Rate-Distortion Optimized Receiver-Driven
Streaming over Best-Effort Networks

Philip A. Chou' and Anshul Sehgal*
¥ Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399
* Beckman Institute, University of Illinois, Urbana, IL 61801

pachou@microsoft.com, asehgal@uiuc.edu

Abstract

This paper addresses the problem of streaming packetized media over a lossy
packet network, in a rate-distortion optimized way, where the rate-distortion
optimization is performed at the receiver. We show how the receiver should
compute which packets, if any, to request from the sender, in order to meet
a constraint on the transmission rate from the sender to the receiver while
minimizing the average end-to-end distortion. Experimental results show that
the receiver-driven system has performance within 1 dB of a sender-driven
system, while reducing the computational burden at the sender.

1 Introduction

In this paper, we employ a framework for distortion-rate optimized streaming of pack-
etized media, which was introduced in [1, 2], and apply it to the scenario of receiver-
driven transmission over a best-effort network. In our receiver-driven scenario, the
receiver requests from the sender each unit of data that it wishes to receive, by trans-
mitting a “request packet” to the sender that requests the desired data unit. If the
request packet is not lost in the network, the sender replies by transmitting the re-
quested data unit to the receiver. In turn, if the packet containing the data unit is not
lost in the network, the receiver buffers the data unit until it is ready to be decoded.
However, if the receiver does not receive the requested data unit in a timely fashion,
the receiver may request the data unit again. This process is repeated until either
the data unit arrives at the receiver on time (i.e., before its decoding deadline) or the
receiver gives up.

Every data unit that arrives at the receiver on time reduces the distortion of the
presentation by an amount that corresponds to the basic importance of the data
unit, provided that all of the data units on which it depends have also arrived at
the receiver. In addition, every data unit that is transmitted from the sender in-
curs a transmission cost. It is of interest to minimize both the distortion and the
transmission cost. Towards this end, in our rate-distortion optimization framework,

the receiver makes its requests according to a “request policy” that minimizes the
expected distortion subject to a constraint on the expected rate of transmission from
the sender to the receiver. The receiver determines the optimal request policy by min-
imizing a Lagrangian, taking into account the data units’ dependence relationships in
addition to their different decoding deadlines and basic importances. This minimiza-
tion results in a form of unequal loss protection, in which sensitive data units — data
units whose delivery most affects the distortion — are requested or re-requested in
preference to less sensitive data units. Consequently the more sensitive data units are
often requested far in advance of their decoding times, while the less sensitive data
units are requested later if at all. Furthermore the sensitivity of a data unit is not a
static quantity, but varies in response to feedback from the receiver. If a data unit
is received, then the data units on which it depends increase in sensitivity while the
data units that depend on it decrease in sensitivity, and vice versa. Optimization of
the request policy is performed by an iterative descent algorithm called the iterative
sensitivity adjustment (ISA) algorithm.

In sender-driven streaming [1, 2, 3] the sender decides which packets should be
transmitted to the receiver. It does this on the basis of information available to it
such as acknowledgements it receives from the receiver for previously received packets
(which could be lost or delayed), the rate-distortion characteristics of the presentation,
decoding timestamps of the data units, etc. Receiver-driven streaming has certain
advantages over sender-driven streaming, stemming from knowledge that the receiver
has but the sender does not. In particular, the receiver has perfect and arbitrarily
complete knowledge of all the data units that it has ever received from any sender.
This knowledge can be especially useful if the receiver wishes to replay any content
that it has received in the past (the state of which has been discarded by the sender),
or if the receiver wishes to distribute transmission of a single presentation across
multiple senders, e.g., for the purposes of reliability or load balancing. However, in
receiver-driven streaming, the receiver does not have the knowledge the sender has
of the distortion-rate characteristics of the presentation or the decoding timestamps
of data units. This paper addresses the problem of receiver-driven streaming in a
rate-distortion optimized framework.

2 Preliminaries

In a streaming media system, the encoded data are packetized into data units and
are stored in a file on a media server. Regardless of how many media objects (audio,
video, etc.) there are in a multimedia presentation, and regardless of what algorithms
are used for encoding and packetizing those media objects, all of the data units in the
presentation have interdependencies, which be expressed by a directed acyclic graph
as illustrated in Figure 1. Each node of the graph corresponds to a data unit, and
each edge of the graph directed from data unit [’ to data unit [implies that data unit
[can be decoded only if data unit I is first decoded.

Associated with each data unit [is a size B;, a decoding time tprg;, and an
importance Ad;. The size B; is the size of the data unit in bytes. The decoding

time tprg,; is the time at which the decoder is scheduled to extract the data unit
from its input buffer and decode it. (This corresponds to the decoder timestamp in
MPEG terminology.) In the context of the server/client model for streaming, ¢prg;
is the delivery deadline by which data unit [must arrive at the client, or be too late
to be used. Packets containing a data unit that arrive after the data unit’s delivery
deadline are discarded. The importance Ad; is the amount by which the distortion
at the receiver will decrease if the data unit arrives on time at the receiver and is
decoded.

Also associated with each data unit [is a set of N = N, request opportunities
tosst1g, .-, tny—1, prior to tprg; at which the receiver may transmit a request for
the data unit. Often this set of request opportunities is a single time ¢(; prior to the
delivery deadline, but in general we assume it is a finite set of times ¢o;, 14, ..., tn-1,
such as the set of times at 7" = 50 ms intervals within a window prior to the delivery
deadline.

We model the network as two independent channels: a backward (or uplink) path
from the receiver to the sender and a forward (or downlink) path from the sender
to the receiver. Each path is an independent time-invariant packet erasure channel
with random delays. This means that if the receiver inserts a request packet into
the backward path at time ¢, then the packet is lost with some probability, say €p,
independent of ¢t. However, if the packet is not lost, then it arrives at the sender at
time t/, where the backward trip time BTT = t' — t is randomly drawn according
to probability density pg. Each packet is lost or delayed independently of the other
packets. (However in practice we allow e and pg to adapt over time to the state of the
channel, which may become congested, so that the actual channel has memory lasting
perhaps several seconds.) For convenience, we combine the packet loss probability and
the packet delay density into a single probability measure, by assigning BTT = oo
in the event that the packet is lost. Thus P{BTT > 7} is the probability that a
request packet transmitted by the receiver at time ¢ does not arrive at the sender
by time ¢ 4+ 7, whether it is lost or simply delayed. Similarly, we let P{FTT > 7}
be the probability that a data packet transmitted by the sender at time ¢ does not
arrive at the receiver by time ¢ + 7, whether it is lost or simply delayed. The round
trip time RTT = FTT + BTT is by definition the sum of forward and backward trip
times. In our experiments we use as densities for pg and pr Gamma distributions
with parameters (ng, ag) and (ng, ap) shifted to the right by £ and kg, respectively.

AR H N H K R AH N

Figure 1: Typical directed acyclic dependency graph for video and audio data units.

3 Iterative Sensitivity Adjustment

We assume that communication of each data unit [can be achieved with a policy
selected from a family of policies II. The family II is determined by the scenario under
consideration. For example, in a sender-driven scenario, [T may be a family of forward
transmission schedules according to which the sender transmits the data unit until
it receives an acknowledgement for the data unit from the receiver. In this paper,
we focus on the receiver-driven scenario in which II is the family of request policies
according to which the receiver requests a data unit until it receives the data unit
from the sender, or gives up. However, the rate-distortion optimization framework
presented in this section does not depend on the specific scenario.

Suppose there are L data units in the multimedia session. Let m; be the policy
for data unit [€ {1,..., L} and let w = (my,...,7) be the vector of policies for all
L data units. Any given policy vector 7 induces an expected distortion D(7r) and
an expected transmission rate R(7) for the multimedia session. We seek the policy
vector 7 that minimizes the Lagrangian D(7) + AR(7) for some Lagrange multiplier
A > 0, and thus achieves a point on the lower convex hull of the set of all achievable
distortion-rate pairs.

The expected transmission rate R(7) is the sum of the expected transmission
rates for each data unit [€ {1,...,L}:

R(m) = _ Bip(m), (1)

where By is the number of bytes in data unit [and p(m;) is the ezpected cost per byte,
or the expected number of transmitted bytes per source byte under policy m;. The
expected distortion D(7) is somewhat more complicated to express, but it can be
expressed in terms of the expected error, or the probability €(m;) for | € {1,...,L}
that data unit [does not arrive at the receiver on time under policy ;. Specifically,

D(r) = Do — S AD J[(1 — e(m)), 2)

[=<l

where Dy is the expected reconstruction error for the presentation if no data units
are received and AD; is the expected reduction in reconstruction error if data unit [
is decoded on time. Derivation of this expression can be found in [1, 2].

With expressions (1) and (2) for the expected transmission rate and expected
distortion for any given policy vector now in hand, we are able to find the policy
vector 7t that minimizes the expected Lagrangian

J(m) = D(7) + AR(w) = Do+

ADZ (—H(l—‘f(ﬂ'l/))) +)\Bl/)(7Tl)] . (3)

=i

However, this minimization is complicated by the fact that the terms involving m
are not independent. We employ an iterative descent algorithm, called the iter-
ative sensitivity adjustment (ISA) algorithm, in which we minimize the objective

function J(my,...,7) in (3) one component at a time while keeping the other vari-

ables constant, unti)l convergence. Let 7w be any initial policy vector and let
(n) (n

7 = (m™,...,7;"”) be determined for n = 1,2,..., as follows. Select one compo-
nent [, € {1,..., L} to optimize at step n, e.g., [, = (n mod L). Then for [# [, let
7Tl(n) = Wl(n_l), while for [= [,,, let 7Tl(n) = arg ming, J(?T%n), - ,Wl(f)l, o, ﬂl(j_)l, - ,ﬂén)),
or

" = arg min SiVe(m) + ABip(m), (4)

where (4) follows from (3) with Sl(n) = Yt ADy <y (1 — E(Wl(,?))). The factor
S; can be regarded as the sensitivity to losing data unit [, i.e., the amount by which
the expected distortion will increase if data unit [cannot be recovered at the receiver,
given the current policies for the other data units.

The minimization (4) is now simple, since each data unit [can be considered in
isolation. Indeed the optimal policy m; € II for data unit [minimizes the “per data
unit” Lagrangian e(m;) + X p(m), where X' =)\Bl/Sl(n). Thus to minimize (4) for any !
and X, it suffices to know the lower convex hull of the function €(p) = min en{e(m) :
p(m) < p}, which we call the error-cost function. The error-cost function can be
considered as a normalized distortion-rate function pertaining to the transmission of
a single dimensionless data unit, and depends only on the transmission scenario and
the channel characteristics. The next section investigates the error-cost function for
the scenario of receiver-driven transmission over a best-effort network.

4 The Error-Cost Function

First consider the simplified scenario where the receiver transmits only a single request
for a data unit, say at time ty < tprg, where tprg is the data unit’s delivery deadline.
If the request packet is not lost on its way to the sender along the backward path,
then the sender transmits the data unit in a data packet along the forward path,
incurring a cost of 1 transmitted bytes per source byte. Thus the expected cost is
equal to the probability that the request packet is not lost, or P{BTT < oo}, using
our convention that BTT = oo if the packet is lost. Further, the expected error is
equal to the probability that either the request packet is lost on its way to the sender
along the backward path, or the data packet is lost on its way back to the receiver
along the forward path, or the round trip is longer than tprg — tg. The probability
that of any of these events occur is P{RTT > tprs —to}, again using our convention.

Now consider the more complex scenario where the receiver may transmit multiple
requests for a data unit. Let tg,t1,...,txy_1 be N discrete opportunities at which
the receiver may transmit a request for a data unit and let tprg > ty_1 be the data
unit’s delivery deadline. Repeatedly transmitting the data unit at all /N opportunities
results in a small expected error (equal to [[; P{RTT > tprs — t;}) but a large
expected cost (equal to N - P{BTT < oo}). On the other hand, transmitting the
data unit at none of the NV opportunities results in a large expected error (equal to
1) but a small expected cost (equal to 0). Intermediate expected errors and costs can
also be achieved and are easily computed for any fixed request pattern. For example,

Error—cost function Distortion—rate performance of audio clip

12

% —— Upper bound on performance (System 2)
* —6— RD optimized with length 4 policy
0 L L —=- RD optimized with length 1 policy
i i i T T T T T
0 05 1 15 2 10 20 30 40 50 60 70 80 90
Expected cost Forward transmission rate (kbps)

Figure 2: (a) Error-cost function for receiver-driven streaming. (b) Performance of
system for policy length = 1 vs. policy length = 4.

suppose ag, a1, ...,aN_1 represents a request pattern where a; = 1 if a data packet
is requested at time ¢; and a; = 0 otherwise. Then the expected error is equal to
[Ti.q,=1 P{RTT > tprg — t;} while the expected cost is equal to Y;.,.—y P{BTT <
oo0}. The latter expression assumes that the receiver does not alter its transmission
behavior upon receipt of the data unit.

Finally, consider the most realistic scenario where the receiver may transmit mul-
tiple requests for a data unit, and terminates its request pattern upon receipt of the
data unit. Then although the expected error remains the same, the expected cost is
reduced t0 3;.q,—1([1j<iia;—1 P{RTT > t; —t;}) P{BTT < oo}. To see this, note that
the factor (I1<j.a,—1 P{RTT > t; —t;}) is the probability that none of the previously
transmitted request packets is acknowledged with a data packet by time ¢;, which in
turn is the probability that a request packet is transmitted at time t;.

In the latter scenario, the policy m; for data unit [is identified with the request
pattern ag,ay,...,ay—_1 used to request the data unit. Thus if there are N request
opportunities for a data unit, then there are 2V possible policies 7; in the family II
of policies for a data unit, each with its own expected error €(m;) and expected cost
p(m). In this context, N is called the policy length.

Figure 2a shows error-cost performances of all 2V policies in the last receiver-driven
streaming scenario. Here, N = 8 and the interval between request opportunities is
T = 50 ms, so that t,,; = t;+ 7T forv = 0,1,...,N — 1, and tprs = ty. The
channel parameters are eg = e = 10%, ng = np = 2, agp = ap =1/(25 ms), and
kp = kr = 50 ms.

5 Experimental Results

We investigate the overall distortion-rate performance for streaming one minute of
packetized audio content using the proposed approach and its variants. The audio

content, the first minute of Sarah McLachlan’s Building a Mystery, is compressed
using a scalable version of the Windows Media Audio codec. The codec produces
a group of twelve 500-byte data units every 750 ms for a maximum data rate of 64
Kbps. All twelve data units in the gth group receive the same decoding timestamp,
equal to g x 750 ms. The channel parameter values given in the previous section
are used for simulations. These values yield a mean RTT of 200 ms and a one-way
loss rate of 10%, representative of a typical Internet channel. Our simulations use
a pseudo-random number generator initialized with the same seed for each system
method tested.

Two systems are considered:

System 1: receiver driven rate-distortion optimized streaming. In this system, the
rate-distortion optimized streaming algorithm described in the previous sections is
applied to streaming of packetized media. The Lagrange multiplier A is fixed for the
entire session. At each request opportunity, the receiver requests data units based
on the channel characteristics, the distortion-rate characteristics of the stream, and
the decoding timestamps of the data units. The results are averaged over multiple
runs to smooth out the effects of particular channel realizations. The performance of
various variants of this system are also evaluated.

System 2: An “ideal” rate-distortion optimal system working at channel capacity.
This ideal system provides an upper bound on the performance of any rate-distortion
optimization based system. The performance of such a system is computed using the
rate-distortion characteristics of the stream and the characteristics of the channel. If
the sender transmits each data unit an infinite time before its deadline, the channel
acts as a binary erasure channel with a drop probability ez. The capacity of this
channel is C' = 1 — ep. Thus, to successfully transmit each source byte, the sender
has to transmit at least 1/C' bytes over the channel. Therefore, transmission of a data
unit with a distortion decrement AD; and size B; requires B;/C bytes. Knowing ep,
AD;, B, and the dependence structure for each data unit, the performance of this
system can be computed using an optimal pruning algorithm [4, 5].

First, we present experimental results that evaluate the effect of simplifications to
and approximations of the proposed approach on its performance. Then, we demon-
strate the replay functionality mentioned in Section 1 and compare the performance
of receiver-driven streaming to sender-driven streaming.

Effect of short policy length: Our first experiment evaluates the impact of policy
length on the performance of the algorithm. Policy length refers to the number of
request opportunities, /N, that the algorithm looks ahead while computing the policy
m = {aoy, a1y, -..,ay,} for data unit [. Policy length may be less than the total
number of request opportunities available for requesting the data unit before its de-
livery deadline. This is because at each request opportunity, we permit the algorithm
to recompute an optimal length-N policy, given all currently available information
for all data units, before taking the first action in the policy, ag;. This is repeated
at each request opportunity until the data unit’s delivery deadline. Having short
policy lengths is beneficial in a practical system since the computational complexity
of the algorithm grows exponentially with policy length. For this experiment, the
time interval between successive request opportunities is set to 7" = 200 ms and the

Distortion—rate performance of audio clip Distortion—rate performance of audio clip

12

12

101 10

))
Z Z
x 6f x 6
4 4
n n
4+ 4+
2 Upper bound on performance (System 2) i 2r —— Upper bound on performance (System 2) ||
—6— Optimized with knowledge of RD characteristics —6— RD optimized with Gamma model
—5— Optimized without knowledge of RD characteristics —8— RD optimized with simple late/loss model
0 10 20 30 40 50 60 70 80 90 OCS 10 20 30 40 50 60 70 80 90
Forward transmission rate (kbps) Forward transmission rate (kbps)

Figure 3: (a) Estimated vs. a priori knowledge of source RD characteristics. (b)
Simple late/loss probability model vs. Gamma distribution model.

performances of policies of length four and length one are compared. It is noted that
the mean RTT of the channel is 200 ms. Thus, for each data unit, a policy of length
four looks ahead four RTTs while making the current decision. Figure 2b compares
the performances of System 1 for length four and length one policies. We infer from
the figure that at low rates, using a policy of length one results in only a minor degra-
dation in performance (a fraction of a dB) compared to a policy of length four. At
high rates, however, the difference in the performance becomes larger. For ensuing
experiments, the value of T" was set back to 50 ms.

Effect of estimating the rate-distortion characteristics of the source: At each
request opportunity, the receiver requests data units based on an optimization pro-
cedure that requires knowledge of the distortion decrement AD,; and size B; of each
data unit [. In general, this rate-distortion information is not available at the re-
ceiver. However, the receiver can predict these quantities using previously received
data units. For example, if the source is coded in layers, then the distortion decre-
ments for the data units in all the layers in the current group can be predicted using
exponentially weighted moving averages such as AD; + a«AD;+ (1 —«a)AD;, where «
is a weighting factor (set to 0.8 in our experiments). The averages can be initialized
during session setup to the distortion decrements for the first group of data units.
This procedure can also be used to estimate B;, though in our experiments the data
units have a fixed size (500 bytes) so prediction is not required. Figure 3a compares
the performance of System 1 with this estimation procedure to its performance when
the receiver has perfect knowledge of the rate-distortion characteristics. The graph
shows that estimation leads to only minor degradations in the performance of the
system, demonstrating the robustness of the algorithm to small perturbations in its
knowledge of the rate-distortion characteristics of the stream.

Effect of a simple late/loss model: In our next experiment, we approximate the
late/loss probability model based on the Gamma distribution with a simple late/loss
probability model [1, 2]. As shown in [1, 2], this leads to simplifications in the

Distortion—rate performance of audio clip Distortion—rate performance of audio clip

12

12
10 1 10k
8 8
S S
x 6 x 6
4 Z
n n
4 : 4
2r — Upper bound on performance (System 2) 1 2r —— Upper bound on performance (System 2) |1
—-- RD opt!m!zed w!thout a rate constraint —©— RD optimized without any approximations
—&— RD optimized with a rate constraint —=— RD optimized with all approximations
0(L L L L L L L L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 0(0 10 20 30 40 50 60 70 90
Forward transmission rate (kbps) Forward transmission rate (kbps)

Figure 4: (a) Streaming with and without a rate constraint. (b) Streaming with and
without proposed approximations.

optimization algorithm. The simple late/loss model approximates the Gamma dis-
tribution with P{RTT > 7} = 1 for 7 < pg and as eg for 7 > pp (likewise for
P{FTT > 7}). Though packets are still dropped according to the Gamma distribu-
tion model, the algorithm makes its decisions based on the simple late/loss probability
model. Figure 3b compares the performance of System 1 with the simple late/loss
model to its performance with the Gamma model. As shown in Figure 3b, perfor-
mance degrades by only a fraction of a dB with this approximation.

Effect of rate constraint: Next, we evaluate the performance of System 1 with a
request rate constraint. As shown in [1, 2], at each available request opportunity, the
algorithm can adjust the Lagrange multiplier A until it selects exactly one data unit
to request. To make a comparison between the performance of the rate constrained
and the rate unconstrained case, first the ISA algorithm is run with a fixed A and
the total number of requests throughout the session (N) is obtained. To simulate
the rate-controlled case, these N requests are uniformly spaced over the duration
of the session to obtain an average interval between successive requests. The rate-
controlled algorithm [1, 2] is run with this inter-request interval. Figure 4a shows the
performance of System 1 in these two cases. As seen from the plots, the presence of
a request rate constraint results in only a small penalty in terms of SNR.

Figure 4b evaluates the cumulative effect of using a length one policy, estimation
of AD,, a simple late/loss probability model, and rate-control. Comparison is made
with a system that does not make these approximations. Figure 4b shows that these
approximations lead to minor degradations in the quality of the received stream.

Next, we evaluate the performance of System 1 with replay functionality. For this
experiment, the stream was played until ¢ = 40s, at which point a request was made
to replay the stream from ¢ = 15s. Figure 5a plots the per-GOF SNR versus time for
the first request and the “replay request” for the stream. During the replay period,
the receiver requests only data units that it does not already have, and instead may
use the available bandwidth to retrieve enhancement data. This is an idea due to Jim

Playback quality of audio clip Distortion-rate performance of audio clip

8 I ; T ;
— - - 12
® ; © RD optimized streaming with replay
% RD optimized streaming without replay
7 i o7 —
! o! 6 10}
! °© o !
| o0 oo o P
. - o '
6 oo T o, O 8
—~ Py o P —~
oQ : o0 o) m
@ °f i 9 6
z 2 © g
2 ! 7}
I
4 I o) 4+
- o/
! ! % &
3’ |] 2r —— Upper bound on performance (System 2) 7
| i —6— Receiver—driven streaming
t=15s, t= 405i —8- Sender—driven streaming
2 L L o i N N N N N N N
0 10 20 30 40 50 60 0 10 20 30 40 50 60 70 80 90
Time (seconds) Forward transmission rate (kbps)

Figure 5: (a) RD optimized streaming with replay. (b) Receiver- vs. sender-driven
streaming.

Gemmel [6]. As the figure shows, during the replay period (¢t = 15s to t = 40s), the
play back quality for the replay request is strictly better than for the first request.

Finally, Figure 5b compares receiver-driven and sender-driven streaming. The
same forward and backward channels are used in both scenarios. As can be seen
from the figure, the two systems have almost identical performance. This validates
the efficacy of receiver-driven streaming in scenarios where it is advantageous to have
distributed computation of transmission policies.

References

[1] P. A. Chou and Z. Miao. Rate-distortion optimized streaming of packetized media.
Technical Report MSR-TR-2001-35, Microsoft Research, Redmond, WA, February 2001.

[2] P. A. Chou and Z. Miao. Rate-distortion optimized streaming of packetized media.
IEEE Trans. Multimedia, 2001. Submitted.

[3] P. A. Chou and Z. Miao. Rate-distortion optimized sender-driven streaming over best-
effort networks. In Proc. Workshop on Multimedia Signal Processing. IEEE, Cannes,
France, October 2001.

[4] Y. Shoham and A. Gersho. Efficient bit allocation for an arbitrary set of quantizers.
IEEE Trans. Acoustics Speech and Signal Processing, 36:1445-1453, September 1988.

[5] P. A. Chou, T. Lookabaugh, and R. M. Gray. Optimal pruning with applications to tree
structured source coding and modeling. IEEE Trans. Information Theory, 35(2):299—
315, March 1989.

[6] Jim Gemmel. Layered video idea. Personal communication, March 2000.

