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Abstract - This paper addresses the problem of streaming packetized media over
a lossy packet network, in a rate-distortion optimized way. Out of all the packets that a
sender could transmit at a given transmission opportunity, we show how the sender should
compute which packets, if any, to transmit in order to meet an average rate constraint
while minimizing the average end-to-end distortion. Experimental results show that our
system has steady-state gains of 3–7 dB or more over systems that are not rate-distortion
optimized.

INTRODUCTION

In this paper, we introduce a framework for distortion-rate optimized streaming of
packetized media, and apply it to the scenario of sender-driven transmission over a
best-effort network with feedback. Rather than streaming the packetized media in a
fixed sequence according to presentation time, the sender chooses a transmission pol-
icy for each unit of data that minimizes the expected end-to-end distortion of the entire
presentation subject to a transmission rate constraint. The solution to this resource al-
location problem is obtained by minimizing a Lagrangian, taking into account the
data units’ dependence relationships in addition to their different delivery deadlines
and basic importances. This minimization results in a form of unequal loss protection,
in which sensitivedata units — data units whose delivery most affects the distortion
— are transmitted or retransmitted in preference to less sensitive data units. Conse-
quently the more sensitive data units are often pre-transmitted far in advance of their
presentation times, while the less sensitive data units are transmitted later if at all.
Furthermore the sensitivity of a data unit is not a static quantity, but varies in response
to feedback from the receiver. If a data unit is acknowledged as received, then the data
units on which it depends increase in sensitivity while the data units that depend on
it decrease in sensitivity, and vice versa. The proper computation is embodied in an
iterative descent algorithm we call the sensitivity adjustment (SA) algorithm.

To our knowledge, the most closely related contemporaneous work is that by Miao
and Ortega [1], which develops a low-complexity heuristic algorithm for sender-driven
scheduling of packet transmissions over a best-effort network. Zhou and Li [2] also
develop similar heuristics. The most closely related rigorous work is that by Podolksy,
McCanne, and Vetterli [3]. The present paper is a severely shortened version of [4].



PRELIMINARIES

In a streaming media system, the encoded data are packetized intodata unitsand
are stored in a file on a media server. Regardless of how many media objects (audio,
video, etc.) there are in a multimedia presentation, and regardless of what algorithms
are used for encoding and packetizing those media objects, all of the data units in the
presentation have interdependencies, which be expressed by a directed acyclic graph
as illustrated in Figure 1. Each node of the graph corresponds to a data unit, and each
edge of the graph directed from data unitl′ to data unitl implies that data unitl can
be decoded only if data unitl′ is first decoded.

Associated with each data unitl is a sizeBl, a decoding timetDTS,l, and an
importance∆dl. The sizeBl is the size of the data unit in bytes. The decoding time
tDTS,l is the time at which the decoder is scheduled to extract the data unit from
its input buffer and decode it (the decoder timestamp in MPEG terminology). Thus
tDTS,l is the delivery deadline by which data unitl must arrive at the client, or be too
late to be used. Packets containing a data unit that arrive after the data unit’s delivery
deadline are discarded. The importance∆dl is the amount by which the distortion at
the receiver willdecreaseif the data unit arrives on time at the receiver and is decoded.

Also associated with each data unitl is a set ofN = Nl transmission opportunities
t0,l, t1,l, . . . , tN−1,l prior totDTS,l at which the data unit may be put into a packet and
transmitted. Often this set of transmission opportunities is a single timet0,l (such as
a “send time”) prior to the delivery deadline, but in general we assume it is a finite set
of timest0,l, t1,l, . . . , tN−1,l, such as the set of times atT = 50 ms intervals within a
window prior to the delivery deadline.

We model the network as an independent time-invariant packet erasure channel
with random delays. That means that if the sender inserts a packet into the network
at time t, then the packet is lost with some probability, sayεF , independent oft.
However, if the packet is not lost, then it arrives at the receiver at sender timet′, where
the forward trip timeFTT = t′−t is randomly drawn according to probability density
pF . Each packet is lost or delayed independently of the other packets. In practice we
allowpF to adapt to the channel state (e.g., “congested” or “not congested”) over time,
by estimating the parameters ofpF (equivalent to mean and variance) on line using an
exponentially weighted moving average as in TCP. For convenience, we combine the
packet loss probability and the packet delay density into a single probability measure,
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Figure 1: Typical directed acyclic dependency graph for video and audio data units.



by assigningFTT = ∞ in the event that the packet is lost. ThusP{FTT > τ} is
the probability that a packet sent at times is not received by times + τ , whether lost
or simply delayed. We assume that the back channel, if available, can be similarly
characterized by a probability measure on the backward trip timeBTT . The round
trip timeRTT = FTT +BTT is by definition the sum of forward and backward trip
times. In our experiments we use as the densitypF the shifted Gamma distribution
with parameters(nF , αF ) and right shiftκF .

R-D OPTIMIZATION USING SENSITIVITY ADJUSTMENT

We assume that each data unitl can be transmitted with a different policyπl se-
lected from a family of policiesΠ. The familyΠ is determined by the scenario under
consideration. For example, in a forward error correction scenario,Π may correspond
to a family of erasure codes having parameters(n, k). Similarly, in a retransmission-
based scenario,Π may correspond to family of transmission schedules according to
which a data unit is transmitted until an acknowledgement is received. The latter
scenario will be investigated in the next section.

Suppose there areL data units in the multimedia session. Letπl be the transmis-
sion policy for data unitl ∈ {1, . . . , L} and letπ = (π1, . . . , πL) be the vector of
transmission policies for allL data units. Any given policy vectorπ induces an ex-
pected distortionD(π) and an expected transmission rateR(π) for the multimedia
session. We seek the policy vectorπ that minimizes the LagrangianD(π) + λR(π)
for some Lagrange multiplierλ > 0, and thus achieves a point on the lower convex
hull of the set of all achievable distortion-rate pairs.

The expected transmission rateR(π) is the sum of the expected transmission rates
for each data unitl ∈ {1, . . . , L}:

R(π) =
∑

l

Blρ(πl), (1)

whereBl is the number of bytes in data unitl and ρ(πl) is the expected costper
byte, or the expected number of transmitted bytes per source byte under policyπl.
The expected distortionD(π) is somewhat more complicated to express, but it can be
expressed in terms of theexpected error, or the probabilityε(πl) for l ∈ {1, . . . , L}
that data unitl does not arrive at the receiver on time under policyπl. Specifically,
let Il be the indicator random variable that is 1 if data unitl arrives at the receiver on
time, and is 0 otherwise. Then

∏
l′¹l Il′ is 1 if data unitl is decodable by the receiver

on time, and is 0 otherwise. Here,l′ ¹ l means thatl depends directly or indirectly on
l. If data unitl is decodable by the receiver on time, then the reconstruction error is
reduced by the quantity∆dl; otherwise the reconstruction error is not reduced. Hence
the total reduction in reconstruction error for the presentation is

∑
l ∆dl

∏
l′¹l Il′ .

Subtracting this quantity from the reconstruction error for the presentation if no data
units are received, and taking expectations, we have for the expected distortion

D(π) = D0 −
∑

l

∆Dl

∏

l′¹l

(1− ε(πl′)), (2)



whereD0 is the expected reconstruction error for the presentation if no data units are
received and∆Dl is the expected reduction in reconstruction error if data unitl is
decoded on time. Here we have used the assumption that the data packet transmission
processes are independent, and are independent of the source process, in order to
factor the expectation.

With expressions (1) and (2) for the expected transmission rate and expected dis-
tortion for any given policy vector now in hand, we are now able to find the policy
vectorπ that minimizes the expected Lagrangian

J(π) = D(π) + λR(π) = D0+
∑

l


∆Dl


−

∏

l′¹l

(1−ε(πl′))


+λBlρ(πl)


 . (3)

However, this minimization is complicated by the fact that the terms involvingπl are
not independent. We employ an iterative descent algorithm, called the sensitivity ad-
justment (SA) algorithm, in which we minimize the objective functionJ(π1, . . . , πL)
in (3) one component at a time while keeping the other variables constant, until con-
vergence. Letπ(0) be any initial policy vector and letπ(n) = (π(n)

1 , . . . , π
(n)
L ) be

determined forn = 1, 2, . . ., as follows. Select one componentln ∈ {1, . . . , L} to
optimize at stepn, e.g.,ln = (n mod L). Then forl 6= ln, let π(n)

l = π
(n−1)
l , while

for l = ln, let π(n)
l = arg minπl

J(π(n)
1 , . . . , π

(n)
l−1, πl, π

(n)
l+1, . . . , π

(n)
L ), or

π
(n)
l = arg min

πl

S
(n)
l ε(πl) + λBlρ(πl), (4)

where (4) follows from (3) withS(n)
l =

∑
l′ºl ∆Dl′

∏
l′′¹l′:l′′ 6=l(1 − ε(π(n)

l′′ )). The
factor Sl can be regarded as thesensitivityto losing data unitl, i.e., the amount by
which the expected distortion will increase if data unitl cannot be recovered at the
receiver, given the current transmission policies for the other data units.

The minimization (4) is now simple, since each data unitl can be considered in
isolation. Indeed the optimal transmission policyπl ∈ Π for data unitl minimizes the
“per data unit” Lagrangianε(πl) + λ′ρ(πl), whereλ′ = λBl/S

(n)
l . Thus to minimize

(4) for anyl andλ′, it suffices to know the lower convex hull of the functionε(ρ) =
minπ∈Π{ε(π) : ρ(π) ≤ ρ}, which we call theerror-cost function. The error-cost
function can be considered as a normalized distortion-rate function pertaining to the
transmission of a single dimensionless data unit, and depends only on the transmission
scenario and the channel characteristics. The next section investigates the error-cost
function for the scenario of sender-driven transmission over a best-effort network with
feedback.

SENDER-DRIVEN TRANSMISSION OF A SINGLE DATA UNIT

First consider the scenario without feedback. Lett0, t1, . . . , tN−1 beN discrete
transmission opportunities for a data unit and lettDTS be its delivery deadline. Re-
peatedly transmitting the data unit at allN opportunities results in a small expected



error (equal to
∏

i P{FTT > tDTS − ti}) but a large expected cost (equal toN ).
On the other hand transmitting the data unit at none of theN opportunities results
in a large expected error (equal to 1) but a small expected cost (equal to 0). Inter-
mediate expected errors and costs can also be achieved and easily computed for any
fixed transmission pattern. For example, supposea0, a1, . . . , aN−1 represents a trans-
mission pattern whereai = 1 if a data packet is transmitted at timeti andai = 0
otherwise. Then the expected error is equal to

∏
i:ai=1 P{FTT > tDTS − ti} while

the expected cost is equal to
∑

i:ai=1 1 transmitted bytes per source byte.
Now consider the scenario with feedback. Suppose the receiver sends an acknowl-

edgement packet back to the sender the instant that it receives a data packet, and that
the sender truncates its transmission pattern upon receipt of the acknowledgement
packet. Then although the expected error remains the same, the expected cost is re-
duced to

∑
i:ai=1(

∏
j<i:aj=1 P{RTT > ti − tj}). To see this, consider that each

term in parentheses is the probability that none of the previously transmitted pack-
ets is acknowledged by timeti, which in turn is the expected value of the indicator
function of the event that a data packet is transmitted at timeti.

Figure 2a shows on a log-linear scale the lower convex hull of the error-cost func-
tion for this scenario, with each vertex of the convex hull labeled by the sequence
of actions[a0, a1, . . . , a7] for the optimal policyπ∗λ corresponding to the Lagrange
multiplier λ for that vertex. Of course the curve is convex on a linear scale.

EXPERIMENTAL RESULTS

Here we investigate the distortion-rate performance for streaming one minute of
packetized audio content using different methods. The audio content, the first minute
of Sarah McLachlan’sBuilding a Mystery, is compressed using a scalable version of
the Windows Media Audio codec. The codec produces a group of twelve 500-byte
data units every 0.75 seconds for a maximum data rate of 64 Kbps. All twelve data
units in themth group receive the same decoding timestamp, equal to0.75m.

We compare several streaming systems. System 1 is has rate control but not error
control. Data units are transmitted at most once, in group order. The number of
data units transmitted in each group is proportional to the transmission rate. System
2 is similar to commercial systems. Error control is provided by retransmissions,
which may occupy up to 20% of the channel bandwidth (equal to the packet loss
probability). Data units for which the server receives negative acknowledgements
(NAKs) from the client are queued, and are retransmitted from the queue on a space-
available basis. The remaining 80% or more of the channel bandwidth is used for first-
time transmission of data units in the same manner as in System 1. In our simulation
the client is omniscient: for each packet that is lost, the client sends a NAK at precisely
the moment that the packet would have arrived at the client if it had not been lost.
This provides an upper bound on the performance of any real client. System 3 is rate-
distortion optimized as described in the previous sections. Unlike System 2, no NAKs
are available; only ACKs are sent back to the server upon receipt of a packet by the
client. The Lagrange multiplierλ is fixed for the entire presentation. System 4 is the



same as System 3 with the addition of rate control. In this case we fix a bandwidth
limit for each group (instead of fixingλ as in System 3). All of the systems use the
same playback delay (420 ms) and the same channel parameters.

As shown in Figure 2b, System 1 saturates in performance as the transmission rate
increases. This is because in the absense of error control, base layer packets are being
lost 20% of the time, limiting overall performance, regardless of the transmission rate.
System 2 outperforms System 1 by three or more dB, while System 3 outperforms
System 2 by an addition four or more dB, for a total gain up to seven or more dB over
System 1. System 4 pays very little penalty (a fraction of a dB) for imposing a fixed
rate constraint on the transmission. Thus, it is clear that the rate-distortion optimized
systems obtain superior performance by using the available bandwidth in the most
cost-effective way.
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Figure 2: (a) Error-cost function. (b) Distortion-rate performances.

References

[1] Z. Miao and A. Ortega. Optimal scheduling for streaming of scalable media. In
Proc. Asilomar Conference on Signals, Systems, and Computers, Pacific Grove,
CA, November 2000.

[2] J. Zhou and J. Li. Scalable audio streaming over the Internet with network-aware
rate-distortion optimization. InProc. Int’l Conf. Image Processing, Thessaloniki,
Greece, October 2001. IEEE. Submitted.

[3] M. Podolsky, S. McCanne, and M. Vetterli. Soft ARQ for layered streaming
media. Technical Report UCB/CSD-98-1024, University of California, Computer
Science Division, Berkeley, CA, November 1998.

[4] P. A. Chou and Z. Miao. Rate-distortion optimized streaming of packetized me-
dia. Technical Report MSR-TR-2001-35, Microsoft Research, Redmond, WA,
February 2001.


