
1

Distributed Compressive Sensing: A Deep
Learning Approach

Hamid Palangi, Rabab Ward, Li Deng

Abstract—Various studies that address the compressed
sensing problem with Multiple Measurement Vectors
(MMVs) have been recently carried. These studies assume
the vectors of the different channels to be jointly sparse.
In this paper, we relax this condition. Instead we assume
that these sparse vectors depend on each other but that
this dependency is unknown. We capture this dependency
by computing the conditional probability of each entry
in each vector being non-zero, given the “residuals” of
all previous vectors. To estimate these probabilities, we
propose the use of the Long Short-Term Memory (LSTM)
[1], a data driven model for sequence modelling that is deep
in time. To calculate the model parameters, we minimize
a cross entropy cost function. To reconstruct the sparse
vectors at the decoder, we propose a greedy solver that uses
the above model to estimate the conditional probabilities.
By performing extensive experiments on two real world
datasets, we show that the proposed method significantly
outperforms the general MMV solver (the Simultaneous
Orthogonal Matching Pursuit (SOMP)) and the model-
based Bayesian methods including Multitask Compressive
Sensing [2] and Sparse Bayesian Learning for Temporally
Correlated Sources [3]. The proposed method does not
add any complexity to the general compressive sensing
encoder. The trained model is used just at the decoder.
As the proposed method is a data driven method, it is
only applicable when training data is available. In many
applications however, training data is indeed available, e.g.
in recorded images and videos.

Index Terms—Compressive Sensing, Deep Learning,
Long Short-Term Memory.

I. INTRODUCTION

COMPRESSIVE Sensing (CS) [4],[5],[6] is an ef-
fective approach for acquiring sparse signals where

both sensing and compression are performed at the same
time. Since there are numerous examples of natural
and artificial signals that are sparse in the time, spatial
or a transform domain, CS has found numerous ap-
plications. These include medical imaging, geophysical
data analysis, computational biology, remote sensing and
communications.

H. Palangi and R. Ward are with the Department of Electrical and
Computer Engineering, University of British Columbia, Vancouver,
BC, V6T 1Z4 Canada (e-mail: {hamidp,rababw}@ece.ubc.ca)

L. Deng is with Microsoft Research, Redmond, WA 98052 USA
(e-mail: {deng}@microsoft.com)

In the general CS framework, instead of acquiring N
samples of a signal x ∈ <N×1, M random measure-
ments are acquired where M < N . This is expressed by
the underdetermined system of linear equations:

y = Φx (1)

where y ∈ <M×1 is the known measured vector and Φ ∈
<M×N is a random measurement matrix. To uniquely
recover x given y and Φ, x must be sparse in a given
basis Ψ. This means that

x = Ψs (2)

where s is K−sparse, i.e., s has at most K non-zero el-
ements. The basis Ψ can be complete; i.e., Ψ ∈ <N×N ,
or over-complete; i.e., Ψ ∈ <N×N1 where N < N1

(compressed sensing for over-complete dictionaries is
introduced in [7]). From (1) and (2):

y = As (3)

where A = ΦΨ. Since there is only one measurement
vector, the above problem is usually called the Single
Measurement Vector (SMV) problem in compressive
sensing.

In distributed compressive sensing , also known as the
Multiple Measurement Vectors (MMV) problem, a set of
L sparse vectors {si}i=1,2,...,L is to be jointly recovered
from a set of L measurement vectors {yi}i=1,2,...,L.
Some application areas of MMV include magnetoen-
cephalography, array processing, equalization of sparse
communication channels and cognitive radio [8].

Suppose that the L sparse vectors and the L mea-
surement vectors are arranged as columns of matrices
S = [s1, s2, . . . , sL] and Y = [y1,y2, . . . ,yL] respec-
tively. In the MMV problem, S is to be reconstructed
given Y:

Y = AS (4)

In (4), S is assumed to be jointly sparse, i.e., non-
zero entries of each vector occur at the same locations
as those of other vectors, which means that the sparse
vectors have the same support. Assume that S is jointly
sparse. Then, the necessary and sufficient condition to
obtain a unique S given Y is [9]:

|supp(S)| < spark(A)− 1 + rank(S)

2
(5)

ar
X

iv
:1

50
8.

04
92

4v
2

 [
cs

.L
G

]
 7

 S
ep

 2
01

5

2

where |supp(S)| is the number of rows in S with non-
zero energy and spark of a given matrix is the smallest
possible number of linearly dependent columns of that
matrix. spark gives a measure of linear dependency
in the system modelled by a given matrix. In the
SMV problem, no rank information exists. In the MMV
problem, the rank information exists and affects the
uniqueness bounds. Generally, solving the MMV prob-
lem jointly can lead to better uniqueness guarantees than
solving the SMV problem for each vector independently
[10].

In the current MMV literature, a jointly sparse matrix
is recovered typically by one of the following methods:
1) greedy methods [11] like Simultaneous Orthogonal
Matching Pursuit (SOMP) which performs non-optimal
subset selection, 2) relaxed mixed norm minimization
methods [12], or 3) Bayesian methods like [13], [2], [3]
where a posterior density function for the values of S is
created, assuming a prior belief, e.g., Y is observed and
S should be sparse in basis Ψ. The selection of one of
the above methods depends on the requirements imposed
by the specific application.

A. Problem Statement

The MMV reconstruction methods stated above do
not rely on the use of training data. However, for many
applications, a large amount of data similar to the data to
be compressed by CS is available. Examples are camera
recordings of the same environment, images of the same
class (e.g., flowers, buildings,), electroencephalogram
(EEG) of different parts of the brain, etc. In this paper,
we address the following questions in the MMV problem
when training data is available:

1) Can we learn the structure of the sparse vectors in
S by a data driven bottom up approach using the
already available training data? If yes, then how
can we exploit this structure in the MMV problem
to design a better reconstruction method?

2) Most of the reconstruction algorithms for the
MMV problem rely on the joint sparsity of S.
However, in some practical applications, the sparse
vectors in S are not exactly jointly sparse. This
can be due to noise or due to sources that create
different sparsity patterns. Examples are images
of different scenes captured by different cameras,
images of different classes, etc. Although S is
not jointly sparse, there may exist a possible de-
pendency among the columns of S, however, due
to lack of joint sparsity, the above methods will
not give satisfactory performance. The question
is, can we design the aforementioned data driven
method in a way that it captures the dependencies
among the sparse vectors in S? The type of such

dependencies may not be necessarily that of joint
sparsity. And then how can we use the learned de-
pendency structure in the reconstruction algorithm
at the decoder?

Please note that we want to address the above ques-
tions “without adding any complexity or adaptability”
to the encoder. In other words, our aim is not to design
an optimal encoder, i.e., optimal sensing matrix Φ or
the sparsifying basis Ψ, for the given training data. The
encoder would be as simple and general as possible.
This is specially important for applications that use
sensors having low power consumption due to a limited
battery life. However, the decoder in these cases can be
much more complex than the encoder. For example, the
decoder can be a powerful data processing machine.

B. Proposed Method

To address the above questions, we propose the use of
a two step greedy reconstruction algorithm. In the first
step, at each iteration of the reconstruction algorithm,
and for each column of S represented as si, we first find
the conditional probability of each entry of si being non-
zero, given the residuals of all previous sparse vectors
(columns) at that iteration. Then we select the most
probable entry and add it to the support of si. The
definition of the residual matrix at the j−th iteration is
Rj = Y −ASj where Sj is the estimate of the sparse
matrix S at the j−th iteration. Therefore in the first
step, we find the locations of the non-zero entries. In the
second step we find the values of these non-zero entries.
This can be done by solving a least squares problem that
finds si given yi and AΩi . AΩi is a matrix that includes
only those atoms (columns) of A that are members of
the support of si.

To find the conditional probabilities at each iteration,
we propose the use of a Recurrent Neural Network
(RNN) with Long Short-Term Memory (LSTM) cells
and a softmax layer on top of it. To find the model
parameters, we minimize a cross entropy cost function
between the conditional probabilities given by the model
and the known probabilities in the training data. The de-
tails on how to generate the training data and the training
data probabilities are explained in subsequent sections.
Please note that this training is done only once. After
that, the resulting model is used in the reconstruction
algorithm for any test data that has not been observed by
the model before. Therefore, the proposed reconstruction
algorithm would be almost as fast as the greedy methods.
The block diagram of the proposed method is presented
in Fig. 1 and Fig. 2. We will explain these figures in
detail in subsequent sections.

To the best of our knowledge, this is the first model-
based method in MMV sparse reconstruction that is

3

𝒓2

LSTM

𝒄1

𝒓1

LSTM

𝒓𝐿

LSTM

𝒄𝐿−1

…

…
LSTM cells and gates

𝒗1 𝒗2
𝒗𝐿 𝑼 𝑼 𝑼

𝒛1 𝒛2 𝒛𝐿

softmax softmax softmax

…

…

…

𝑃(𝒔1|𝒓1) 𝑃(𝒔2|𝒓1, 𝒓2) 𝑃(𝒔𝐿|𝒓1, 𝒓2, … , 𝒓𝐿)

…

…

Ω1 update Ω2 update Ω𝐿 update

Updating support of 𝒔𝐿
Least Squares Least Squares Least Squares

…

𝒔 1 𝒔 2 𝒔 𝐿 Estimation of L-th
sparse vector

𝒓1 = 𝒚1 − 𝑨Ω1𝒔 1

𝒓2 = 𝒚2 − 𝑨Ω2𝒔 2

…

𝒓𝐿 = 𝒚𝐿 − 𝑨Ω𝐿𝒔 𝐿

Residual vector for L-th
sparse vector

Vector of LSTM cells’ state

Fig. 1. Block diagram of the proposed method unfolded over channels.

LSTM

𝒓(𝑡)

𝑾3

𝒓(𝑡)

𝑾4

𝒓(𝑡)

𝑾2

𝒓(𝑡)

𝑾1

𝑔(.)

𝜎(.) 𝜎(.) Input Gate Output Gate

𝜎(.) Forget Gate

Cell ×

𝒚𝑔(𝑡)

𝒊(𝑡)

𝒇(𝑡)

𝒄(𝑡 − 1) ×

ℎ(.)

×

𝒄(𝑡)

𝒐(𝑡)

𝒗(𝑡)

𝒄(𝑡 − 1)

𝑾𝑝2

𝑾𝑝3 𝑾𝑝1 𝒗(𝑡 − 1)

𝑾𝑟𝑒𝑐4

𝟏

𝒃4

𝒗(𝑡 − 1) 𝟏

𝑾𝑟𝑒𝑐3 𝒃3

𝟏

𝒃1
𝑾𝑟𝑒𝑐1

𝒗(𝑡 − 1)

𝟏

𝒃2

𝒗(𝑡 − 1)

𝑾𝑟𝑒𝑐2

Fig. 2. Block diagram of the Long Short-Term Memory (LSTM).

based on a deep learning bottom up approach. Similar
to all deep learning methods, it has the important fea-
ture of learning the structure of S from the raw data
automatically. Although it is based on a greedy method
that selects subsets that are not necessarily optimal, we
experimentally show that by using a properly trained

model and only one layer of LSTM, the proposed method
significantly outperforms well known MMV baselines
(e.g., SOMP) as well as the well known Bayesian
methods for the MMV problem (e.g., Multitask Bayesian
Compressive Sensing (MT-BCS)[2] and Sparse Bayesian
Learning for temporally correlated sources (T-SBL)[3]).
We show this on two real world datasets.

We emphasize that the computations carried at the en-
coder mainly include multiplication by a random matrix.
The extra computations are only needed at the decoder.
Therefore an important feature of compressive sensing
(low power encoding) is preserved.

C. Related Work
Exploiting data structures besides sparsity for com-

pressive sensing has been extensively studied in the
literature [14], [8], [15], [2], [13], [3], [16], [17], [18].
In [14], it has been theoretically shown that using signal
models that exploit these structures will result in a de-
crease in the number of measurements. In [8], a thorough
review on CS methods that exploit the structure present
in the sparse signal or in the measurements is presented.
In [15], a Bayesian framework for CS is presented. This
framework uses a prior information about the sparsity of
s to provide a posterior density function for the entries
of s (assuming y is observed). It then uses a Relevance
Vector Machine (RVM) [19] to estimate the entries of

4

the sparse vector. This method is called Bayesian Com-
pressive Sensing (BCS). In [2], a Bayesian framework
is presented for the MMV problem. It assumes that
the L “tasks” in the MMV problem in (4), are not
statistically independent. By imposing a shared prior on
the L tasks, an empirical method is presented to estimate
the hyperparameters and extensions of RVM are used for
the inference step. This method is known as Multitask
Compressive Sensing (MT-BCS). In [2], it is experimen-
tally shown that the MT-BCS outperforms the method
that applies Orthogonal Matching Pursuit (OMP) on each
task, the Simultaneous Orthogonal Matching Pursuit
(SOMP) method which is a straightforward extension
of OMP for the MMV problem, and the method that
applies BCS for each task. In [13], the Sparse Bayesian
Learning (SBL) [19], [20] is used to solve the MMV
problem. It was shown that the global minimum of the
proposed method is always the sparsest one. The authors
in [3], address the MMV problem when the entries in
each row of S are correlated. An algorithm based on SBL
is proposed and it is shown that the proposed algorithm
outperforms the mixed norm (`1,2) optimization as well
as the method proposed in [13]. The proposed method
is called T-SBL. In [16], a greedy algorithm aided by a
neural network is proposed to address the SMV problem
in (3). The neural network parameters are calculated by
solving a regression problem and are used to select the
appropriate column of A at each iteration of OMP. The
main modification to OMP is replacing the correlation
step with a neural network. They experimentally show
that the proposed method outperforms OMP and `1
optimization. This method is called Neural Network
OMP (NNOMP). In [17], an extension of [16] with
a hierarchical Deep Stacking Netowork (DSN) [21] is
proposed for the MMV problem. “The joint sparsity of S
is an important assumption in the proposed method”. To
train the DSN model, the Restricted Boltzmann Machine
(RBM) [22] is used to pre-train DSN and then fine tuning
is performed. It has been experimentally shown that
this method outperforms SOMP and `1,2 in the MMV
problem. The proposed methods are called Nonlinear
Weighted SOMP (NWSOMP) for the one layer model
and DSN-WSOMP for the multilayer model. In [18], a
feedforward neural network is used to solve the SMV
problem as a regression task. Similar to [17] (if we
assume that we have only one sparse vector in [17]), a
pre-training phase followed by a fine tuning is used. For
pre-training, the authors have used Stacked Denoising
Auto-encoder (SDA) [23]. Please note that an RBM with
Gaussian visible units and binary hidden units (i.e., the
one used in [17]) has the same energy function as an
auto-encoder with sigmoid hidden units and real valued
observations [24]. Therefore the extension of [18] to the
MMV problem will give similar performance as that of

[17].
The rest of the paper is organized as follows: In

section II, the basics of Recurrent Neural Networks
(RNN) with Long Short-Term Memory (LSTM) cells are
briefly explained. The proposed method and the learning
algorithm are presented in section III. Experimental
results on two real world datasets are presented in section
IV. Conclusions and future work directions are discussed
in section V. Details of the final gradient expressions
for the learning section of the proposed method are
presented in Appendix A.

II. RNN WITH LSTM CELLS

The RNN is a type of deep neural networks [25], [26]
that are “deep” in the temporal dimension. It has been
used extensively in time sequence modelling [27], [28],
[29], [30], [31], [32], [33], [34], [35]. If we look at the
sparse vectors (columns) in S as a sequence, the main
idea of using RNN for the MMV problem is to predict
the sparsity patterns over different sparse vectors in S.

Although RNN performs sequence modelling in a
principled manner, it is generally difficult to learn the
long term dependency within the sequence due to the
vanishing gradients problem. One of the effective solu-
tions for this problem in RNNs is to employ memory
cells instead of neurons that is originally proposed in
[1] as Long Short-Term Memory (LSTM). It is further
developed in [36] and [37] by adding forget gate and
peephole connections to the architecture.

We use the architecture of LSTM illustrated in Fig.
2 for the proposed sequence modelling method for the
MMV problem. In this figure, i(t), f(t) ,o(t) , c(t)
are input gate, forget gate, output gate and cell state
vector respectively, Wp1, Wp2 and Wp3 are peephole
connections, Wi, Wreci and bi, i = 1, 2, 3, 4 are
input connections, recurrent connections and bias values,
respectively, g(·) and h(·) are tanh(·) function and σ(·)
is the sigmoid function. We use this architecture to find
v for each channel and then use the proposed method in
Fig. 1 to find the entries that have a higher probability
of being non-zero. Considering Fig. 2, the forward pass
for LSTM model is as follows:

yg(t) = g(W4r(t) + Wrec4v(t− 1) + b4)

i(t) = σ(W3r(t) + Wrec3v(t− 1) + Wp3c(t− 1) + b3)

f(t) = σ(W2r(t) + Wrec2v(t− 1) + Wp2c(t− 1) + b2)

c(t) = f(t) ◦ c(t− 1) + i(t) ◦ yg(t)

o(t) = σ(W1r(t) + Wrec1v(t− 1) + Wp1c(t) + b1)

v(t) = o(t) ◦ h(c(t)) (6)

where ◦ denotes the Hadamard (element-wise) product.

5

III. PROPOSED METHOD

A. High Level Picture

The summary of the proposed method is presented
in Fig. 1. We initialize the residual vector, r, for each
channel by the measurement vector, y, of that channel.
These residual vectors serve as the input to the LSTM
model that captures features of the residual vectors using
input weight matrices (W1,W2,W3,W4) as well as the
dependency among the residual vectors using recurrent
weight matrices (Wrec1,Wrec2,Wrec3,Wrec4) and the
central memory unit shown in Fig. 2. A transformation
matrix U is then used to transform, v ∈ <ncell×1, the
output of each memory cell after gating, into the sparse
vectors space, i.e., z ∈ <N×1. Then a softmax layer
is used for each channel to find the probability of each
entry of each sparse vector being non-zero. For example,
for channel 1, the j-th output of the softmax layer is:

P (s1(j)|r1) =
ez(j)∑n
k=1 e

z(k)
(7)

Then for each channel, the entry with the maximum
probability value is selected and added to the support
set of that channel. After that, given the new support
set, the following least squares problem is solved to find
an estimate of the sparse vector for the j-th channel:

ŝj = argmin
sj

‖yj −AΩjsj‖22 (8)

Using ŝj , the new residual value for the j-th channel is
calculated as follows:

rj = yj −AΩj ŝj (9)

This residual serves as the input to the LSTM model at
the next iteration of the algorithm. The stopping criteria
for the algorithm is when the residual values are small
enough or when it has performed N iterations where N
is the dimension of the sparse vector. Since we have used
LSTM cells for the proposed method, we call it LSTM-
CS algorithm. The pseudo-code of the proposed method
is presented in Algorithm 1.

We continue by explaining how the training data is
prepared from off-line dataset and then we present the
details of the learning method. Please note that all the
computations explained in the subsequent two sections
are performed only once and they do not affect the run
time of the proposed solver in Fig. 1. It is almost as fast
as greedy algorithms in sparse reconstruction.

B. Training Data Generation

The main idea of the proposed method is to look at
the sparse reconstruction problem as a two step task:
a classification as the first step and a subsequent least
squares as the second step. In the classification step,

Algorithm 1 Distributed Compressive Sensing using
Long Short-Term Memory (LSTM-CS)
Inputs: CS measurement matrix A ∈ <M×N ; matrix of measurements Y ∈
<M×L; minimum `2 norm of residual matrix “resMin” as stopping criterion;
Trained “lstm” model
Output: Matrix of sparse vectors Ŝ ∈ <N×L
Initialization: Ŝ = 0; j = 1; i = 1; Ω = ∅; R = Y.
1: procedure LSTM-CS(A,Y, lstm)
2: while i ≤ N and ‖R‖2 ≤ resMin do
3: i← i+ 1
4: for j = 1→ L do
5: R(:, j)i ←

R(:,j)i−1
max(|R(:,j)i−1|)

6: vj ← lstm(R(:, j)i,vj−1, cj−1) . LSTM
7: zj ← Uvj
8: c← softmax(zj)
9: idx← Support(max(c))

10: Ωi ← Ωi−1 ∪ idx
11: ŜΩi (:, j)← (AΩi)†Y(:, j) . Least Squares
12: ŜΩCi (:, j)← 0
13: R(:, j)i ← Y(:, j)−AΩi ŜΩi (:, j)
14: end for
15: end while
16: end procedure

the aim is to find the atom of the dictionary, i.e., the
column of A, that is most relevant to the given residual
of the current channel and the residuals of the previous
channels. Therefore we need a set of residual vectors
and their corresponding sparse vectors for supervised
training. Since the training data and A are given, we
can imitate the steps explained in the previous section
to generate the residuals. This means that, given a sparse
vector s with k non-zero entries, we calculate y using
(3). Then we find the entry that has the maximum value
in s and set it to zero. Assume that the index of this
entry is k0. This gives us a new sparse vector with k−1
non-zero entries. Then we calculate the residual vector
from:

r = y − ak0
s(k0) (10)

Where ak0 is the k0-th column of A and s(k0) is the
k0-th entry of s. It is obvious that this residual value
is because of not having the remaining k − 1 non-zero
entries of s. From these remaining k−1 non-zero entries,
the second largest value of s has the main contribution
to r in (10). Therefore, we use r to predict the location
of the second largest value of s. Assume that the index
of the second largest value of s is k1. We define s0 as a
one hot vector that has value 1 at k1-th entry and zero
at other entries. Therefore, the training pair is (r, s0).

Now we set the k1-th entry of s to zero. This gives us
a new sparse vector with k − 2 non-zero entries. Then
we calculate the new residual vector from:

r = y − [ak0
,ak1

][s(k0), s(k1)]
T (11)

We use the residual in (11) to predict the location of the
third largest value in s. Assume that the index of the
third largest value of s is k2. We define s0 as a one hot
vector that has value 1 at k2-th entry and zero at other
entries. Therefore, the new training pair is (r, s0).

6

The above procedure is continued upto the point that
s does not have any non-zero entry. Then the same
procedure is used for the next training sample. This
gives us training samples for one channel. Then the same
procedure is used for the next channel in S. Since the
number of non-zero entries, k, is not known in advance,
we assume a maximum number of non-zero entries per
channel for training data generation.

C. Learning Method

To calculate the parameters of the proposed model,
i.e., W1,W2,W3,W4, Wrec1,Wrec2,Wrec3,Wrec4,
Wp1,Wp2,Wp3, b1,b2,b3,b4 in Fig. 2 and transfor-
mation matrix U in Fig.1, we minimize a cross entropy
cost function over the training data. Assuming s is the
output vector of the softmax layer given by the model
in Fig. 1 (output of the softmax layer is represented as
conditional probabilities in Fig. 1) and s0 is the one hot
vector explained in the previous section, the following
optimization problem is solved:

L(Λ) = min
Λ


nB∑
i=1

Bsize∑
r=1

L∑
τ=1

N∑
j=1

Lr,i,τ,j(Λ)


Lr,i,τ,j(Λ) = −s0,r,i,τ (j)log(sr,i,τ (j)) (12)

where nB is the number of mini-batches in the training
data, Bsize is the number of training data pairs, (r, s0),
in each mini-batch, L is the number of channels in the
MMV problem, i.e., number of columns of S, and N is
the length of vector s and s0. Λ denotes the collection
of the model parameters that includes W1, W2, W3,
W4, Wrec1, Wrec2, Wrec3, Wrec4, Wp1, Wp2, Wp3,
b1, b2, b3 and b4 in Fig. 2 and U in Fig. 1.

To solve the optimization problem in (12), we use
Backpropagation through time (BPTT) with Nesterov
method. The update equations for parameter Λ at epoch
k are as follows:

4Λk = Λk −Λk−1

4Λk = µk−14Λk−1 − εk−1∇L(Λk−1 + µk−14Λk−1)
(13)

where ∇L(·) is the gradient of the cost function in (12),
ε is the learning rate and µk is a momentum parameter
determined by the scheduling scheme used for training.
Above equations are equivalent to Nesterov method in
[38]. To see why, please refer to appendix A.1 of [39]
where the Nesterov method is derived as a momentum
method. The gradient of the cost function, ∇L(Λ), is:

∇L(Λ) =

nB∑
i=1

Bsize∑
r=1

L∑
τ=1

N∑
j=1

∂Lr,i,τ,j(Λ)

∂Λ︸ ︷︷ ︸
one large update

(14)

Algorithm 2 Training the proposed model for Dis-
tributed Compressive Sensing

Inputs: Fixed step size “ε”, Scheduling for “µ”, Gradient clip threshold
“thG”, Maximum number of Epochs “nEpoch”, Total number of training
pairs in each mini-batch “Bsize”, Number of channels for the MMV
problem “L”.
Outputs: LSTM-CS trained model for distributed compressive sensing “Λ”.
Initialization: Set all parameters in Λ to small random numbers, i = 0,
k = 1.
procedure LSTM-CS(Λ)

while i ≤ nEpoch do
for “first minibatch” → “last minibatch” do
r ← 1
while r ≤ Bsize do

Compute
∑L
τ=1

∂Lr,τ
∂Λk

. use (20) to (51) in appendix A
r ← r + 1

end while
Compute ∇L(Λk)← “sum above terms over r”
if ∇L(Λk) > thG then
∇L(Λk)← thG

. For each entry of the gradient matrix ∇L(Λk)
end if
Compute 4Λk . use (13)
Update: Λk ← 4Λk + Λk−1

k ← k + 1
end for
i← i+ 1

end while
end procedure

As it is obvious from (14), since we have unfolded the
LSTM over channels in S, we fold it back when we
want to calculate gradients over the whole sequence of
channels.

∂Lr,i,τ,j(Λ)
∂Λ in (14) and error signals for different

parameters of the proposed model that are necessary for
training are presented in Appendix A. Due to lack of
space, we omit the presentation of full derivation of the
gradients.

We have used mini-batch training to accelerate train-
ing and one large update instead of incremental up-
dates during back propagation through time. To resolve
the gradient explosion problem we have used gradient
clipping. To accelerate the convergence, we have used
Nesterov method [38] and found it effective in training
the proposed model for the MMV problem.

We have used a simple yet effective scheduling for µk
in (13), in the first and last 10% of all parameter updates
µk = 0.9 and for the other 80% of all parameter updates
µk = 0.995. We have used a fixed step size for training
LSTM. Please note that since we are using mini-batch
training, all parameters are updated for each mini-batch
in (14).

A summary of training method for LSTM-CS is
presented in Algorithm 2.

Although the training method and derivatives in Ap-
pendix A are presented for all parameters in LSTM, in
the implementation ,we have removed peephole connec-
tions and forget gates. Since length of each sequence,
i.e., the number of columns in S, is known in advance,
we set state of each cell to zero in the beginning of a

7

new sequence. Therefore, forget gates are not a great
help here. Also, as long as the order of columns in S
is kept, the precise timing in the sequence is not of
great concern, therefore, peephole connections are not
that important as well. Removing peephole connections
and forget gate will also help to have less training time,
i.e., less number of parameters need to be tuned during
training.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We have performed the experiments on two real world
datasets, the first is the MNIST dataset of handwritten
digits [40] and the second is three different classes of
images from natural image dataset of Microsoft Research
in Cambridge [41].

In this section, we would like to answer the following
questions: (i) How is the performance of different recon-
struction algorithms for the MMV problem, including the
proposed method, when different channels, i.e., different
columns in S, have different sparsity patterns? (ii) Does
the proposed method perform well enough when there
is correlation among different sparse vectors? E.g., when
sparse vectors are DCT or Wavelet transform of different
blocks of an image? (iii) How fast is the proposed
method compared to other reconstruction algorithms for
the MMV problem?

For all the results presented in this section, the recon-
struction error is defined as:

MSE =
‖Ŝ− S‖
‖S‖

(15)

where S is the actual sparse matrix and Ŝ is the recov-
ered sparse matrix from random measurements by the
reconstruction algorithm. The machine used to perform
the experiments has an Intel(R) Core(TM) i7 CPU with
clock 2.93 GHz and with 16 GB RAM.

A. MNIST Dataset

MNIST is a dataset of handwritten digits where the
images of the digits are normalized in size and centred so
that we have fixed size images. The task is to simultane-
ously encode 4 images each of size 24×24, i.e., we have
4 channels and L = 4 in (4). The encoder is a typical
compressive sensing encoder, i.e., a randomly generated
matrix A. We have normalized each column of A to
have unit norm. Since the images are already sparse,
i.e., have a few number of non-zero pixels, no transform,
Ψ in (2), is used. To simulate the measurement noise,
we have added a Gaussian noise with standard deviation
0.005 to the measurement matrix Y in (4). This results
in measurements with signal to noise ratio (SNR) of
40dB. We have divided each image into four 12 × 12
blocks. This means that the length of each sparse vector

Fig. 3. Randomly selected images for test from MNIST dataset. The
first channel encodes digit zero, the second channel encodes digit one
and so on.

is N = 144. We have taken 50% random measurements
from each sparse vector, i.e., M = 72. After receiving
and reconstructing all blocks at the decoder, we compute
the reconstruction error defined in (15) for the full image.
We have randomly selected 10 images for each digit
from the set {0, 1, 2, 3}, i.e., 40 images in total for the
test. This means that the first column of S is an image
of digit 0, the second column is an image of digit 1, the
third column is an image of digit 2 and the fourth column
is an image of digit 3. Test images are represented in Fig.
3.

We have compared the performance of the proposed
reconstruction algorithm (LSTM-CS) with 5 reconstruc-
tion methods for the MMV problem. These methods
are Simultaneous Orthogonal Matching Pursuit (SOMP)
which is a well known baseline for the MMV problem,
Bayesian Compressive Sensing (BCS)[15] applied inde-
pendently on each channel, Multitask Compressive Sens-
ing (MT-BCS) [2] which takes into account the statisti-
cal dependency of different channels, Sparse Bayesian
Learning for Temporally correlated sources (T-SBL)
[3] which exploits correlation among different sources
in the MMV problem and Nonlinear Weighted SOMP
(NWSOMP) [17] which solves a regression problem to
help the SOMP algorithm with prior knowledge from
training data.

For the BCS method we set the initial noise variance
of i-th channel to the value suggested by the authors,
i.e., std(yi)2/100 where i ∈ {1, 2, 3, 4} and std(.)
calculates the standard deviation. We set the threshold
for stopping the algorithm to 10−8. For MT-BCS we set
the parameters of the Gamma prior on noise variance to
a = 100/0.1 and b = 1 which are the values suggested
by the authors. We set the stopping threshold to 10−8 as
well. For T-SBL, we used the default values proposed
by the authors. For NWSOMP, during training, we used
one layer, 512 neurons and 25 epochs of parameters
update. For LSTM-CS, during training, we used one

8

20 40 60 80 100 120 140

0.5

1

1.5

2

2.5

3

3.5

Number of non-zero entries in the sparse vector

M
ea
n
o
f
E
rr
o
r

SOMP
LSTM−CS
MT−BCS
T−SBL
NWSOMP
BCS

20 40 60 80 100 120 140

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of non-zero entries in the sparse vector

M
ea
n
o
f
E
rr
o
r

SOMP
LSTM−CS
MT−BCS
T−SBL
NWSOMP

Fig. 4. Comparison of different MMV reconstruction algorithms for
MNIST dataset. Bottom figure is the same as top figure without results
of BCS algorithm to make the difference among different algorithms
more visible. In this experiment M = 72 and N = 144.

layer, 512 cells and 25 epochs of parameter updates. We
used only 200 images for the training set. The training
set does not include any of the 40 images used for test.
To monitor and prevent overfitting, we used 3 images
per channel as the validation set and we used early
stopping if necessary. Please note that the images used
for validation were not used in the training set or in the
test set. Results are presented in Fig. 4.

In Fig. 4, the vertical axis is the MSE defined in (15)
and horizontal axis is the number of non-zero entries in
the sparse vector. The number of measurements, M , is
fixed to 72. Each point on the curves in Fig. 4 is the
average of MSE over 40 reconstructed test images at
the decoder.

For the MNIST dataset, we observe from Fig. 4 that
LSTM-CS significantly outperforms the reconstruction
algorithms for the MMV problem discussed in this paper.
One important reason for this is that existing MMV
solvers rely on the joint sparsity in S, while the proposed
method does not rely on this assumption. Another reason
is that the structure of each sparse vector is effectively
captured by LSTM. The reconstructed images using dif-
ferent MMV reconstruction algorithms for 4 test images
are presented in Fig. 5. An interesting observation from
Fig. 5 is that the accuracy of reconstruction depends on
the complexity of the sparsity pattern. For example when
the sparsity pattern is simple, e.g., image of digit 1 in
Fig. 5, all the algorithms perform well. But when the

20 40 60 80 100 120 140

1

2

3

4

Number of non-zero entries in the sparse vector

M
e
a
n
o
f
E
rr
o
r

SOMP
T-SBL
LSTM-CS
MT-BCS
NWSOMP
BCS

20 40 60 80 100 120 140

0.8

1

1.2

Number of non-zero entries in the sparse vector

M
e
a
n
o
f
E
rr
o
r

SOMP
T−SBL
LSTM−CS
MT−BCS
NWSOMP

Fig. 6. Comparison of different MMV reconstruction algorithms for
MNIST dataset. Bottom figure is the same as top figure without results
of BCS algorithm to make the difference among different algorithms
more visible. In this experiment M = 36 and N = 144.

sparsity pattern is more complex, e.g., image of digit
0 in Fig. 5, then their reconstruction accuracy degrades
significantly.

We have repeated the experiments on the MNIST
dataset with 25% random measurements, i.e., M = 36.
The results are presented in Fig. 6.

B. Natural Images Dataset

For experiments on natural images we used the MSR
Cambridge dataset [41]. Ten randomly selected test
images belonging to three classes of this dataset are used
for experiments. The images are shown in Fig. 7. We
have used 64 × 64 images. Each image is divided into
8×8 blocks. After reconstructing all blocks of an image
in the decoder, the MSE for the reconstructed image is
calculated. The task is to simultaneously encode 4 blocks
(L = 4) of an image and reconstruct them in the decoder.
This means that S in (4) has 4 columns each one having
N = 64 entries. We used 50% measurements, i.e., Y in
(4) have 4 columns each one having M = 32 entries.

We have compared the performance of the proposed
algorithm, LSTM-CS, with SOMP, T-SBL, MT-BCS and
NWSOMP. We have not included results of applying
BCS per channel due its weak performance compared
to other methods (this is shown in the experiments for
MNIST dataset). We have used the same setting as the
settings for the MNIST dataset for different methods
which is explained in the previous section. The only

9

Original

50% Measurements

SOMP

BCS

MT-BCS

T-SBL

NWSOMP

LSTM-CS

Original

50% Measurements

SOMP

BCS

MT-BCS

T-SBL

NWSOMP

LSTM-CS

Original

50% Measurements

SOMP

BCS

MT-BCS

T-SBL

NWSOMP

LSTM-CS

Original

50% Measurements

SOMP

BCS

MT-BCS

T-SBL

NWSOMP

LSTM-CS

Channel 2Channel 1 Channel 3 Channel 4

Reconstruction Algorithms:

Fig. 5. Reconstructed images using different MMV reconstruction algorithms for 4 images of the MNIST dataset. First row are original images,
S, second row are measurement matrices, Y, third row are reconstructed images using SOMP, fourth row using BCS per channel independently,
fifth row using MT-BCS, sixth row using T-SBL, seventh row using NWSOMP and the last row are reconstructed images using the proposed
LSTM-CS method.

Fig. 7. Randomly selected natural images from three different classes used for test. The first row are “buildings”, the second row are “cows”
and the third row are “flowers”.

differences here are: (i) For each class of images, we
have used just 55 images for training set and 5 images
for validation set which do not include any of 10
images used for test. (ii) We have used 15 epochs for
training LSTM-CS which is enough for this dataset,
compared to 25 epochs for the MNIST dataset. The
experiments were performed for two popular transforms,
DCT and Wavelet, for all aforementioned reconstruction
algorithms. For the wavelet transform we used Haar
wavelet transform with 3 levels of decomposition. Re-
sults for DCT transform are presented in Fig. 8. Results
for wavelet transform are presented in Fig. 9.

To conclude the experiments section, the CPU time
for different reconstruction algorithms for the MMV

problem discussed in this paper are presented in Fig. 10.
Each point on the curves in Fig. 10 is the time spent to
reconstruct each sparse vector averaged over all the 8×8
blocks in 10 test images. We observe from this figure
that the proposed algorithm is almost as fast as greedy
algorithms. Please note that there is a faster version of
T-SBL that is known as TMSBL. It will improve the
CPU time of T-SBL but it is still slower than other
reconstruction methods.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a method to reconstruct sparse
vectors for the MMV problem. The proposed method
learns the structure of sparse vectors and does not rely on

10

10 20 30 40 50 60

0.1

0.15

0.2

Number of non-zero entries in the sparse vector

M
ea
n
o
f
E
rr
o
r

SOMP
MT-BCS
T-SBL
LSTM-CS
NWSOMP

10 20 30 40 50 60

0.15

0.2

0.25

Number of non-zero entries in the sparse vector

M
ea
n
o
f
E
rr
o
r

SOMP
MT-BCS
T-SBL
LSTM-CS
NWSOMP

10 20 30 40 50 60

0.2

0.25

0.3

Number of non-zero entries in the sparse vector

M
ea
n
o
f
E
rr
o
r

SOMP
MT-BCS
T-SBL
LSTM-CS
NWSOMP

Fig. 8. Comparison of different MMV reconstruction algorithms
for natural image dataset using DCT transform and just one layer
for LSTM model in LSTM-CS. Image classes from top to bottom
respectively: buildings, cows and flowers.

the commonly used joint sparsity assumption. Through
experiments on two real world datasets, we showed that
the proposed method outperforms the general MMV
baseline SOMP as well as the Bayesian model based
methods MT-BCS and T-SBL for the MMV problem.
Please note that we have not used multiple layers
of LSTM or the advanced deep learning methods for
training, e.g., regularization using drop out which can
improve the performance of LSTM-CS. This paper is
a proof of concept that deep learning methods and
specifically sequence modelling methods, e.g., LSTM,
can improve the performance of the MMV solvers sig-
nificantly. This is specially the case when the sparsity
patterns are more complicated than that of obtained
by the DCT or Wavelet transforms. We showed this
on the MNIST dataset. Our future work includes: 1)
Extending the LSTM-CS to bidirectional LSTM-CS. 2)

10 20 30 40 50 60
0.12

0.14

0.16

0.18

0.2

0.22

Number of non-zero entries in the sparse vector

M
e
a
n
o
f
E
rr
o
r

SOMP
MT-BCS
T-SBL
LSTM-CS
NWSOMP

10 20 30 40 50 60

0.16

0.18

0.2

0.22

0.24

0.26

Number of non-zero entries in the sparse vector
M
e
a
n
o
f
E
rr
o
r

SOMP
MT-BCS
T-SBL
LSTM-CS
NWSOMP

10 20 30 40 50 60
0.2

0.25

0.3

0.35

Number of non-zero entries in the sparse vector

M
ea
n
o
f
E
rr
o
r

SOMP
MT-BCS
T-SBL
LSTM-CS
NWSOMP

Fig. 9. Comparison of different MMV reconstruction algorithms for
natural image dataset using Wavelet transform and just one layer
for LSTM model in LSTM-CS. Image classes from top to bottom
respectively: buildings, cows and flowers.

Extending the proposed method to non-linear distributed
compressive sensing. 3) Using the proposed method for
video compressive sensing where there is correlation
amongst the video frames, and compressive sensing of
EEG signals where there is correlation amongst the
different EEG channels.

VI. ACKNOWLEDGEMENT

We want to thank the authors of [3] and [15] and [2]
for making the code of their work available. This was
important in performing comparisons.

APPENDIX A
EXPRESSIONS FOR THE GRADIENTS

In this appendix we present the final gradient expres-
sions that are necessary to use for training the proposed
model for the MMV problem. Due to lack of space,

11

10 20 30 40 50 60

10

20

30

Number of non-zero entries in each sparse vector

C
P
U

T
im

e
(s
ec
)

SOMP
NWSOMP
MT-BCS
T-SBL
LSTM-CS

10 20 30 40 50 60

0.05

0.1

0.15

0.2

0.25

Number of non-zero entries in each sparse vector

C
P
U

T
im

e
(s
ec
)

SOMP
NWSOMP
MT−BCS
LSTM−CS

Fig. 10. CPU time for different MMV reconstruction algorithms. These
times are for the experiment using DCT transform for 10 test images
from the building class. The bottom figure is the same as top figure
but without T-SBL to make the difference among different methods
more clear.

we omit the presentation of full derivations of these
gradients.

Starting with the cost function in (12), we
use the Nesterov method described in (13) to
update LSTM-CS model parameters. Here, Λ
is one of the weight matrices or bias vectors
{W1,W2,W3,W4,Wrec1,Wrec2,Wrec3,Wrec4

,Wp1,Wp2,Wp3,b1,b2,b3,b4} in the LSTM-CS
architecture. The general format of the gradient of the
cost function, ∇L(Λ), is the same as (14). To calculate
∂Lr,i,τ (Λ)

∂Λ from (12) we have:

∂Lr,i,τ (Λ)

∂Λ
= −

N∑
j=1

s0,r,i,τ (j)
∂log(sr,i,τ (j))

∂Λ
(16)

After a straightforward derivation of derivatives we will
have:

∂Lr,i,τ (Λ)

∂Λ
= (βsr,i,τ − s0,r,i,τ)

∂zτ
∂Λ

(17)

where zτ is the vector z for τ -th channel in Fig. 1 and
β is a scalar defined as:

β =

N∑
j=1

s0,r,i,τ (j) (18)

Since during training data generation we have generated
one hot vectors for s0, β always equals to 1. Since we are
looking at different channels as a sequence, for a more

clear presentation we show any vector corresponding to
t-th channel with (t) instead of index τ . For example,
zτ is represented by z(t).

Since z(t) = Uv(t) we have:

∂z(t)

∂Λ
= UT ∂v(t)

∂Λ
(19)

Combining (17), (18) and (19) we will have:

∂Lr,i,t(Λ)

∂Λ
= UT (sr,i(t)− s0,r,i(t))

∂v(t)

∂Λ
(20)

Starting from “t = L”-th channel, we define e(t) as:

e(t) = UT (sr,i(t)− s0,r,i(t)) (21)

The expressions for the gradients for different parameters
of LSTM-CS model are presented in the subsequent
sections. We omit the subscripts r and i for simplicity
of presentation. Please note that the final value of the
gradient is sum of gradient values over the mini-batch
samples and number of channels as represented by
summations in (14).

A. Output Weights U

∂Lt
∂U

= (s(t)− s0(t)).v(t)
T (22)

B. Output Gate

For recurrent connections we have:

∂Lt
∂Wrec1

= δrec1(t).v(t− 1)T (23)

where

δrec1(t) = o(t) ◦ (1− o(t)) ◦ h(c(t)) ◦ e(t) (24)

For input connections, W1, and peephole connections,
Wp1, we will have:

∂Lt
∂W1

= δrec1(t).r(t)T (25)

∂Lt
∂Wp1

= δrec1(t).c(t)T (26)

The derivative for output gate bias values will be:

∂Lt
∂b1

= δrec1(t) (27)

12

C. Input Gate

For the recurrent connections we have:

∂Lt
∂Wrec3

= diag(δrec3(t)).
∂c(t)

∂Wrec3
(28)

where

δrec3(t) = (1− h(c(t))) ◦ (1 + h(c(t))) ◦ o(t) ◦ e(t)

∂c(t)

∂Wrec3
= diag(f(t)).

∂c(t− 1)

∂Wrec3
+ bi(t).v(t− 1)T

bi(t) = yg(t) ◦ i(t) ◦ (1− i(t)) (29)

For the input connections we will have the following:

∂Lt
∂W3

= diag(δrec3(t)).
∂c(t)

∂W3
(30)

where

∂c(t)

∂W3
= diag(f(t)).

∂c(t− 1)

∂W3
+ bi(t).r(t)

T (31)

For the peephole connections we will have:

∂Lt
∂Wp3

= diag(δrec3y (t)).
∂c(t)

∂Wp3
(32)

where

∂c(t)

∂Wp3
= diag(f(t)).

∂c(t− 1)

∂Wp3
+bi(t).c(t−1)T (33)

For bias values, b3, we will have:

∂Lt
∂b3

= diag(δrec3(t)).
∂c(t)

∂b3
(34)

where

∂c(t)

∂b3
= diag(f(t)).

∂c(t− 1)

∂b3
+ bi(t) (35)

D. Forget Gate

For the recurrent connections we will have:

∂Lt
∂Wrec2

= diag(δrec2(t)).
∂c(t)

∂Wrec2
(36)

where

δrec2(t) = (1− h(c(t))) ◦ (1 + h(c(t))) ◦ o(t) ◦ e(t)

∂c(t)

∂Wrec2
= diag(f(t)).

∂c(t− 1)

∂Wrec2
+ bf (t).v(t− 1)T

bf (t) = c(t− 1) ◦ f(t) ◦ (1− f(t)) (37)

For input connections to forget gate we will have:

∂Lt
∂W2

= diag(δrec2(t)).
∂c(t)

∂W2
(38)

where

∂c(t)

∂W2
= diag(f(t)).

∂c(t− 1)

∂W2
+ bf (t).r(t)

T (39)

For peephole connections we have:

∂Lt
∂Wp2

= diag(δrec2(t)).
∂c(t)

∂Wp2
(40)

where
∂c(t)

∂Wp2
= diag(f(t)).

∂c(t− 1)

∂Wp2
+bf (t).c(t−1)T (41)

For forget gate’s bias values we will have:

∂Lt
∂b2

= diag(δrec2(t)).
∂c(t)

∂b2
(42)

where
∂c(t)

∂b2
= diag(f(t)).

∂c(t− 1)

∂b3
+ bf (t) (43)

E. Input without Gating (yg(t))

For recurrent connections we will have:
∂Lt

∂Wrec4
= diag(δrec4(t)).

∂c(t)

∂Wrec4
(44)

where

δrec4(t) = (1− h(c(t))) ◦ (1 + h(c(t))) ◦ o(t) ◦ e(t)

∂c(t)

∂Wrec4
= diag(f(t)).

∂c(t− 1)

∂Wrec4
+ bg(t).v(t− 1)T

bg(t) = i(t) ◦ (1− yg(t)) ◦ (1 + yg(t)) (45)

For input connections we have:

∂Lt
∂W4

= diag(δrec4(t)).
∂c(t)

∂W4
(46)

where
∂c(t)

∂W4
= diag(f(t)).

∂c(t− 1)

∂W4
+ bg(t).r(t)

T (47)

For bias values we will have:
∂Lt
∂b4

= diag(δrec4(t)).
∂c(t)

∂b4
(48)

where
∂c(t)

∂b4
= diag(f(t)).

∂c(t− 1)

∂b4
+ bg(t) (49)

F. Error signal backpropagation

Error signals are back propagated through time using
following equations:

δrec1(t− 1) = [o(t− 1) ◦ (1− o(t− 1)) ◦ h(c(t− 1))]

◦ [WT
rec1.δ

rec1(t) + e(t− 1)] (50)

δreci(t− 1) = [(1− h(c(t− 1))) ◦ (1 + h(c(t− 1)))

◦ o(t− 1)] ◦ [WT
reci .δ

reci(t) + e(t− 1)],

for i ∈ {2, 3, 4} (51)

13

REFERENCES

[1] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[2] S. Ji, D. Dunson, and L. Carin, “Multitask compressive sensing,”
Signal Processing, IEEE Transactions on, vol. 57, no. 1, pp. 92–
106, 2009.

[3] Z. Zhang and B. D. Rao, “Sparse signal recovery with tempo-
rally correlated source vectors using sparse bayesian learning,”
Selected Topics in Signal Processing, IEEE Journal of, vol. 5,
no. 5, pp. 912–926, 2011.

[4] D. Donoho, “Compressed sensing,” IEEE Transactions on Infor-
mation Theory, vol. 52, no. 4, pp. 1289 –1306, april 2006.

[5] E. Candes, J. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Communications on
Pure and Applied Mathematics, vol. 59, no. 8, pp. 1207–1223,
2006.

[6] R. Baraniuk, “Compressive sensing [lecture notes],” IEEE Signal
Processing Magazine, vol. 24, no. 4, pp. 118 –121, july 2007.

[7] E. J. Cands, Y. C. Eldar, D. Needell, and P. Randall, “Compressed
sensing with coherent and redundant dictionaries,” Applied and
Computational Harmonic Analysis, vol. 31, no. 1, pp. 59 – 73,
2011.

[8] M. Duarte and Y. Eldar, “Structured compressed sensing: From
theory to applications,” IEEE Transactions on Signal Processing,
vol. 59, no. 9, pp. 4053 –4085, sept. 2011.

[9] M. Davies and Y. Eldar, “Rank awareness in joint sparse recov-
ery,” IEEE Transactions on Information Theory, vol. 58, no. 2,
pp. 1135 –1146, Feb. 2012.

[10] Y. Eldar and H. Rauhut, “Average case analysis of multichannel
sparse recovery using convex relaxation,” IEEE Transactions on
Information Theory, vol. 56, no. 1, pp. 505 –519, Jan. 2010.

[11] J. Tropp, A. Gilbert, and M. Strauss, “Algorithms for simul-
taneous sparse approximation. part I: Greedy pursuit,” Signal
Processing, vol. 86, no. 3, pp. 572 – 588, 2006.

[12] J. Tropp, “Algorithms for simultaneous sparse approximation.
part II: Convex relaxation,” Signal Processing, vol. 86, no. 3,
pp. 589 – 602, 2006.

[13] D. P. Wipf and B. D. Rao, “An empirical bayesian strategy for
solving the simultaneous sparse approximation problem,” Signal
Processing, IEEE Transactions on, vol. 55, no. 7, pp. 3704–3716,
2007.

[14] R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, “Model-based
compressive sensing,” Information Theory, IEEE Transactions
on, vol. 56, no. 4, pp. 1982–2001, April 2010.

[15] S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,”
Signal Processing, IEEE Transactions on, vol. 56, no. 6, pp.
2346–2356, 2008.

[16] D. Merhej, C. Diab, M. Khalil, and R. Prost, “Embedding prior
knowledge within compressed sensing by neural networks,” IEEE
Transactions on Neural Networks, vol. 22, no. 10, pp. 1638 –
1649, oct. 2011.

[17] H. Palangi, R. Ward, and L. Deng, “Using deep stacking network
to improve structured compressed sensing with multiple measure-
ment vectors,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2013.

[18] A. Mousavi, A. B. Patel, and R. G. Baraniuk, “A deep
learning approach to structured signal recovery,” arXiv, vol.
abs/1508.04065, 2015. [Online]. Available: http://arxiv.org/abs/
1508.04065

[19] M. E. Tipping, “Sparse bayesian learning and the relevance vector
machine,” J. Mach. Learn. Res., vol. 1, pp. 211–244, Sep. 2001.

[20] A. C. Faul and M. E. Tipping, “Analysis of sparse bayesian
learning,” in Advances in Neural Information Processing Systems
(NIPS) 14. MIT Press, 2001, pp. 383–389.

[21] L. Deng, D. Yu, and J. Platt, “Scalable stacking and learning for
building deep architectures,” in Proc. ICASSP, march 2012, pp.
2133 –2136.

[22] G. E. Hinton, “Training products of experts by minimizing
contrastive divergence,” Neural Computation, vol. 14, no. 8, pp.
1771–1800, Aug. 2002.

[23] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol,
“Extracting and composing robust features with denoising au-
toencoders,” ICML, pp. 1096–1103, 2008.

[24] P. Vincent, “A connection between score matching and denoising
autoencoders,” Neural Comput., vol. 23, no. 7, pp. 1661–1674,
Jul. 2011.

[25] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kings-
bury, “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE
Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, November
2012.

[26] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent
pre-trained deep neural networks for large-vocabulary speech
recognition,” Audio, Speech, and Language Processing, IEEE
Transactions on, vol. 20, no. 1, pp. 30 –42, jan. 2012.

[27] J. L. Elman, “Finding structure in time,” Cognitive Science,
vol. 14, no. 2, pp. 179–211, 1990.

[28] A. J. Robinson, “An application of recurrent nets to phone
probability estimation,” IEEE Transactions on Neural Networks,
vol. 5, no. 2, pp. 298–305, August 1994.

[29] L. Deng, K. Hassanein, and M. Elmasry, “Analysis of the corre-
lation structure for a neural predictive model with application to
speech recognition,” Neural Networks, vol. 7, no. 2, pp. 331–339,
1994.

[30] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudan-
pur, “Recurrent neural network based language model.” in Proc.
INTERSPEECH, Makuhari, Japan, September 2010, pp. 1045–
1048.

[31] A. Graves, “Sequence transduction with recurrent neural net-
works,” in Representation Learning Workshp, ICML, 2012.

[32] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, “Ad-
vances in optimizing recurrent networks,” in Proc. ICASSP,
Vancouver, Canada, May 2013.

[33] G. Mesnil, X. He, L. Deng, and Y. Bengio, “Investigation of
recurrent-neural-network architectures and learning methods for
spoken language understanding,” in Proc. INTERSPEECH, Lyon,
France, August 2013.

[34] H. Palangi, L. Deng, and R. Ward, “Recurrent deep-stacking
networks for sequence classification,” in Signal and Information
Processing (ChinaSIP), 2014 IEEE China Summit International
Conference on, July 2014, pp. 510–514.

[35] H. Palangi, L. Deng, and R. K. Ward, “Learning input
and recurrent weight matrices in echo state networks,” in
NIPS Workshop on Deep Learning, December 2013. [Online].
Available: http://research.microsoft.com/apps/pubs/default.aspx?
id=204701

[36] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with lstm,” Neural Computation, vol. 12, pp.
2451–2471, 1999.

[37] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning
precise timing with lstm recurrent networks,” J. Mach. Learn.
Res., vol. 3, pp. 115–143, Mar. 2003.

[38] Y. Nesterov, “A method of solving a convex programming
problem with convergence rate o (1/k2),” Soviet Mathematics
Doklady, vol. 27, pp. 372–376, 1983.

[39] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton, “On the
importance of initialization and momentum in deep learning,” in
ICML (3)’13, 2013, pp. 1139–1147.

[40] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278–2324, Nov 1998. [Online].
Available: http://yann.lecun.com/exdb/mnist/

[41] [Online]. Available: http://research.microsoft.com/en-us/projects/
objectclassrecognition/

http://arxiv.org/abs/1508.04065
http://arxiv.org/abs/1508.04065
http://research.microsoft.com/apps/pubs/default.aspx?id=204701
http://research.microsoft.com/apps/pubs/default.aspx?id=204701
http://yann.lecun.com/exdb/mnist/
http://research.microsoft.com/en-us/projects/objectclassrecognition/
http://research.microsoft.com/en-us/projects/objectclassrecognition/

	I Introduction
	I-A Problem Statement
	I-B Proposed Method
	I-C Related Work

	II RNN with LSTM cells
	III Proposed Method
	III-A High Level Picture
	III-B Training Data Generation
	III-C Learning Method

	IV Experimental Results and Discussion
	IV-A MNIST Dataset
	IV-B Natural Images Dataset

	V Conclusions and Future Work
	VI Acknowledgement
	Appendix A: Expressions for the Gradients
	A-A Output Weights U
	A-B Output Gate
	A-C Input Gate
	A-D Forget Gate
	A-E Input without Gating (yg(t))
	A-F Error signal backpropagation

	References

