



# Packing Multicast Trees

Philip A. Chou

Sudipta Sengupta

Minghua Chen

Jin Li

**Kobayashi Workshop on Modeling and Analysis of Computer and  
Communication Systems, Princeton University, May 9, 2008**

# Problem



- Given
  - Directed graph  $(V, E)$  with edge capacities  $c(e)$ ,  $e \in E$
  - Multiple multicast sessions  $\{(s_i, T_i)\}$ , each with
    - Sender  $s_i$  (i)
    - Receiver set  $T_i$  (i)
    - Transmission rate  $r_i$
- What is the capacity region  $\mathsf{R} = \{\text{achievable } (r_1, \dots, r_{|S|})\}$ ?
- What is a transmission scheme that achieves a given transmission rate vector  $(r_1, \dots, r_{|S|}) \in \mathsf{R}$ ?

# Butterfly Network with Two Unicast Sessions





# Network Coding vs Routing



# Butterfly Network with Two Unicast Sessions



# Characterization of Capacity for Acyclic Graphs

$\mathbf{N} = \{Y_s : s \in S\} \cup \{U_e : e \in E\}$  --  $N$  random variables

$$\Gamma_{\mathbf{N}}^* = \left\{ \mathbf{h} \in \square^{2^N-1} : \mathbf{h} \text{ is entropic} \right\}$$

$$C_1 = \left\{ \mathbf{h} \in \square^{2^N-1} : h_{Y_s} = \sum_{s \in S} h_{Y_s} \right\}$$

$$C_2 = \left\{ \mathbf{h} \in \square^{2^N-1} : h_{U_{Out(s)}|Y_s} = 0, \forall s \in S \right\}$$

$$C_3 = \left\{ \mathbf{h} \in \square^{2^N-1} : h_{U_{Out(v)}|U_{In(v)}} = 0, \forall v \in V \setminus (S \cup T) \right\}$$

$$C_4 = \left\{ \mathbf{h} \in \square^{2^N-1} : h_{U_e} \leq c(e), \forall e \in E \right\}$$

$$C_5 = \left\{ \mathbf{h} \in \square^{2^N-1} : h_{Y_{S_t}|U_{In(t)}} = 0, \forall t \in T \right\}$$

$$\mathbf{R} = \Lambda \left( proj_{Y_S} \left( \overline{con(\Gamma_{\mathbf{N}}^* \cap C_1 \cap C_2 \cap C_3)} \cap C_4 \cap C_5 \right) \right)$$

[Yan, Yeung, Zhang; ISIT 2007]

# Single Unicast Session



- Given
  - Directed graph  $(V, E)$  with edge capacities  $c(e)$ ,  $e \in E$
  - Single unicast session with
    - Sender  $s$  (green circle)
    - Receiver  $t$  (red circle)
    - Transmission rate  $r$
- $r \leq \text{MinCut}(s, t)$
- $\text{MinCut}(s, t)$  is achievable, i.e.,  $\text{MaxFlow}(s, t) = \text{MinCut}(s, t)$ , by packing edge-disjoint directed paths

[Menger; 1927]

# Single Broadcast Session



- Given
  - Directed graph  $(V, E)$  with edge capacities  $c(e)$ ,  $e \in E$
  - Single broadcast session with
    - Sender  $s$  (teal circle)
    - Receiver set  $T = V$  (red circles)
    - Transmission rate  $r$
- $r \leq \min_{v \in V} \text{MinCut}(s, v)$
- $\min_{v \in V} \text{MinCut}(s, v)$  is achievable (“broadcast capacity”) by packing edge-disjoint directed spanning trees

[Edmonds; 1972]

# Single Broadcast Session



- Given
  - Directed graph  $(V, E)$  with edge capacities  $c(e)$ ,  $e \in E$
  - Single broadcast session with
    - Sender  $s$  (green circle)
    - Receiver set  $T = V$  (red circle)
    - Transmission rate  $r$

- $r \leq \min_{v \in V} \text{MinCut}(s, v)$
- $\min_{v \in V} \text{MinCut}(s, v)$  is achievable (“broadcast capacity”) by packing edge-disjoint directed spanning trees

*[Edmonds; 1972]*

# Single Multicast Session



- Given
  - Directed graph  $(V, E)$  with edge capacities  $c(e)$ ,  $e \in E$
  - Single multicast session with
    - Sender  $s$  (cyan circle)
    - Receiver set  $T \subset V$  (red circles)
    - Transmission rate  $r$
- $r \leq \min_{t \in T} \text{MinCut}(s, t)$
- $\min_{t \in T} \text{MinCut}(s, t)$  is NOT always achievable by packing edge-disjoint multicast (Steiner) trees

# Packing Multicast Trees Insufficient to achieve MinCut



optimal routing  
throughput = 1



network coding  
throughput = 2

- $\min_{t \in T} \text{MinCut}(s, t)$  is always achievable by network coding

# Linear Network Coding Sufficient to achieve MinCut

- Linear network coding is sufficient to achieve  $\min_{t \in T} \text{MinCut}(s, t)$



*[Cai, Li, Yeung; 2003]  
[Koetter and Médard; 2003]*

- Polynomial time algorithm for finding coefficients
  - [Jaggi, Chou, Jain, Effros; Sanders, et al.; 2003]*
  - [Erez, Feder; 2005]*

# Linear Network Coding Sufficient to achieve MinCut

- Packing a maximum-rate set of multicast trees is NP hard

*[Jain, Mahdian, Salavatipour; 2003]*

- Rate gap to  $\min_{t \in T} \text{MinCut}(s, t)$  can be a factor of  $\log n$

*[Jaggi, Chou, Jain, Effros; Sanders, et al.; 2003]*

# Linear Network Coding NOT Sufficient for Multiple Sessions

- Linear network coding is NOT generally sufficient to achieve capacity for multiple sessions



[Dougherty, Freiling, Zeger; 2005]

# P2P Networks

Completely  
connected  
overlay

Upload  
bandwidth is  
bottleneck



# P2P Network as Special Case



# P2P Network as Set of Networks

$$\underbrace{\langle V; c_{out}(v), v \in V \rangle}_{\text{P2P network}} \Leftrightarrow \left\{ \underbrace{\langle (V, E); c(e), e \in E \rangle}_{\text{network w/edge capacities}} : \sum_{e \in Out(v)} c(e) \leq c_{out}(v), v \in V \right\}$$



- Corollary to Edmonds' Theorem:
  - Given a P2P network with a single broadcast session (i.e., a single sender and all other nodes as receivers), the maximum throughput is achievable by routing over a set of directed spanning trees

# Mutualcast



Throughput:

$$\left[ c_{out}(s) - \sum_{n=1}^N \frac{c_{out}(t_n)}{N-1} \right] / N + \sum_{n=1}^N \frac{c_{out}(t_n)}{N-1}$$

- Cutset analysis: Throughput achieves mincut bound

# Mutualcast with Helpers



Throughput:

$$\left[ c_{out}(s) - \sum_{n=1}^N \frac{c_{out}(t_n)}{N-1} + \sum_{n=1}^M \frac{c_{out}(h_n)}{N-1} \right] / N$$
$$+ \sum_{n=1}^N \frac{c_{out}(t_n)}{N-1} + \sum_{n=1}^M \frac{c_{out}(h_n)}{N}$$

- Cutset analysis: Throughput achieves mincut bound



# Mutualcast Theorem

- Given
  - P2P network
  - Source  $s$ , receiver set  $T$ , helper set  $H = V - T - s$
- Then any rate  $r \leq C$  can be achieved by **routing** over **at most  $|V|$**  depth-1 and depth-2 multicast trees
- Capacity is given by

$$C = \min \left\{ c_{out}(s), \left[ c_{out}(s) - \sum_{n=1}^N \frac{c_{out}(t_n)}{N-1} - \sum_{n=1}^M \frac{c_{out}(h_n)}{N} \right] / N + \sum_{n=1}^N \frac{c_{out}(t_n)}{N-1} + \sum_{n=1}^M \frac{c_{out}(h_n)}{N} \right\}$$

- Remarks:
  - Despite existence of helpers, no network coding needed!
  - $|V|$  trees instead of  $O(|V|^{|V|})$
  - Simple, short trees

# Multi-session Mutualcast Theorem



- Given
  - P2P network
  - Multiple sources  $s_i$  and receiver sets  $T_i$ ,  $i=1, \dots, |S|$ , s.t. sets  $(s_i \cup T_i)$  are identical or disjoint; no connections between the disjoint receiver sets;  $H = V - \cup(s_i \cup T_i)$



- Then any rate vector  $(r_1, \dots, r_{|S|}) \in \mathbb{R}$  can be achieved by **routing** over at most  $|V| \times |S|$  depth-1 and depth-2 multicast trees

[Sengupta, Chen, Chou, Li; ISIT 2008]

# Multi-session Mutualcast Theorem



- Capacity region is given by set of linear inequalities:

$$x_{i1} + \cdots + x_{i|V|} = r_i, \quad i = 1, \dots, |S|$$

$$\sum_{ij} x_{ij} \deg_{vij} \leq c_{out}(v), \quad v \in V$$

- Remark:
  - Despite multiple sessions (and helpers), still no inter-session or intra-session network coding is needed!
  - Still  $|V|$  trees instead of  $O(|V|^{|V|})$ ; still simple, short

*[Sengupta, Chen, Chou, Li; ISIT 2008]*

# Application to Video Conferencing



- Maximizing  $\sum U_i(r_i)$  over all  $(r_1, \dots, r_{|S|}) \in \mathbb{R}^{|S|}$  can be found by maximizing  $\sum U_i(r_i)$  over all tree rates  $x_{ij}$ ,  $i=1, \dots, |S|$ ,  $j=1, \dots, |V|$ , s.t.
  - $x_{i1} + \dots + x_{i|V|} = r_i$ ,  $i=1, \dots, |S|$
  - $\sum_{ij} x_{ij} \deg_{ij} \leq c_{out}(v)$ ,  $v \in V$
- Network Utility Maximization problem



# Summary

- For general multi-session multicast over directed graphs with edge capacities
  - Capacity region is stated in terms of  $\Gamma^*$
  - Hard to know if a rate vector  $\mathbf{r}$  is in capacity region
- For restricted case of multi-session multicast with identical or disjoint receiver sets over P2P networks
  - Capacity region is given by  $|V|$  inequalities over at most  $|V| \times |S|$  variables (rates on each tree)
  - Any point in this region is achievable by **routing** over at most  $|V| \times |S|$  depth-1 and depth-2 trees