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Problem

 What is the capacity region

 What is a transmission scheme that achieves a given 

transmission rate vector

 Given

 Directed graph (V,E) with

edge capacities

 Multiple multicast sessions 

{(si,Ti)}, each with

 Sender si

 Receiver set Ti

 Transmission rate ri
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Butterfly Network

with Two Unicast Sessions
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Network Coding vs Routing
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Butterfly Network

with Two Unicast Sessions
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Characterization of Capacity 

for Acyclic Graphs

[Yan, Yeung, Zhang; ISIT 2007]
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Single Unicast Session

 r ≤ MinCut(s,t)

 MinCut(s,t) is achievable, i.e., MaxFlow(s,t) = MinCut(s,t),

by packing edge-disjoint directed paths

s

t

Value of

s-t cut

[Menger; 1927]

 Given

 Directed graph (V,E) with

edge capacities

 Single unicast session with

 Sender s

 Receiver t

 Transmission rate r
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Single Broadcast Session

 r ≤ minvЄV MinCut(s,v)

 minvЄV MinCut(s,v) is achievable (“broadcast capacity”)

by packing edge-disjoint directed spanning trees

[Edmonds; 1972]

 Given

 Directed graph (V,E) with

edge capacities

 Single broadcast session with

 Sender s

 Receiver set T=V

 Transmission rate r
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Single Broadcast Session

 r ≤ minvЄV MinCut(s,v)

 minvЄV MinCut(s,v) is achievable (“broadcast capacity”)

by packing edge-disjoint directed spanning trees

[Edmonds; 1972]

 Given

 Directed graph (V,E) with

edge capacities

 Single broadcast session with

 Sender s

 Receiver set T=V

 Transmission rate r

( ),  c e e E



Single Multicast Session

 r ≤ mintЄT MinCut(s,t)

 mintЄT MinCut(s,t) is NOT always achievable

by packing edge-disjoint multicast (Steiner) trees

 Given

 Directed graph (V,E) with

edge capacities

 Single multicast session with

 Sender s

 Receiver set

 Transmission rate r
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Packing Multicast Trees 

Insufficient to achieve MinCut

optimal routing

throughput = 1

network coding

throughput = 2

a,b
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[Alswede, Cai, Li, Yeung ; 2000]

 mintЄT MinCut(s,t) is always achievable

by network coding



Linear Network Coding

Sufficient to achieve MinCut

 Linear network coding is sufficient to achieve
mintЄT MinCut(s,t)

 Polynomial time algorithm for finding coefficients

y1

y2

y3

α1y1+ α2y2+ α3y3

β1y1+ β2y2+ β3y3

[Jaggi, Chou, Jain, Effros; Sanders, et al.; 2003]

[Erez, Feder; 2005]

[Cai, Li, Yeung; 2003] 

[Koetter and Médard; 2003]



Linear Network Coding

Sufficient to achieve MinCut

 Packing a maximum-rate set of multicast trees is NP hard

 Rate gap to mintЄT MinCut(s,t) can be a factor of log n

[Jaggi, Chou, Jain, Effros; Sanders, et al.; 2003]

[Jain, Mahdian, Salavatipour; 2003]



Linear Network Coding NOT

Sufficient for Multiple Sessions

 Linear network coding is NOT generally sufficient to 

achieve capacity for multiple sessions

[Dougherty, Freiling, Zeger; 2005]



P2P Networks

Upload 

bandwidth is 

bottleneck

Completely 
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P2P Network as Special Case

Networks 

w/edge capacities

P2P 
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P2P Network as Set of Networks

 Corollary to Edmonds’ Theorem:

 Given a P2P network with a single broadcast session (i.e., a single 

sender and all other nodes as receivers), the maximum throughput 

is achievable by routing over a set of directed spanning trees
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Throughput:

Mutualcast

[Li, Chou, Zhang; 2005]
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 Cutset analysis: Throughput achieves mincut bound

t1

s

tN

…t2



Throughput:

Mutualcast with Helpers

[Li, Chou, Zhang; 2005]
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 Given
 P2P network

 Source s, receiver set T, helper set H = V T s

 Then any rate r  C can be achieved by routing
over at most |V| depth-1 and depth-2 multicast trees

 Capacity is given by

 Remarks:
 Despite existence of helpers, no network coding needed!

 |V| trees instead of O(|V||V|)

 Simple, short trees

Mutualcast Theorem
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 Given
 P2P network

 Multiple sources si and receiver sets Ti, i=1,…,|S|,
s.t. sets (siUTi) are identical or disjoint; no connections 
between the disjoint receiver sets; H = V U(siUTi) 

 Then any rate vector                      can be achieved
by routing over at most |V||S| depth-1 and depth-2 
multicast trees

Multi-session

Mutualcast Theorem

1 | |( ,..., )Sr r R

[Sengupta, Chen, Chou, Li; ISIT 2008]
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 Capacity region is given by set of linear 

inequalities:

 Remark:

 Despite multiple sessions (and helpers), still no inter-

session or intra-session network coding is needed!

 Still |V| trees instead of O(|V||V|); still simple, short

Multi-session

Mutualcast Theorem

[Sengupta, Chen, Chou, Li; ISIT 2008]
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Application

to Video Conferencing

 Maximizing                 over all

can be found by maximizing

over all tree rates xij, i=1,…,|S|, j=1,…,|V|, s.t.

 ,  i=1,…,|S|



 Network Utility Maximization problem
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 For general multi-session multicast over directed graphs 

with edge capacities

 Capacity region is stated in terms of *

 Hard to know if a rate vector r is in capacity region

 For restricted case of multi-session multicast with identical 

or disjoint receiver sets over P2P networks

 Capacity region is given by |V| inequalities over at most 

|V||S| variables (rates on each tree)

 Any point in this region is achievable by routing over at 

most |V||S| depth-1 and depth-2 trees

Summary


