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Abstract

We examine security domains where defenders choose their security
levels in the face of a possible attack by an adversary who attempts to
destroy as many of them as possible. Though the attacker only selects
one target, and only has a certain probability of destroying it depending
on that defender’s security level, a successful attack may infect other
defenders. By choosing a higher security level the defenders increase
their probability of survival, but incur a higher cost of security. We
assume that the adversary observes the security levels chosen by the
defenders before selecting whom to attack.

We show that under this assumption the defenders over-protect
themselves, exhausting all their surplus, so optimal policy requires
taxing security, as opposed to the subsidies recommended by alter-
native models for contagious attacks which do not take into account
the attacker’s ability to observe the defenders’ choices.

1 Introduction

A key issue in many multi-agent interactions is security — an agent’s ability
to counteract threats from adversaries. In many domains the adversary has
many potential targets, so a defending agent cannot know for sure where the
adversary may strike. Even when an adversary strikes one agent, the attack
may propagate to another agent if the first agent is successfully attacked.
For example, a successful virus attack on one node in a computer network
may infect other nodes connected to it, or fire from a terrorist attack on
one building may spread to neighboring buildings. To decide how to protect
itself an agent must have a model of the way such attacks may propagate
and the adversary’s behavior.
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The probability that an attack on an agent succeeds depends on the
security measures employed by that agent. For example, a company may
invest in security software (such as antivirus software or a firewall) to reduce
the probability that its computers would be successfully attacked. However,
improved security also increases costs.

Random Attacks and Contagion: Consider the case where the origin
of an attack is a random event, so a defender chosen uniformly at random
would be attacked. Such a defender gains some utility from her standard
operations, which she stands to lose if successfully attacked. The attack
strikes at random, so the defender’s behavior and her investment in security
measures have no influence on the probability that she would be attacked. A
defender may attempt to compute the probability that she would attacked
directly, or indirectly due to an attack propagating from another agent.
Given this probability and her utility from standard operation and costs of
security measures, the defender can select the optimal security level so as to
maximize her utility.

As attacks may propagate from other agents only if they are successfully
attacked (and do not propagate if an attack fails), agents benefit from other
defenders choosing a high security level. Unfortunately, quantitative analysis
of many such domains shows that in equilibrium agents may select a security
level that is lower than the social optimum [17]. In such cases, a central
authority may improve utility by subsidizing security measures.

Strategic Adversary: In some security domains, such as wars or terror
attacks, the origin of attacks is not a random event, but rather the decision
of a strategic adversary, significantly impacting the defenders’ policy. For
example, a strategic adversary may observe the defenders’ strategies, and
choose a target so as to maximize the damage. Many questions arise in
domains with a strategic adversary and infectious attacks. What is the
optimal strategy for the defenders and adversary? How are these affected
by the number of targets and the probability of attack propagation? Is the
behavior in equilibrium optimal for the defenders, and if not, how bad is the
performance in equilibrium, and what public policy should be chosen by a
central authority?

1.1 Our Model

We study the above questions by proposing a simple model of such attacks
where defender agents attempt to protect themselves in settings where a
strategic adversary decides which of them to target, where the defense re-
sources are costly, and where an attack may propagate from one attacked
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agent to another. In the basic model there are two defenders and one ad-
versary. Each defender obtains a status quo utility of Y = 1 if she is not
successfully attacked, which is eliminated if she is successfully attacked.

The adversary observes the security levels of the defenders, and selects
one of them attack. A successful attack may propagate from the initially at-
tacked defender to other defenders, and the adversary attempts to maximize
the number of defenders who are successfully attacked. The probability of
an attack on a defender succeeding depends on the security level employed
by that defender. Each defender i selects its security level si, and incurs a
cost C(si) for this. The function C maps any level of security to the decrease
in utility the defender incurs for employing this security level. When a de-
fender is attacked by the adversary, the attack resources of the adversary
and the security measures of the defender engage in a contest determin-
ing the attack’s result: a function fp takes the defender’s security level si
and the adversary’s attack resources ai and returns the probability of the
attack succeeding. 1 One such function proposed is the Tullock contest
function [34, 35]. It was shown to be the only function fulfiling reasonable
axioms [31] 2. We use the Tullock function for its desirable properties, so
if a defender i with security level si is attacked (directly or indirectly), the
attack succeeds with probability 1

1+si
. If the attack against defender i suc-

ceeds, it may propagate to every other defender with a contagion probability
q. As we assume that the adversary observes the security strategy of the
defenders before picking the target, we have a game of sequential moves a la
Stackelberg (see [22] for a detailed examination of Stackelbeg games): the
defenders (leaders) move first, and their action is observed by the adversary
(follower) who then best responds to it. The defenders may choose a mixed
strategy, in which case the attacker best responds to the realized strategy. 3

1We assume the attacker has a unit attack, so ai = 1.
2The axioms are monotonicity (the probability of the attack succeeding increases in

the attacker resources ai and decreasing in the security level si), anonymitiy (multiple
players engaged in a contest are treated equally), consistency (a sub-contest between a
subset of players is qualitatively similar to a contest of more players) and independence
of irrelevant alternatives (the results are not affected by players not participating in the
contest).

3A mixed-strategy of a defender is a lottery among different security levels. To be
more precise, by a Stackelberg equilibrium we mean a strategy profile composed of a
(mixed) strategy for each defender, where no defender can improve upon assuming the
other defnder sticks to her strategy in the profile and assuming the adversary best responds
to the realized strategies of the defenders (i.e. the attacker knows the results of the
lotteries). We believe this is justified as for the defenders security levels are a matter of
long term policy, while the attacker can quickly and cheaply examine the level of security
of the defenders. For example, in a cyber-security context, the attacker can run a simple
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Our Contribution: We examine the above domain, analyzing equilib-
ria and optimal joint defender outcomes:

• There is an equilibrium in which defenders choose mixed strategies,
with security levels in the support [0, s̄], for some real s̄ while the
adversary targets the lowest security defender. Changes in the number
of players leaves the support of the distribution [0, s̄] unaltered.

• An increase in the contagion probability q across nodes leads to a first
order shift in security distribution. Let q be the probability of conta-
gion across nodes and denote by Fq(.) the mixed strategy probability
distribution function under contagion probability q. For a fixed num-
ber of players n, we show that Fq′(s) ≥ Fq(s), for q′ ≥ q. This implies
that an increase in the contagion probability yields a decrease in the
expected security level for each defender.

• Faced with a strategic adversary, defenders exhaust all surplus. The
price of anarchy is unbounded as collective provision of security has
positive surplus to the defenders.

Thus, in the presence of a strategic adversary, optimal public interven-
tion could take the form of a tax on security investments while in the case of
random attacks traditional wisdom recommends a subsidy on such invest-
ments.

We also examine n ≥ 2 defenders, showing that:

• Changes in the number of defenders leads to a first order stochastic
shift in the distribution of security: the distribution function for n+ 1
players first order dominates the distribution function for n players.

• An increase in the number of players leads to an increase in the ex-
pected security level for each defender.

2 Related Work

Many game theoretic models of security were proposed, with domains in-
cluding security against terrorism, network security and arms races [29,
17, 12, 10, 14, 20, 6]. Many security domains are characterized by un-
certainty regarding the actions taken by the adversaries. One way to model
this is a Bayesian game, where the distribution of the adversaries’ types

off-the-shelf penetration test software to gauge a defnder’s realized security level.
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is known [5]. However, such Bayesian models fail to capture cases where
an attacker may observe the security policies of the defenders and use this
to her advantage. Extensive literature studies conflict between two play-
ers across multiple “battle sites” with fixed budgets. One example is the
Blotto games and its derivatives [30, 11, 4, 26, 27]. Similarly, work on all-pay
auctions examined players with similar goals who are in conflict with each
other [34, 35, 31, 9, 7, 1]. In contest domains with asymmetric adversaries
it was shown that pre-commitment makes the better endowed player to in-
crease effort and the less endowed player to decrease effort over the effort
in a Nash equilibrium [8]. In contrast to Blotto games or contests, in our
game the defenders act with a view to protecting individual interests while
the adversary seeks to maximize damage.

The defenders are therefore engaged in competition to avoid attacks, but
also provide collective goods for each other, since greater individual security
lowers the risk of spread of infection. This structure seems natural in many
contexts, such as computer security where security measures are decentral-
ized and adversaries seek to exploit inter-connections between individual
entities to maximize harm.

Our assumption that the adversary observes the defenders’ strategy be-
fore choosing her move yields a Stackelberg model, and is realistic in various
domains. One example is computer security, where a hacker can infer secu-
rity settings of different computers. Another example is physical security,
where an adversary may observe the way the defending forces are allocated
before launching an attack. Several other authors have proposed Stackel-
berg models for various security domains. For a overview of such work and
its applications, see [13].

One interesting Stackelberg model examines patrolling agents defending
against an attacker, who must decide which areas to patrol when only ob-
serving their close environment [24]. That paper uncovers good patrolling
policies, for example for UAV’s (unmanned aerial vehicle) and security
robots [3, 2]. Such Stackelberg security models have formed the basis for
deployed security policy optimization tool used by various agencies. One
such a system assists in generating security policies for the Los Angeles In-
ternational Airport [25] and another is used by the Federal Air Marshals
Service [32]. Stackelnerg security games may be hard to solve due to the
large strategy space, however various techniques allow overcoming this dif-
ficulty and finding good strategies [36, 21, 23, 37, 33, 15, 16].

Our model is novel in combining a Stackelberg game similar to [13, 16]
with contagious attacks similar to [17, 10, 14]. In contrast to [13, 33, 15, 6],
we do not focus on algorithms for solving the security game, but examine
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the impact of contagion and the strategic attacker’s ability to observe the
the defenders’ security on the choices and surplus of the defenders and pub-
lic policy issues. We believe our model is more realistic in assuming the
attacker observes the realized security levels, while our multiple defenders
make their decisions simultaneously, without observing each other’s strat-
egy, as opposed to models such as [17, 13, 6]. Also, the clear cut results on
equilibrium strategies and the price of anarchy seem to be novel relative to
the existing literature.4

3 The Security Game

Consider a three player game: two defenders choose a security level to pro-
tect themselves against an attack from the third player. The two defenders
are denoted players 1 and 2 while the adversary is denoted by the letter A.
The defenders have ‘status quo’ utility of Y = 1, which they may lose if suc-
cessfully attacked. To prevent this, defender i chooses security investment
si ≥ 0, i = 1, 2 at cost C(si). We assume that the cost function is twice
continuously differentiable, C(0) = 0, C ′(0) = 1, and that C ′′(s) ≥ 0, for all
s ≥ 0.5

The security efforts of the players are observed by player A, who then
chooses to attack the nodes with the resources at his disposal. The adver-
sary has one unit of resource and allocations take integer values: ai ∈ {0, 1}.
Let a = {a1, a2} be the allocation of attack resources across the 2 defend-
ers where

∑2
i=1 ai = 1. First consider direct attack: suppose A attacks

player i who has chosen si. Followign the Tullock function [31, 34, 35], the
probability that i survives is: si

si+ai
.

Successful attacks may spread from one player to another. The proba-
bility of infection is given by q ∈ [0, 1]. If the attack does spread from i to
j then it engages with defense resources at j and the probability of survival
for node j is given by:

sj
sj+ai

. We assume an immunity property with regard

to attacks: if node i survives a direct or indirect attack, it is henceforth
immune to further attacks.

4The possibility of excessive security investments and the need for collective action is
discussed by [29], but as far as we are aware formal results on the structure of mixed
equilibria and comparative statics have not been obtained before.

5Our results carry over to a setting with discrete security levels; see the section on
discrete security for an example.
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3.1 The attacker

Let σ(i) ∈ [0, 1] be the probability that player A attacks node i. We first
focus on the optimal strategy of the attacker.

Observation 1. A strategic attacker attacks the player with the lowest se-
curity level, and it is indifferent between attacking two defenders who choose
the same level of security.

Proof. Suppose players choose (s1, s2). We solve the game backwards, start-
ing with A’s optimal action. The expected number of successfully attacked
nodes with σ(1) = 1 is:

1− q
s1 + 1

+
q

1 + s1

s2

s2 + 1
+

2q

s1 + 1

1

s2 + 1

Similarly, the expected number of successfully attacked nodes with σ(2) = 1
is given by:

1− q
s2 + 1

+
q

1 + s2

s1

s1 + 1
+

2q

s2 + 1

1

s1 + 1

It is easily verified that attacking 1 yields strictly greater utility than
attacking 2 if and only if s1 < s2; Targeting 1 and 2 yields A equal utility
when s1 = s2.

3.2 The defenders

Now consider the defenders. The attacker targets the least defended agent,

so if s1 < s2 then player 1’s payoff is:
[

s1
s1+1

]
−C(s1). If s1 > s2 then player

1’s payoff is:[
s2

s2 + 1
+

1

s2 + 1
(1− q) +

1

1 + s2
q

s1

s1 + 1

]
− C(s1).

If s1 = s2 then we assume A chooses to attack each of the nodes with equal
probability so player 1’s payoff is:

1

2

[
s1

s1 + 1
+

s2

s2 + 1
+

1− q
s2 + 1

+
q

1 + s2

s1

s1 + 1

]
− C(s1).

Consider the incentives at work here. First, raising s1 renders a direct
and an indirect attack less successful. Second, and perhaps more interest-
ingly, raising s1 has the potential of shifting the threat to the other player:
as s1 moves across the s2 threshold, the optimal response of the adversary is
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to switch from player 1 to player 2. This makes security an implicitly “com-
petitive” phenomenon. The competitive effect is entirely a consequence of
the strategic character of the adversary: in domains where the attack is
invariant with respect to security investments, matters are different (as the
section on random attack below clarifies). We first show that there only
exists a mixed equilibrium.

Lemma 1. For q ∈ (0, 1), there exists no pure strategy equilibrium for the
defenders.

Proof. First, straightforward computations show that setting zero security
level is not optimal for a defender. Let us consider unequal security levels,
0 < s1 < s2. Player 1 must satisfy the necessary condition for an opti-
mum: C ′(s1) = 1

(1+s1)2
while player 2’s action s2 must satisfy: C ′(s2) =

q
(1+s1)(1+s2)2

. As s2 > s1 and C(.) is convex, it follows that C ′(s2) ≥ C ′(s1).

But an inspection of the (LHS) terms reveals that the (gross) marginal
returns for player 2 are smaller than the marginal returns to player 1, con-
tradicting the optimality of player actions.

Let us now examine whether the actions s1 = s2 = s represent a pure
strategy equilibrium. At such an equilibrium, however, a defender strictly
gains by raising security slightly as this strictly raises his (gross) return, due
to the fact that the strategic adversary switches its target. Thus, there does
not exist a pure strategy equilibrium.

Theorem 1. There exists a symmetric mixed zero-payoff strategy with prob-
ability density function:

f(s) =
s+ 1

1− q + s

(
(s+ 1)C ′(s) + C(s)− 1

)
(1)

Example 1. Before giving the proof of Theorem 1, consider the mixed strat-
egy profile in the theorem when the cost is linear C(s) = s. It is easy to see
that in this case, the above symmetric mixed equilibrium has the following

probability distribution function: F (s) = s2 + 2qs − 2q(1 − q) log
(

1+s−q
1−q

)
with support [0, s̄] where s̄ is the solution of the equation: s2 + 2qs− 2q(1−
q) log

(
1+s−q

1−q

)
= 1. In particular, if q = 0, we have F (s) = s2 for s ∈ [0, 1].

Proof. Assuming that the strategies of agents in equilibrium are independent
drawn form a distribution with c.d.f. F , then the payoff of a given agent
known that the other agent invested s in defending herself is given by:
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∫ s

0

[
t

1 + t
+

1− q
1 + t

]
dF (t) + q

s

s+ 1

∫ s

0

1

1 + t
dF (t) + [1− F (s)]

s

s+ 1
− C(s)

1. F (s) has no mass points. This follows from the discontinuity in payoffs
at s1 = s2. Suppose both players place probability mass p > 0 on a
security level s. Observe that an individual player can strictly benefit
from moving this mass from s to s+ ε, for some small ε > 0. The cost
is almost the same, but the returns register a discontinuous increase
as the probability that other player has a lower security level increases
by a factor of p.

2. Interval support: the support of the probability distribution is a convex
set. Suppose not. Then there is an interval [s′, s′′] such that F (s′) =
F (s′′) and s′ < s′′. From the equilibrium condition (that expected
profits are zero at s = 0 and at the maximum security s = ŝ) the net
payoffs at these two levels are also zero. For s = s′, s′′ we have:

C(s) =

∫ s

0

[
t

1 + t
+

1− q
1 + t

]
dF (t)

+q
s

s+ 1

∫ s

0

1

1 + t
dF (t) + [1− F (s)]

s

s+ 1
.

Define s̃ = (s′ + s′′)/2. The gross expected return at security level s̃

is:
∫ s̃

0

[
t

1+t + 1−q
1+t

]
dF (t) + s

s+1

∫ s
0

q
1+tdF (t) + [1 − F (s̃)] s̃

s̃+1 . Denote

this return by R(s̃). As the return function is concave in s, it is easily
checked that R(s̃) > [R(s′) + R(s′′)]/2. However, C(s̃) ≤ [C(s′) +
C(s′′)]/2, due to the convexity of C(.). So we have shown that:

C(s̃) <
∫ s̃

0

[
t

1+t + 1−q
1+t

]
dF (t) + s

s+1

∫ s̃
0

q
1+tdF (t)

+[1− F (s̃)] s̃
s̃+1

and the player can earn a strictly positive profit by setting a security
level in (s′, s′′), a contradiction which shows that the support of the
mixed strategy distribution must be a convex set. We thus consider
a mixed equilibrium where each player uses a distribution F (s) with
support [s, s̄]. We define s and s̄ implicitly as the points where:

C(s) =
s

s+ 1
, (2)

9



C(s̄) =

∫ s̄

0

[
t

1 + t
+

1− q
1 + t

+
q

1 + t

s̄

1 + s̄

]
dF (t) (3)

Thus for s ∈ [s, s̄], we have:

C(s) =

∫ s

0

[
t

t+ 1
+

1− q
1 + t

+
q

t+ 1

s

s+ 1

]
dF (t)

+ [(1− F (s)]
s

s+ 1
. (4)

3. s = 0 :Note that the cost to the player at s̄ is exactly the expected
return, so the net payoff is zero. Similarly at s1 = s: F (s) = 0, so
with probability 1, player 2 chooses a higher security. This means
that A attacks player 1 with probability 1, and as s1 = s, the attack is
successful, yielding player 1 a net payoff 0. The same reasoning applies
to player 2. So each defending player earns zero in such an equilibrium.
Exploiting properties of the cost function C and equation (2), one can
show that s = 0 .

4. Probability density function for symmetric equilibrium: We now derive
an expression for f = F ′, the probability distribution function of the
mixed equilibrium. Recall that the zero-payoff property is given by:

C(s) =

∫ s

0

t

1 + t
f(t)dt+ q

s

s+ 1

∫ s

0

1

1 + t
f(t)dt

+

∫ s

0

1− q
1 + t

f(t)dt+

(
1−

∫ s

0
f(t)dt

)
s

s+ 1

=

∫ s
0 f(t)dt

s+ 1
− q

s+ 1

∫ s

0

1

1 + t
f(t)dt+

s

s+ 1

This may be simplified as:

(s+ 1)C(s)− s =

∫ s

0
f(t)dt− q

∫ s

0

1

1 + t
f(t)dt

By differentiating the above expression we have:

(s+ 1)C ′(s) + C(s)− 1 = f(s)− q 1

1 + s
f(s)

which implies that

f(s) =
s+ 1

1− q + s

(
(s+ 1)C ′(s) + C(s)− 1

)
(5)
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We thus obtained the required mixed equilibrium.

An inspection of the equilibrium density function (5) reveals the follow-
ing features of equilibrium security:

1. For q < 1, the density derived from the zero-payoff assumption implies
that the marginal return is equal to the marginal cost. This not sat-
isfied for q = 1. In fact at q = 1, (0, 0) is a pure strategy equilibrium.

2. Note that for q ∈ [0, 1), the density function f is increasing in q. Since
f(0) = 0 for all q < 1, this implies that for q′ > q, Fq′(s) ≥ Fq(s), for
every s. This in turn implies that the maximum security level s̄ and
the average security levels are both decreasing with q.

3.3 Price of Anarchy

Let us now consider the situation where the players can coordinate their
efforts and maximize joint payoffs.

Theorem 2. The optimal social collective strategy for the two defenders
when the attacker is strategic is given by

(i) s1 = s2 = 0, if q ≤ 1/2

(ii) s1 = s2 = s∗, if q ≥ 1/2 where s∗ is the solution in [0, 1] of the
equation: C ′(s) = 1

2
1

(1+s)2
+ q

(1+s)3
.

Proof. The social welfare function (collective payoff) for the two defend-

ers with defense levels s1 > s2 is: 2 s2
1+s2

+ 1
1+s2

[
1− q + q s1

1+s1

]
− C(s1) −

C(s2). The first order optimality conditions yield: C ′(s1) = q
(1+s1)2(1+s2)

and

C ′(s2) = q+s1+1
(1+s2)2(1+s1)

. Using the convexity of the cost function C(s), one

gets a contradiction. We thus examine symmetric profiles where s1 = s2 = s,
so the attacker uniformly attacks either defender, and the social welfare is:

2 s
1+s + 1

1+s

[
1− q + q s

1+s

]
− 2C(s). Note that this expression is decreasing

when q ≤ 1/2, otherwise it reaches its maximum at the point s∗ defined in
the theorem above.

It is easy to show that the social optimum always has a positive payoff to
the defenders. This implies that security investments in face of a strategic
adversary are excessive relative to what is collectively desirable for the de-
fenders. One measure of the potential costs of strategic action is the Price of
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Anarchy [28] (PoA). In our domain, the PoA is the ratio between the max-
imum feasible total utility of defenders and the sum of payoffs of defenders
in the worst Nash equilibrium. We constructed a Nash equilibrium in which
defenders make zero profits while our computations reveal that positive joint
payoffs are feasible. It then follows that the PoA is unbounded !

3.4 Random attack

Now consider a non-strategic adversary. Suppose for simplicity that each
player is attacked with equal probability. Then player 1 maximizes the
following payoff:

max
s1

1

2

[
s1

1 + s1
+

s2

1 + s2
+

1− q
1 + s2

+
q

1 + s2

s1

1 + s1

]
− C(s1)

Differentiating and using symmetry of security effort across players, we

get that the optimal s must solve: C ′(s) = 1
2

[
1

(1+s)2
+ q

(1+s)3

]
. Moreover

the security level that maximizes joint payoff is similar to the one derived
for the strategic attacker setting, i.e. it solves: C ′(s) = 1

2
1

(1+s)2
+ q

(1+s)3
.

Observe that for given s, the right side expression of the collective op-
tima is larger than that for the individual optima. Since the cost of security
is weakly convex, while the returns are strictly concave, it follows that indi-
vidual security choices are too small relative to what is in the players’ joint
interest. Recall, that, by contrast, faced with a strategic adversary, players
choose too high a level of security.

Finally, we study the total security expenditure in both the mixed Nash
equilibrium of Theorem 1 and the social optimum of Theorem 2 (equal to
the equilibrium investment in the random attack setting). Examine the
case of q = 0 in the setting of Example 1 when C(s) = s. In this case

the social optimum is reached at: s∗ = 1−
√

2
2 . Simple calculations show an

average security investment of 2/3 in equilibrium. Thus the total investment
of the two players in the social optimum is roughly 0.6 while it is 1.33 in
equilibrium.

3.5 The n-defender game

In the benchmark model, we studied the case of two defenders and one
adversary. In this section we consider n ≥ 2 players. Suppose that infection
can spread from the initially attacked node, if infected, to other nodes with
probability q ∈ [0, 1]. No further infections occur subsequently.
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For concreteness and to get close form solutions, we only present our
analysis for the linear cost function C(s) = s. Some key conclusions, namely
that the support of the mixed strategy distribution is unaltered by a change
in the number of players and that the distribution function is stochasti-
cally increasing with the number of players, are valid for the family of cost
functions introduced earlier.

Theorem 3. In the case with n players with q ∈ (0, 1) and C(s) = s,
there exists no pure strategy equilibrium for the defenders. There exists a
symmetric mixed zero-payoff strategy with probability density function:

F (s) = 1−
(

1− s2 − 2qs+ 2q(1− q) log

(
1 + s− q

1− q

)) 1
n−1

with support [0, s̄] where s̄ is the solution of the equation:

s2 + 2qs− 2q(1− q) log

(
1 + s− q

1− q

)
= 1

Proof. One can show that the zero-payoff condition yields:

s =

∫ s

0
f (n−1)(t)

(
t

1 + t
+ q

1

1 + t

s

1 + s
+

(1− q)
1 + t

)
+(1− F (s))n−1 s

1 + s
(6)

where f(s) and F (s) are, respectively, the density function and the prob-
ability distribution function of the security profile, and where the density
of the lowest order statistic among n − 1 i.i.d random variables with dis-
tribution F is: f (n−1)(s) = (n − 1)f(s)(1 − F (s))n−2. Moreover, f is de-

fined over the interval [0, s] where s is the solution of:
∫ s

0 f(t)(n − 1)(1 −
F (t))n−2

(
t

1+t + qs
(1+t)(1+s) + (1−q)

1+t

)
.

Analyzing (6) as in the two-player case yields: f (n−1)(s) = 2s(1+s)
1+s−q . In-

tegrating we get: (1− F (s))n−1 = 1−
∫ s

0
2t(1+t)
1+t−q dt. Hence, F (s) is given by

equation (3) and F (s) is an increasing function of q as in the two player
case. Note that the maximum security level does not depend on n as it is
the solution to the Equation (3). Equation (3) shows that F (s) declines
with n, for all s. We conclude that an increase in n leads to a first order
stochastic dominant shift in the distribution of security investments.
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3.6 Discrete Security Levels

Our analysis so far assumed that security is a continuous variable, while
attack is a discrete variable. We provide an example which illustrates that
continuous security levels are not needed: excessive security investments are
obtained for even a moderately rich menu of discrete security choices.

Example 2. Consider a model with three discrete security levels, (0, 1, 2).
The cost of each unit of security is c > 0. As before the adversary has a
single discrete unit of attack, and can choose integer allocations only.

Simple computations for Example 2, along the same lines as the com-
putations in Section 3, reveals an interesting structure. The joint payoffs
to the defenders for the various strategy profile are given in Table 1. It is

Strategies Welfare Strategies Welfare

(0, 0) 0 (1, 0) 1/2− c
(1, 1) (10/8− 2c) (2, 1) 4/3− 3c

(2, 2) 2[7/9− 2c] (2, 0) 2/3− 2c

Table 1: Strategy profiles and their total defenders’ welfare (joint payoffs)
in the discrete game.

straightforward to deduce that joint optimal outcomes are as follows: Strat-
egy profile (2, 2) is optimal if and only if c < 11/72, strategy profile (1, 1)
is optimal if and only if 11/72 < c < 5/8, while strategy profile (0, 0) is
optimal if and only if c > 5/8.

Consider equilibrium choices. The payoffs to player i under different
strategy configurations are: Πi(0, 0) = 0,Πi(1, 0) = 1/2 − c,Πi(0, 1) =
0,Πi(1, 1) = 5/8 − c,Πi(2, 0) = 2/3 − 2c,Πi(0, 2) = 0,Πi(2, 1) = 5/6 −
2c,Πi(1, 2) = 1/2 − c,Πi(2, 2) = 7/9 − 2c. Then (0, 0) is an equilibrium
if and only if c > 1/2. Similarly, (1, 1) is an equilibrium if and only
if 15/72 < c < 45/72. Finally, (2, 2) is an equilibrium if and only if
0 < c < 20/72.

A comparison of the equilibria and joint optima shows: If c ∈ (0, 11/72)
then both the joint optimum and equilibrium is (2,2); If c ∈ (11/72, 15/72)
then the joint optimum is (1, 1) but (2, 2) is the unique equilibrium, so
there is over-investment in equilibrium; If c ∈ (15/72, 20/72) then the joint
optimum is (1, 1) but (2, 2) and (1, 1) are both equilibrium, So there is a
potential for over-investment; If c ∈ (20/72, 36/72), then both the joint opti-
mum and equilibrium is (1, 1); If c ∈ (36/72, 45/72) then the joint optimum
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is (1, 1) but equilibria are (1, 1) and (0, 0), so there is a potential for under-
investment ; Finally, if c ∈ (45/72, 1) both joint optimum and equilibria is
(1, 1).

The above analysis for Example 2, with only three security levels, illus-
trates two points. First, competition for security generates pressures toward
over-investment in security even with a discrete security levels when costs of
security are low. Second, there is the prospect of under-investment in secu-
rity when costs are high. Thus both over-investment and under-investment
relative to collective optima are possible.

4 Conclusion

We examined security games focusing on the effect of a strategic adver-
sary who observes the defenders’ security level has on the equilibrium in
settings with contagious attacks. We showed that in this domain the de-
fenders over-secure and thus exhaust all their surplus. Though we relied on
various assumptions, we believe that our results point to a general theme:
the strategic nature of the adversary may result in players “competing” for
security, causing an over-invest in security. In this case, coordinated action
is attractive, and the optimal public policy is taxing security, in contrast to
conventional wisdom which argues in favor of subsidizing it in contexts of
contagious attacks.

Our analysis leaves many questions open for further research. First, one
can consider extensions of our model where the attacker can allowed split
its budget among the players, dedicating ai ∈ (0, 1) to defender i. Second,
we assumed that defenders are symmetric. Asymmetries in value of the
defenders will lead to different security investments, which is interesting to
analyze. Finally, we assumed that a successful attack may infect all of the
remaining defenders, but in many domains such attacks can only spread in
certain ways, captured by the network structure (see [19, 18]). Extending
our models to a network setting is welcome.
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