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a b s t r a c t

We investigate the problem of using continuous features in the maximum entropy (MaxEnt) model. We
explain why the MaxEnt model with the moment constraint (MaxEnt-MC) works well with binary fea-
tures but not with the continuous features. We describe how to enhance constraints on the continuous
features and show that the weights associated with the continuous features should be continuous func-
tions instead of single values. We propose a spline-based solution to the MaxEnt model with non-linear
continuous weighting functions and illustrate that the optimization problem can be converted into a
standard log-linear model at a higher-dimensional space. The empirical results on two classification tasks
that contain continuous features are reported. The results confirm our insight and show that our pro-
posed solution consistently outperforms the MaxEnt-MC model and the bucketing approach with signif-
icant margins.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The maximum entropy (MaxEnt) model with moment con-
straints (MaxEnt-MC) on binary features has been shown effective
in natural language processing (NLP) (e.g., Berger et al., 1996),
speaker identification (e.g., Ma et al., 2007), statistical language
modeling (e.g., Rosenfeld, 1996), text filtering and cleaning (e.g.,
Yu et al., 2005a), machine translation (e.g., Och and Ney, 2002),
phonotactic learning (e.g., Hayes, 2008), visual object classification
(e.g., Gong et al., 2004), economic modeling (e.g., Arndt et al.,
2002), and network anomaly detection (e.g., Gu et al., 2005). How-
ever, it is not very successful when non-binary (e.g., continuous)
features are used. To improve the performance, quantization tech-
niques such as bucketing (or binning) have been proposed to con-
vert the continuous features into binary features. Unfortunately,
quantization techniques provide only limited performance
improvement due to its intrinsic limitations. A coarse quantization
may introduce large quantization errors and wash out the gain ob-
tained from using the converted binary features, and a fine quanti-
zation may increase the number of model parameters dramatically
and introduce parameter estimation uncertainties.

In this paper, we examine the MaxEnt model and the principle
behind it. We bring the insight that the key to the success of using
the MaxEnt model is providing appropriate constraints. We show
that moment constraints on binary features are very strong and
fully regularize the distribution of the features. However, moment
constraints on continuous features are rather weak and as a result
much information contained in the training set is not used by the
MaxEnt model. Therefore, using continuous features is less effec-
tive than using binary features in the MaxEnt-MC model.

We further discuss how stronger constraints can be included for
continuous features by using quantization techniques. We extend
the quantization technique to its extreme to introduce the distri-
bution constraint and show that the weights associated with con-
tinuous features in the MaxEnt model should not be single values
but continuous functions. In other words, the optimization prob-
lem is no longer a log-linear problem but a non-linear problem
with continuous weighting functions as parameters. We solve this
non-linear optimization problem by approximating the continuous
weighting function with spline interpolations we recently devel-
oped in our variable parameter hidden Markov model (VPHMM)
work (Yu et al., 2008, in press). We demonstrate that by using
the spline interpolation the optimization problem with non-linear
continuous weighting functions can be converted into a standard
log-linear problem at a higher-dimensional space where each con-
tinuous feature in the original space is mapped into several fea-
tures. With this transformation, the existing training and testing
algorithms (Nocedal, 1980; Riedmiller and Braun, 1993; Malouf,
2002) as well as the recently developed regularization techniques
(Chen and Rosenfeld, 1999, 2000; Goodman, 2004; Kazama,
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2004; Kazama and Tsujii, 2005) for the MaxEnt-MC model can be
directly applied in this higher-dimensional space making our
approach very attractive. We validate our insight and the effective-
ness of our approach on two classification tasks that contain
continuous features and show that our proposed solution consis-
tently outperforms the MaxEnt-MC model and the quantization-
based approach with significant margins.

The rest of the paper is organized as follows. In Section 2, we
examine the MaxEnt model and discuss why the MaxEnt model
with moment constraints performs well for binary features but
not for continuous features. In Section 3, we illustrate that contin-
uous weighting functions (instead of single weight values) should
be used for continuous features and propose a solution to the opti-
mization problem that contains continuous weighting functions by
approximating the weighting functions with spline interpolations.
We validate our insight and demonstrate the new approach’s supe-
riority over the MaxEnt-MC and quantization-based approaches
empirically on two classification tasks in Section 4, and conclude
the paper with discussions on many potential applications in Sec-
tion 5.

2. The MaxEnt model and constraints

In this section, we examine the MaxEnt principle and the Max-
Ent model and explain why the MaxEnt model with moment con-
straints works well for the binary features but not for the
continuous features by showing that the moment constraints on
binary features are strong while on continuous features weak.

2.1. The MaxEnt principle and MaxEnt model with moment constraints

We consider a random process that produces an output value y
from a finite set Y for an input value x. We assume that a training
set ðx1; y1Þ; ðx2; y2Þ; . . . ; ðxN; yNÞ with N samples is given. The train-
ing set can be represented with the empirical probability
distribution

~pðx; yÞ ¼ number of times that ðx; yÞ occur
N

: ð1Þ

Our goal is to construct a stochastic model that can accurately rep-
resent the random process that generated the training set ~pðx; yÞ.
We denote pðy j xÞ as the probability of outputting by y the model
when x is given and assume that a set of constraints C is known
either from the training data and/or from a priori knowledge.

The MaxEnt principle (Guiasu and Shenitzer, 1985) dictates that
from all the probability distributions pðy j xÞ that accord with the
constraints C, we should select the distribution that is most uni-
form. Mathematically, we should select the distribution that max-
imizes the entropy

HðpÞ ¼ �
X
x;y

~pðxÞpðy j xÞ log pðyjxÞ; ð2Þ

over the conditional probability pðy j xÞ.
A typical type of constraints used in the MaxEnt model is mo-

ment constraints. Assume that a set of M features fiðx; yÞ,
i ¼ 1; . . . ;M is available, the moment constraint requires that the
moment of the features as predicted from the model should be
the same as that observed from the training set. In most cases only
the constraints on the first-order moment is used, i.e.,

Ep½fi� ¼ E~p½fi�; i ¼ 1; . . . ;M; ð3Þ

where Ep is the expected value over the distribution p defined as

Ep½fi� ¼
X
x;y

~pðxÞpðyjxÞfiðx; yÞ; ð4Þ

and E~p is the expected value over the distribution ~p defined as

E~p½fi� ¼
X
x;y

~pðx; yÞfiðx; yÞ ¼
X
x;y

~pðxÞ~pðyjxÞfiðx; yÞ: ð5Þ

A nice property of the MaxEnt model with moment constraints
(Berger et al., 1996) is that its solution is in the log-linear form
of

pðyjxÞ ¼ 1
ZkðxÞ

exp
X

i

kifiðx; yÞ
 !

; ð6Þ

where

ZkðxÞ ¼
X

y

exp
X

i

kifiðx; yÞ
 !

; ð7Þ

is a normalization constant to make sure
P

ypðyjxÞ ¼ 1, and ki is the
weight for the feature fiðx; yÞ and is chosen to maximize

WðkÞ ¼ �
X

x

~pðxÞlogZkðxÞ þ
X

i

kiE~p½fi�: ð8Þ

Since this dual problem is an unconstraint convex problem, many
algorithms such as generalized iterative scaling (GIS) (Darroch
and Ratcliff, 1972), gradient ascent and conjugate gradient (e.g., L-
BFGS) (Nocedal, 1980), and RPROP (Riedmiller and Braun, 1993)
can be used to find the solution. A comparison on the performance
of different learning algorithms can be found in (Malouf, 2002 and
Mahajan et al., 2006). Notice that applying the higher-order mo-
ment constraints in the MaxEnt model is equivalent to using high-
er-order statistics as features in the MaxEnt model with mean (i.e.,
first-order moment) constraint. The MaxEnt-MC model has been
improved with regularization techniques (Chen and Rosenfeld,
1999, 2000; Goodman, 2004) and uncertain constraints (Kazama,
2004; Kazama and Tsujii, 2005) in the recent years.

2.2. Moment constraints on binary features and continuous features

The MaxEnt principle basically says one should not assume any
additional structure or constraints other than those already im-
posed on the constraint set C. The appropriate selection of the con-
straints thus is crucial. In principle, we should include all the
constraints that can be validated by (or reliably estimated from)
the training set or prior knowledge.

With the binary features where fiðx; yÞ 2 f0;1g, the moment
constraint described in Eq. (3) is a strong constraint since
Ep½f � ¼ pðf ¼ 1Þ. In other words, constraining the expected value
implicitly constrains the probability distribution. However, the
moment constraint is rather weak for continuous features. Con-
straining the expected value does not mean much to the continu-
ous features because many different distributions can yield the
same expected value. That is to say, much information carried in
the training set is not used in the parameter estimation if solely
moment constraints are used for the continuous features especially
when the distribution of the features has multiple modes. This is
the most important reason that the MaxEnt-MC model works well
for binary features but not so well for non-binary features, espe-
cially the continuous features.

Let us illustrate this observation with an example. Consider a
random process that generates 0 with probability 1 if x 2 f1;3g,
and generates 1 with probability 1 if x 2 f2g, and assume that we
have a training set with the empirical joint distributions

~pð1;0Þ ¼ 0:25; ~pð1;1Þ ¼ 0;
~pð2;0Þ ¼ 0; ~pð2;1Þ ¼ 0:5;
~pð3;0Þ ¼ 0:25; ~pð3;1Þ ¼ 0;

ð9Þ

and features
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f1ðx; yÞ ¼
x if y ¼ 0
0 otherwise;

�

f2ðx; yÞ ¼
x if y ¼ 1
0 otherwise

�
:

ð10Þ

Notice that these features have the same empirical first-order
moment and so the same moment constraint since

E~p½f1� ¼ 0:25� 1þ 0:25� 3 ¼ 1; and ð11Þ
E~p½f2� ¼ 0:5� 2 ¼ 1: ð12Þ

However, they have different distributions since

~pðf1 ¼ 0Þ ¼ 0:5; ~pðf2 ¼ 0Þ ¼ 0:5;
~pðf1 ¼ 1Þ ¼ 0:25; ~pðf2 ¼ 1Þ ¼ 0;
~pðf1 ¼ 2Þ ¼ 0; ~pðf2 ¼ 2Þ ¼ 0:5;
~pðf1 ¼ 3Þ ¼ 0:25; ~pðf2 ¼ 3Þ ¼ 0:

ð13Þ

This indicates that the moment constraint is not strong enough
to distinguish these two different feature distributions and the
resulting MaxEnt model performs poorly.

To get a better statistical model, quantization techniques such
as bucketing (or binning) have been proposed to convert the con-
tinuous (or multi-value) features to the binary features and enforce
the constraints on the derived binary features. With bucketing, for
example, a continuous feature fi in the range of ½l;h� can be con-
verted K into binary features

fikðx; yÞ ¼
1 if f iðx; yÞ – 0 and x 2 ½lk; hk�
0 otherwise;

�
ð14Þ

where k 2 f1;2; . . . ;Kg, and lk ¼ hk�1 ¼ ðk� 1Þðh� lÞ=K þ l. Using
bucketing we essentially approximate the constraints on the distri-
bution of the continuous features with the moment constraints on
each segment. Including constraints in each segment reduces the
feasible set of the conditional probabilities pðyjxÞ and forces the
model learned matches the training set more closely. For clarity
we use MatEnt-QT to denote the MaxEnt model with quantization
techniques for the rest of the paper.

3. MaxEnt model with continuous features

In this section, we introduce the distribution constraint and
show that the weights associated with the continuous features
should be continuous functions instead of single values in the Max-
Ent model. We further propose a solution to this more complex
optimization problem by approximating the continuous weighting
functions with spline-interpolations.

3.1. Continuous features with continuous weights

The bucketing approach (Eq. (14)) mentioned in Section 2.2 can
be modified so that

fikðx; yÞ ¼
hkþlk

2 if f iðx; yÞ – 0 and x 2 ½lk;hk�
0 otherwise:

(
ð15Þ

Notice that with this reformation, the features are still binary
since each feature takes only two values: 0 and ðhk þ lkÞ=2. The only
difference this new feature construction approach will cause com-
pared with the original approach in Eq. (14) is that the correspond-
ing weights kik learned will be scaled down by ðhk þ lkÞ=2. As we
increase the number of buckets, we increase the constraints, better
describe the distribution of the continuous features, and reduce the
quantization errors. However, increasing the number of buckets
also increases the number of weighting parameters kik to be esti-
mated and the uncertainty of the constraints since the empirical

expected values are now estimated with less training samples. In
real applications, a compromise usually needs to be made to bal-
ance these two forces if this approach is to be used.

Now assume we have infinite number of samples in the training
set, we may increase the number of buckets to any large number
we want and thus enforce a distribution constraint. Under this con-
dition, we have

lim
k!1

X
k

kikfikðx; yÞ ¼ kiðfiðx; yÞÞfiðx; yÞ; ð16Þ

by noticing that only one fikðx; yÞ is none-zero for each ðx; yÞ pair,
where kiðfiðx; yÞÞ is a continuous weighting function over the fea-
ture values and to be learned. Eq. (16) suggests that for continu-
ous features we should use continuous weighting functions
instead of single weight values. In other words, the solution to
the MaxEnt model with distribution constraint (MaxEnt-DC) has
the form of

pðyjxÞ ¼ 1
ZkðxÞ

exp
X

i2fcontinuousg
kiðfiðx; yÞÞfiðx; yÞ þ

X
j2fbinaryg

kjfjðx; yÞ
 !

:

ð17Þ

3.2. Solution with spline interpolation approximation

Two difficulties exist in using continuous weighting func-
tions. First, Eq. (17) cannot be solved with the existing Max-
Ent-MC training and testing algorithms. In fact, the model is
no longer log-linear. Second, the constraints at each real-val-
ued point are hard to enforce since the number of training
samples is usually limited. In this sub-section we propose to
convert Eq. (17) into the standard log-linear form by approxi-
mating the non-linear continuous weighting functions with
spline interpolations.

Spline interpolation is a standard way of approximating contin-
uous functions. Any type of spline may be used. Two most com-
monly used splines are the linear spline and the cubic spline
since the values of these splines can be efficiently calculated. In
this study, we use the cubic spline which is smooth up to the sec-
ond-order derivative. Two typical boundary conditions for the cu-
bic spline are typically used: one for which the first derivative is
known and the other where the second derivative is zero. The
spline with the latter boundary condition is usually called natural
spline and is the one used in this study.

Given K knots fðfij; kijÞjj ¼ 1; . . . ;K; fij < fiðjþ1Þg in the cubic spline
with the natural boundary condition, the value kiðfiÞ of a data point
fi can be estimated as

kiðfiÞ ¼ akij þ bkiðjþ1Þ þ c
@2ki

@f 2
i

jfi ¼ fij þ d
@2ki

@f 2
i

jfi ¼ fiðjþ1Þ; ð18Þ

where if we define Dfij ¼ fiðjþ1Þ � fij,

a ¼ fiðjþ1Þ � fi

Dfij
;

b ¼ 1� a;

c ¼ 1
6
ða3 � aÞðDfijÞ2;

d ¼ 1
6
ðb3 � bÞðDfijÞ2;

ð19Þ

are interpolation parameters, and ½fij; fiðjþ1Þ� is the section where the
point fi falls. kiðfiÞ can also be written into the matrix form

kiðfiÞ ffi aTðfiÞki; ð20Þ

as shown in (Yu et al., 2008, in press), where ki ¼ ½ki1; . . . ; kiK �T ;
aTðfiÞ ¼ eTðfiÞ þ f TðfiÞC�1D, is a vector,

D. Yu et al. / Pattern Recognition Letters 30 (2009) 1295–1300 1297
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eTðfiÞ¼
0 � � � a|{z}

j

b|{z}
jþ1

� � �0;
� �

;

f TðfiÞ¼
0 � � � c|{z}

j

d|{z}
jþ1

� � �0;
� �

;

ð21Þ

C¼

Dfi1
6 0 0 � � � � � � � � � 0

Dfi1
6

Dfi2þDFi1
3

Dfi2
6 0 � � � � � � 0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

� � � 0 Dfiðj�1Þ
6

DfijþDfiðj�1Þ
3

DfiJ

6 0 ..
.

..

. ..
.

0 ..
. ..

. ..
.

0

0 � � � ..
.

0 Dfiðk�2Þ
6

Dfiðk�1ÞþDfiðk�2Þ
3

Dfiðk�1Þ
6

0 � � � � � � � � � 0 0 Dfiðk�1Þ
6

2
66666666666666664

3
77777777777777775

;

D¼

0 0 0 � � � � � � � � � 0
1

Dfi1
� 1

Dfi1
� 1

Dfi2

1
Dfi2

0 � � � � � � 0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

� � � 0 1
Dfiðj�1Þ

� 1
Dfiðj�1Þ

� 1
Dfij

1
Dfij

0 ..
.

..

. ..
.

0 ..
. ..

. ..
.

0

0 � � � ..
.

0 1
DfiðK�2Þ

� 1
DfiðK�2Þ

� 1
DfiðK�1Þ

1
DfiðK�1Þ

0 � � � � � � � � � 0 0 0

2
66666666666666664

3
77777777777777775

:

If we are given K evenly distributed knots fðfik; kikÞjk ¼ 1; . . . ;Kg
where h ¼ Dfik ¼ Dfij > 0;8j; k 2 f1; . . . ;K � 1g, C and D can be sim-
plified as

C ¼

h
6 0 0 � � � � � � � � � 0
h
6

2h
3

h
6 0 � � � � � � 0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

� � � 0 h
6

2h
3

h
6 0 ..

.

..

. ..
.

0 ..
. ..

. ..
.

0

0 � � � ..
.

0 h
6

2h
3

h
6

0 � � � � � � � � � 0 0 h
6

2
6666666666666664

3
7777777777777775

;

D ¼

0 0 0 . . . . . . . . . 0
1
h � 2

h
1
h 0 . . . . . . 0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

. . . 0 1
h � 2

h
1
h 0 ..

.

..

. ..
.

0 ..
. ..

. ..
.

0

0 . . . ..
.

0 1
h � 2

h
1
h

0 . . . . . . . . . 0 0 0

2
666666666666666664

3
777777777777777775

:

Notice that with Eq. (20) we have

kiðfiÞfi ffi aTðfiÞk1fi ¼ ½aTðfiÞfi�ki ¼
X

k

kik½akðfiÞfi�; ð22Þ

where akðfiÞ is the k-th element of aTðfiÞ. Eq. (22) indicates that the
product of a continuous feature with its continuous weight can be
approximated as a sum of the products of K transformed features
in the form of akðfiÞfi with the corresponding K single-valued
weights. Eq. (17) can thus be converted into

pðyjxÞ ¼ 1
ZkðxÞ

exp
X

i2fcontinuousg;k
kikfikðx; yÞ þ

X
j2fbinaryg

kjfjðx; yÞ
 !

;

ð23Þ

where

fikðx; yÞ ¼ akðfiðx; yÞÞfiðx; yÞ; ð24Þ

only depends on the original feature fiðx; yÞ and the locations of the
knots and depends on the weights to be estimated.

Although the spline-approximation may carry errors, this ap-
proach has several advantages over using the continuous weight-
ing functions directly. First, we can better trade-off between the
uncertainty of the constraints and the accuracy of the constraints
since the weight value at each knot is estimated using not only
the information at the knot but also information from many other
samples in the training set. For example, when cubic-spline is used,
each original continuous feature will affect four features in the
higher-dimensional space. Second, Eq. (23) is in the standard log-
linear form and can be efficiently solved with existing algorithms
(Nocedal, 1980; Riedmiller and Braun, 1993; Malouf, 2002) for
the MaxEnt-MC model except the algorithms that cannot handle
negative values, e.g., GIS (Darroch and Ratcliff, 1972), since the de-
rived features may be negative. In addition, all the recent advances
in the MaxEnt-MC model such as the regularization techniques
(Chen and Rosenfeld, 1999, 2000; Goodman, 2004) and uncertain
constraints (Kazama, 2004; Kazama and Tsujii, 2005) can be di-
rectly applied to the converted optimization problem. Compared
to the quantization approaches, our approach has better theoreti-
cal justification, has less approximation errors, and generally ob-
tains better performance as shown in Section 4.

There are several practical considerations in using either buc-
keting or the novel approach proposed in this paper for continuous
features. First, fiðx; yÞ ¼ 0 essentially turns off the feature and so
the original continuous feature should not have values across 0 if
a bias term is not used. Second, both the bucketing approach and
our approach require the lower and higher bounds of the features
and therefore, we should normalize the features into a fixed range.
We suggest that we map the features f into the range of [1,2] so
that it also satisfies the first consideration. This can be done by first
limiting the range of the features into ½l;h� with sigmoid function
and then convert the features with f 0 ¼ ðf þ h� 2lÞ=ðh� lÞ. Third,
knots with both equal-distance and non-equal-distance can be
used. Equal-distance knots are simpler and more efficient but less
flexible. This problem can be alleviated by either increasing the
number of knots or normalizing the features so that the distribu-
tion of the samples is close to uniform. Notice that using a small
number of knots may model the constraints less accurately and
effectively reduce the classification accuracy. Increasing the num-
ber of knots forces the model obtained to follow more closely to
the distribution observed in the training data and may decrease
the generalization ability of the model. A balance can be achieved
by choosing the number of knots based on a development set when
this approach is applied to a new task.

4. Experiments

To validate our insight and theory, we have compared the Max-
Ent-DC model, where distribution constraint is used, with the Max-
Ent-MC model, where each continuous feature is constrained on
the lowest K-order moments, and the MaxEnt-QT model, where
each continuous feature is quantized into K segments, on two clas-
sification tasks from the UCI data repository (Asuncion and New-
man, 2007). The first data set used is the handwritten letter
recognition data set which has 16 continuous features and contains
20,000 samples, out of which 16,000 samples are used for training
and 4000 samples are used for testing. The second data set is the
MAGIC gamma telescope data set. It has 10 continuous features
and contains 19,020 samples, out of which 15,020 samples are
used for training and 4000 samples were used for testing. We want

1298 D. Yu et al. / Pattern Recognition Letters 30 (2009) 1295–1300
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to point out that in all the experiments we conduct, we do not use
the structures specific to the data set and/or the task since our goal
is not to find the best model for the specific task but to compare
different approaches that use the MaxEnt model. For this reason,
we treat all the features available in the data sets as blind final fea-
tures without interpreting the meanings of each feature and/or
transforming the features. The RPROP (Riedmiller and Braun,
1993) training algorithm is used to train all these models since
experiments have shown that it performs best among all the most
popular training algorithms (Malouf, 2002; Mahajan et al., 2006).
In addition, the Gaussian prior (Chen and Rosenfeld, 1999, 2000)
is used to regularize the weights in all the experiments. We have
also normalized the higher-order statistics in the MaxEnt-MC mod-
el because we and others (Mahajan et al., 2006) have noticed that
the error rate is very high without the proper normalization since
the existing algorithms are typically optimized for features taking
values in the similar range.

Tables 1 and 2 compare the classification error rate on the letter
recognition data set and the MAGIC gamma telescope data set with
different number of moments/buckets/knots for each continuous
feature respectively. From these tables, we have the following four
clear observations:

� First, our proposed approach consistently outperforms the Max-
Ent-MC model and the MaxEnt-QT model with significant mar-
gins. All the improvements shown in the tables are statistically
significant at the significance level of 1%.

� Second, the bucketing approach may underperform the MaxEnt-
MC model with mean (i.e., the first-order moment) constraint
when the number of buckets is small. This is due to the fact that
the quantization error is large under these conditions and so the
gain from additional constraints is wiped out by the quantiza-
tion errors introduced. As the number of buckets increases, the
error rate decreases and eventually the bucketing approach out-
performs the MaxEnt-MC model with mean constraint. How-
ever, the bucketing approach with K-buckets typically
underperforms the MaxEnt-MC model with constraints on the
K lowest-order moments. The MaxEnt-DC model, however, per-
forms significant better than the MaxEnt-MC model with
higher-order moment constraints even when the number of
knots is smaller than the order of moments used.

� Third, with 4 knots, our approach can outperform the MaxEnt-
MC model with 8 lowest-order moments and the bucketing
approach with 8 buckets. In other words, our approach performs
better than the MaxEnt-MC model and the MaxEnt-QT model
with even half of the parameters.

� Fourth, for the MAGIC gamma telescope data set, over-fitting
behavior starts to show with both the MaxEnt-MC model with

8 lowest-order moment constraints and the MaxEnt-QT model
when the number of buckets is 8. However, the MaxEnt-DC
model still get some gain on the test set when the number of
knots is 8. This indicates that our approach typically has better
ability to avoid over-fitting than the MaxEnt-MC and MaxEnt-
QT models.

All these observations confirm the superiority of our approach
against the MaxEnt-MC model and the bucketing approach.

Notice that with our approach, the classification error drops sig-
nificantly when the number of knots changes from 4 to 5 and con-
tinuously decreases as the number of knots increases. However,
the reduction of the classification error decreases as the number
of knots further increases, which indicates that a trade-off between
accuracy and generalization needs to be determined and the criti-
cal point can be estimated with a development set.

5. Summary and discussion

In this paper, we have examined the MaxEnt principle and the
MaxEnt model. We showed that for continuous features, the
weights should be continuous functions instead of single values.
We provided a solution to the optimization problem that contains
continuous weighting functions. The beauty of our solution is that
we can spread and expand each original feature into several fea-
tures at a higher-dimensional space through a non-linear mapping.
With this feature transformation, the optimization problem with
continuous weighting functions is converted into a standard log-
linear feature combination problem and the existing MaxEnt-MC
algorithms and improvements can thus be directly used. We have
empirically validated our insight and the effectiveness of our solu-
tion compared to the MaxEnt-MC model and the MaxEnt-QT model
using two classification tasks.

We see great impact of this work on using MaxEnt models. In
the past, although great efforts have been put on using the models
in the MaxEnt family to improve the systems’ performances, the
improvements are either small or negative when continuous fea-
tures are involved. The work presented in this paper sheds lights
to these tasks. For example, in the natural language and speech
processing fields, our approach can be applied but not limited to
the following areas:

� System combination: where classification scores such as poster-
ior probabilities from different systems can be combined to
achieve better accuracy.

� Confidence calculation: where acoustic model (AM) and lan-
guage model (LM) scores can be combined with other features
to estimate the confidence.

Table 1
Classification error rate (%) on the letter recognition data set with different approaches and different number of moments/buckets/knots.

# Of buckets/knots 1 2 3 4 5 6 7 8

MaxEnt-MC 22.82 20.75 19.18 18.80 18.38 18.25 17.98 17.85
MaxEnt-QT 35.52 29.32 24.18 19.93 19.23
MaxEnt-DC 15.60 14.55 14.18 13.88 12.93

Table 2
Classification error rate (%) on the MAGIC gamma telescope data set with different approaches and different number of moments/buckets/knots.

# Of buckets/knots 1 2 3 4 5 6 7 8

MaxEnt-MC 20.20 18.13 17.60 17.20 16.60 16.50 16.45 16.55
MaxEnt-QT 20.68 19.43 17.77 17.43 17.70
MaxEnt-DC 15.63 15.00 14.43 14.18 14.13
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� Call routing: where counts or frequency of the unigram/bigram
can be used to determine where to rout the call.

� Document classification: where counts or frequency of the uni-
gram/bigram can be used to determine the document type.

� Conditional random field (CRF) and hidden CRF (HCRF) (Mahajan
et al., 2006; Yu et al., 2009) based AM: where cepstrum, LM
score and long-range dependency features (Deng et al., 2005;
Yu et al., 2005b, 2006) can be used to build a conditional speech
recognition model.
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