User Browsing Behavior-driven Web Crawling

Minghai Liu, Rui Cai, Ming Zhang, and Lei Zhang

Microsoft Research, Asia

School of EECS, Peking University
Ordering Policies for Web Crawling

• Ordering policy
 – To prioritize the URLs in a crawling queue
 – The key is importance measure of a URL

• Existing policies adopt various hypotheses of URL importance

<table>
<thead>
<tr>
<th>Link Structure</th>
<th>Semantic-driven</th>
<th>Site-level</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Breadth-first</td>
<td>• Topical crawler</td>
<td>• Structure-driven</td>
</tr>
<tr>
<td>• In-degree</td>
<td>• Focused crawler</td>
<td>• Forum crawling</td>
</tr>
<tr>
<td>• PageRank and its derivatives</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Search impact</td>
<td></td>
</tr>
</tbody>
</table>
Limitations

• **General** policies (link structure-based) cannot optimize the performance of a particular website
 – The Web becomes more dynamic, deep, and complex
 – URLs with low PageRank scores still attract considerable traffic

• **Specific** policies (semantic-driven and site-level) cannot be scaled up to the whole Web
 – Heavy maintain cost, and unaffordable human efforts

• Just characterize user interest **indirectly** and **incompletely**

• How to predict the importance of **newly created (unseen)** URLs?
User Browsing Behavior from Log Data

• As another valuable information to guide crawling
 – Directly reflect user interest
 – Rich knowledge, covers most important sites on the Web

• How to leverage log data in crawling?
 – Simply prioritizing a URL according to its frequency being recorded in the log? Impractical!
 ▪ Log data is quite sparse, covers less than 10% URLs in a website
 ▪ User behaviors on a single URL are noisy and unstable
 ▪ URLs retired very rapidly
 – Aggregate log data through data mining
Our Idea — URL Pattern

- Summarize log data with URL patterns, and design crawl ordering policies at pattern-level
 - URLs in a website follow syntax schemas defined by its designers
 - URLs belonging to the same pattern act similar functional roles

- Benefits of URL patterns
 - Robust to noise, steady in a relatively long period, generalized to predict unseen URLs
 - Go deep to optimize site-specific performance, and go wide to provide a web-scale solution

- Technical obstacles
 - How to determine the granularities of URL patterns?
 - Coarse – cannot distinguish URLs with different user behaviors
 - Subtle – overfitting and poor generalization ability
 - How to leverage URL patterns to design ordering policies?
Framework Overview

- Log data format — triple
 - \(<\text{URL}_t, \text{URL}_r, \text{GUID}>\)

- System framework — run in parallel
Algorithm: Pattern Tree Construction

- **URL decomposition**
 - `<key, value>` pair
 - RFC 3986

 ![Component Table]

 ![Pattern Tree Diagram]

 ![Algorithm Diagram]

- **Pattern tree construction**
 - A top-down process
 - Considering the distribution of values under a particular key
 - Split URLs according to the key which has the most concentrated distribution in each iteration
 - Lei et al. WWW 2010

 ![Component Table](http://www.playlist.com/mail/compose?recipient=mike)

 ![Pattern Tree Diagram](http://www.playlist.com/mail/compose?recipient=mike)

 ![Algorithm Diagram](http://www.playlist.com/mail/compose?recipient=mike)
Algorithm: Pattern Selection

• Cut the pattern tree and stop at the levels, at which different tree nodes (patterns) have different user browsing behaviors
 – Two behaviors: visit (content pages) and transit (hub pages)

• Current solution: two steps
 – visit-based and transit-based tree-cuts
Algorithm: Pattern Ranking

- **Two Crawling Scenarios**
 - *Comprehensively* fetching a website (batch mode)
 - *Timely* discovering new content (incremental mode)
 - Monitor “hub” pages
 - Crawl news / forum / social network sites

- **How to rank patterns?**
 - Behavior graph
 - The browsing structure among URL patterns
 - The transition probabilities are based on user voting
 - Rank with HITS but NOT PageRank
 - The *authority* and *hub* scores perfectly match the two aforementioned scenarios
Experimental Results

• Nice advantages of URL patterns
 – **Generalization ability**: cover 99% URLs in a website
 – **Distinguishability**: URLs from the same pattern are consistent on page layouts
 – **Summarization ability**: pattern-level traffic distribution can well approximate the raw URL-level log data
 – **Temporal reliability**: still cover 90% URLs after 6 months

• Better crawling performance
 – Detailed comparisons please refer to the paper
 – The algorithms have been successfully shipped to Bing
Thanks!

Q & A

More information please visit