: 351-360.

17. D.B. Lomet, M.R. Tuttle: A Theory of Redo Recovery.

SIGMOD 2003: 397-406

10

18. N.A. Lynch, M. Merritt, W.E. Weihl, A. Fekete. Atomic

Transactions, Morgan Kaufmann 1993.

19. C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, P. Schwarz.

ARIES: A transaction recovery method supporting fine-

granularity locking and partial rollbacks using write-ahead

logging. ACM TODS, 17(1):94-162 (1992).

20. C. Mohan, F. Levine. ARIES/IM: An Efficient and High

Concurrency Index Management Method Using Write-ahead

Logging. SIGMOD 1992: 371—380.

21. R. Sears, E. Brewer. Stasis: Flexible Transactional Storage.

OSDI 2006: 29-44.

22. M. Stonebraker, U. Çetintemel. "One Size Fits All": An Idea

Whose Time Has Come and Gone. ICDE 2005: 2-11.

23. G. Weikum, C. Hasse, P. Broessler, P. Muth. Multi-Level

Recovery. PODS 1990: 109-123

24. G. Weikum, G. Vossen. Transactional Information Systems,

Morgan Kaufmann, 2001.

