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Abstract

This paper presents a novel method for location recog-
nition, which exploits an epitomic representation to achieve
both high efficiency and good generalization.

A generative model based on epitomic image analysis
captures the appearance and geometric structure of an en-
vironment while allowing for variations due to motion, oc-
clusions and non-Lambertian effects. The ability to model
translation and scale invariance together with the fusion of
diverse visual features yield enhanced generalization with
economical training.

Experiments on both existing and new labelled image
databases result in recognition accuracy superior to state
of the art with real-time computational performance.

1. Introduction
In recent years the problem of object and location recog-

nition has received much attention due to the development
of advanced visual features [7] as well as efficient learning
techniques [1, 16]. In this paper, we present a new, compact
visual model of locations that can be learned automatically
from photos or videos of an environment. We also present
an efficient algorithm for recognizing the location of cam-
era/robot in the learned environment, using only the images
it captures.

Location recognition has been addressed in the past by
a variety of approaches, which may be broadly categorized
into geometric techniques and probabilistic ones. In a typ-
ical geometric algorithm, sparse features such as interest
points and straight edges are detected and described. Re-
strictive assumptions such as static scenes [11, 17], planar
surfaces [10] or the existence of 3D models [5] are then ex-
ploited to help match those visual features between query
images and exemplar database images of the same scene
viewed under different viewpoints or illumination condi-
tions. In Simultaneous Localization and Mapping (SLAM),
both the camera motion and the 3D points are recovered
(e.g. via bundle adjustment) [4, 18, 14]. All these ap-
proaches tend to work well for recognizing specific loca-
tions (e.g. 5th ave. in Manhattan, my office etc.), rather

than classes of locations (e.g. a street scene, an office space
etc.). Also, they tend to be applied live to small environ-
ments; or off-line, in batch mode to larger environments.
Here we present an efficient and scalable technique for the
real-time recognition of location classes.

The probabilistic approach in Torralba et al. [15] uses
global gist features ([8]) in a mixture of Gaussians model
to represent a set of locations. The work in this paper is in-
spired by and builds upon Torralba’s approach by adding
translation and scale invariance into their location model
through the use of an epitome. Furthermore, the generative
probabilistic framework presented here allows for appear-
ance variation due to changes in viewpoint and illumination,
motion, occlusions and non-Lambertian effects.

This paper is also concerned with the computational ef-
ficiency of recognition. In [17], a coarse-to-fine approach
with sparse feature detection and inverted file representa-
tion is used to accelerate matching a test image against a
database of exemplar images. In [12], tree structures of vi-
sual words are used for efficient image matching. In both
cases, large databases containing all exemplar images need
be stored. In contrast, in our paper, all training images are
combined into a compact and dense1 epitome model. The
recognition of a location class is then achieved simply by
convolving the query image and the learned epitome.

Section 2 introduces the basic intuitions and motivates
the model. Section 3 describes the probabilistic model, to-
gether with its inference and learning. Section 4 describes
the visual features employed in our model. Section 5 vali-
dates the proposed approach both quantitatively and quali-
tatively on existing and new databases of image sequences.

2. Epitomes as generalized panoramas
Given a set of images (e.g. frames captured with a hand-

held video camera) taken in a certain location (e.g. the
kitchen in my flat or an office space), we would like to
build a representation of that location which can be used for
efficient recognition. Purely geometrical approaches have
used epipolar constraints [11, 17] or a full 3D representa-

1i.e. all pixels are used.
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Figure 1. Epitomes as generalized panoramas and generalized Gaussian mixtures. (a) Frames from a video taken with a hand-held
camera in an office building. (b) A panorama constructed by stitching together frames from a part of the video where the camera was
undergoing pure rotation. (c) A Gaussian mixture model learned from all input frames. Six mixture components were used whose means
and corresponding variances are shown. This model may be interpreted as an epitome where no spatial overlap is allowed. (d) Despite
occlusions and parallax all frames may be combined together into a single location epitome. A location epitome may be thought of as a
probabilistic collage of locally consistent panoramas. It can be interpreted both as a generalization of conventional stitched panoramas for
the case of general camera motion and as a generalization of Gaussian mixtures. Large values of the learned variance (brighter pixels) tend
to indicate places where occlusions, reflections or non-rigid motion occur.

tion [13] to aid image matching. Such approaches tend to
be accurate but specialized to a certain environment and are
sensitive to the state of that environment (illumination, po-
sition of objects, people etc.). In this paper, we are not in-
terested in accurate estimation of the camera location, but
in the efficient recognition of a location class (e.g. “I am in
a kitchen”) whilst being robust to typical appearance vari-
ations within each location. However, we still want to use
the cues that 3D spatial information provides. In this pa-
per, we introduce a method that exploits depth cues whilst
still being robust to typical variations in the appearance of a
location.

A simple, non-geometric model is one that represents a
location by storing all training images in a database. Recog-
nition is then achieved by nearest neighbor classification.
This approach is expensive both in terms of storage and
computation. In addition, the nearest neighbor approach
leads to poor generalization. For example, a new image cap-
tured from the same scene but from a slightly different posi-
tion than those in the training set may have a large distance
to all training images, leading to inaccurate recognition.

If the frames are captured by a camera rotating strictly
around its optical centre, we can obtain a compact model
of all such images by using a stitched panorama [2]. As
an example, fig. 1b shows a panorama that was constructed
using only four images (the overlapping red areas), yet
which can be used to find good matches for test images with

translations or different scales (the green boxes in fig. 1b).
However, we cannot guarantee that images of a location
are taken from a particular point. Furthermore, panoramas
would fail to model appearance variation due to changes in
illumination or the movement of objects within the scene.

We account for nuisance factors such as occlusions, re-
flections or non-rigid motions by modeling them as noise
whose variance changes for different regions within the en-
vironment. For example, variance tends to be large near ob-
ject boundaries to allow for occlusion and parallax. In [6],
a generative model for images known as epitome was pre-
sented. An epitome captures the appearances and shapes of
a collection of images (or image features) compactly. Such
compact representation is also referred to as an epitome of
that collection. In [9], an epitome model of images was
used to recursively cluster video frames and guide brows-
ing. In contrast, in this work we use epitome as the under-
lying model of location. Each image captured by the camera
is assumed to have been extracted from a single, latent lo-
cation image. In other words, when taking a picture, the
camera crops a rectangular region from that location image.
All such training images are represented jointly in a single
location epitome which is then used for recognition.

An example of a location epitome is shown in fig. 1d.
A location epitome can be interpreted as a map where lo-
cal portions behave like small panoramas (panorama-lets),
which are all interconnected with one another. In this sense



it can be thought of as a generalization of conventional,
stitched panoramas. Advantages include: i) the camera is
not constrained to rotate around its optical center and can
undergo any kind of motion; ii) epitomes are generative,
probabilistic models, and various sources of uncertainty are
captured in the variance maps. Furthermore, the compact-
ness of the representation is maintained since many training
images are mapped to the same place in the epitome. The
example epitome in fig. 1 was learned from the raw RGB
pixels for illustrative purposes only. In section 4 we will in-
stead use slightly more complex image features with better
invariance properties.

2.1. Epitomes compared to mixtures of Gaussians
In [15], Torralba et al. apply a mixture of Gaussians

model for location recognition, using a fixed variance. This
gives very limited tolerance for appearance variation and is
not invariant to translation or scale changes. Hence, a large
number of mixture components need to be learned, requir-
ing a large training set.

In this paper, we advocate using epitomes as the un-
derlying representation for locations since they can model
both translation and scale invariance. This invariance al-
lows epitomes to achieve better generalization than a mix-
ture of Gaussians for a fixed number of model parameters.
To demonstrate this, consider learning a mixture of Gaus-
sians with the same number of parameters as the epitome
of fig. 1d. If our images are size N × M , then we learn
K Gaussian clusters such that K × N ×M is equal to the
number of pixels in the epitome. Fig. 1c shows an example
where the K = 6 clusters were learned on the same data
set as in the location epitome of fig. 1d and using the same
number of modeling parameters. Due to their lack of shift
and scale invariance, the GMM means are much blurrier
than the epitome mean, and their variances are significantly
larger. The shift/scale invariance in the epitome accounts
for better modeling power, captures the spatial structure in
the data more reliably and explains lesser amounts of varia-
tion as noise. As we will show in section 5, the recognition
accuracy is improved significantly when using the epitome
model over the mixture of Gaussians.

3. A Generative Epitome Model for Locations
In [6], epitomes were introduced as a generative model

of image patches. Under this model, an image is extracted
from a larger latent image called an epitome, at a location
given by a discrete mapping. We extend the work in [6] by
placing a prior distribution over the epitome parameters and
by exploring different visual features.

We assume that every N×M image I is generated from a
Ne×Me location epitome e (with Ne " N and Me "M ).
Every pixel j in the epitome is defined by its mean µ(j)

and precision (inverse variance) λ(j). Thus, the epitome is
completely defined by e = (µ,λ). We place a Normal-
Gamma prior over the epitome as

p(e) =
∏

j

N (µ(j);µ0,βλ(j))Gamma(λ(j); a, b) (1)

where N (y; η,γ ) is a Gaussian distribution over y with
mean η and precision γ. This prior ensures that the behav-
ior of the model is well-defined for the unused locations in
the epitome. The detailed prior settings will be discussed in
section 5.

We define the mapping between an image and the epit-
ome by T . The set of mappings is assumed to be finite and
fixed a priori. In particular, in this paper, we consider map-
pings over both translation and scale s. In our experiments,
we allow Ne ×Me translations and three (0.8;1.0;1.3) pos-
sible scalings. We assume the prior distribution over the
entire set of 3×Ne ×Me mappings p(T ) to be uniform.

Given the epitome e = (µ,λ) and a mapping T , an im-
age I is generated by copying the appropriate pixels from
the epitome mean and adding Gaussian noise of the level
given in the variance map:

p(I|T , e) =
∏

i

N (I(i);µ(T (i)),λ(T (i))) , (2)

where coordinate i is defined on the input image and I(i)
is the feature (intensity, color, gist etc) of the pixel i in the
image. T (i) is the location in the epitome that the ith pixel
maps to.

Inference and learning
Under the generative model, every image is independent

and identically distributed given the epitome. The joint dis-
tribution over the epitome e, a set of T images {It}, and
their mappings {Tt} into the epitome is given by

p({It}, {Tt}, e) = p(e)
T∏

t=1

p(Tt)p(It|Tt, e) (3)

Given a set of images {It}, the posterior distribution over
the epitome and mappings of these images decouples as:

p({Tt}, e|{It}) = p(e|{It})
T∏

t=1

p(Tt|It, e) (4)

This is because the mapping of an image into epitome is
independent of all other images, given the epitome and the
image. In this work, we are interested in finding only a sin-
gle epitome e∗ = (µ∗,λ∗) that maximizes the probability of
observations, p({It}). Hence, using p(e|{It}) = δ(e−e∗),
the exact posterior distribution is approximated as

p({Tt}, e|{It}) ≈
T∏

t=1

p(Tt|It, e∗), with (5)

p(Tt|It, e∗) ∝ p(It|Tt, e∗)p(Tt) (6)



This is variational inference on the model, and following
[6], we can bound the log p({It}) as

log p({It}) ≥ B =
∑

t

∑

Tt

p(Tt|It, e∗) log
p(It, Tt, e∗)
p(Tt|It, e∗)

(7)
We can maximize this bound by using the Expectation Max-
imization algorithm, iterating between finding p(Tt|It, e∗)
according to equation (6), and then updating the epitome
e∗. For simplification, we define an auxiliary function

Px
j =

∑

t

∑

i

∑

Tt:Tt(i)=j

p(Tt|It, e∗)It(i)x (8)

and the updates for e∗ can be written as

µ(j)∗ =
βµ0 + P1

j

β + P0
j

(9)

λ(j)∗ =
b + βµ2

0 − (β + P0
j )(µ(j)∗)2 + P2

j

a + P0
j

(10)

3.1. Epitomes of categorical data
Epitomes can be used as generative model for modelling

categorical data such as labels, by re-defining the likeli-
hood given by (2), and choosing a suitable prior on the epit-
ome (1), as appropriate.

Let eL denote such an epitome. Every pixel coordinate j
in the epitome models the discrete distribution over K pos-
sible values, denoted by eL

k (j). We place a Dirichlet prior
with pseudo-count α over the K possible values. Given
eL and the mapping, T , an image IL of discrete values is
generated by sampling at the appropriate locations from the
epitome

p(IL|T , eL) =
∏

i

∏

k

[
eL

k (T (i))
]δ(IL(i)=k)

(11)

Following the same variational inference procedure as
before, we can obtain the update for location epitome as

eL
k (j) =

α +
∑

t

∑
i

∑
Tt:Tt(i)=j p(Tt|It, eL)δ(IL(i) = k)

Kα + K
∑

t

∑
i

∑
Tt:Tt(i)=j p(Tt|It, eL)

(12)
Note that when no training data maps to a particular epit-
ome location, the distribution over the K possible values is
uniform with probability 1/K.

3.2. A joint epitome model of different features
When a data point has many types of features associ-

ated with it, we can model each such feature using a dif-
ferent epitome, but capture dependencies between them by
sharing the mapping T . This sharing enables the learned
epitomes to discriminate between data points that share, for
instance, same RGB values, but have dissimilar location la-
bels or depth features. In the experiments, we have learned
epitomes with varied kinds of features, as described in sec-
tion 5.3. Here, we describe the general approach for learn-
ing a combined epitome model.

Let e1, · · · eF represent the epitomes corresponding to
F possible features. Given these epitomes of different fea-
tures, and the mapping T into the epitome, the conditional
distribution p({If}|T , {ef}) over N ×M images of fea-
tures is given by

p({If}|T , {ef}) =
1
Z

∏

f

p(If |T , ef )λf , (13)

where 0 ≤ λf ≤ 1 represents the preference for using a
particular feature. In our experiments, we always fixed λf

at .03 for all features except for labels, for which we chose
λf = .97. p(If |T , ef ) is modelled using equation (2) when
the data is assumed to be Gaussian distributed and by using
equation (11) when the data is categorical. As before, we
can bound the log of probability of observations and find
the optimal epitome of features by maximizing this bound.

4. Visual features
In our experiments, we integrated the following types of

visual features into our location epitome model: raw RGB
pixels (as in [6]), gist features, disparity maps, and local
histograms.

4.1. Gist features
Building upon Torralba et.al. [15, 8], we investigated us-

ing gist features within the location epitome. Gist features
are computed for each image as follows: first, the responses
of steerable pyramid filters tuned to 6 different orientations
and 4 scales are computed. Then, each image is divided into
4 × 4 local grids, and the mean value of the magnitude of
these local features is averaged over those grids. This ap-
proach enables us to capture global image properties while
keeping a limited amount of spatial information. The result-
ing 4 × 4 × 24 gist feature representation is scaled to have
zero mean and standard deviation σ = 0.115 (same values
as reported in [15]). In section 5.1, gist features are used to
learn gist epitomes, and we report comparative results with
respect to the GMM model in [15], on their dataset.

4.2. Depth features
A new image dataset was also acquired in a large of-

fice environment using a hand-held, Point Grey Bumblebee
stereo camera. More than 1, 000 × 2 stereo frames were
captured, and their corresponding disparity maps were com-
puted using the DP-based stereo matching algorithm of [3].

Computed disparity maps are more robust to changes
in illumination and hence complement appearance features
to improve generalization. For example, a corridor may
be better defined by its 3D shape than by its appearance
(fig. 2). Indeed the quantitative results in section 5.3 con-
firm this hypothesis. Note that the disparity D is pro-
portional to the image scale under moderate assumptions.



Figure 2. Incorporating depth features. (Top row) Images of a
corridor, cubicle space and kitchen, respectively. (Bottom row)
Corresponding disparity maps computed using the dense stereo
algorithm in [3].

Thus, when the sizes of disparity images are rescaled by
factor s, the disparity values need to be rescaled accordingly
as Dnew = sDorigin.

4.3. Local histograms
In section 4.1 accumulating gist responses into 4 × 4

grids has advantages both in terms of memory and com-
putational efficiency and with respect to generalization. A
similar effect is achieved here by accumulating RGB and
disparity features over spatially localized histograms. Lo-
cal histograms of appearance and depth cues capture coarse
spatial layout information with a small number of model
parameters, thus encouraging good generalization. In fact,
local histograms of features add invariance to small rota-
tion, translation and non-rigid deformations. Furthermore,
the complexity reduction increases the training and testing
efficiency considerably.

Local histograms are applied here to project each image
into a matrix with BN × BM cells in total. In our exper-
iments, we used BN = 3 and BM = 2. The feature re-
sponses are quantized within each cell into B bins (B = 50
for RGB and B = 6 bins for disparity), and the training im-
ages are represented by BN×BM×B vectors from which a
Gaussian epitome can be learned. Some examples of RGB
local histograms are shown in fig. 7. Larger BN and BM

are used for visualization purposes.

5. Location Recognition Results
This section validates our “location epitome” model by

comparing recognition accuracy and efficiency to the Gaus-
sian mixture model in [15]. The advantages of using depth
features and localized histograms are also explored and
quantified.

Our model can be trained to recognize both location in-
stances (e.g. “I am in my own kitchen”) or location classes
(e.g. “I am in a kitchen”). In order to use the epitome for
recognition it is necessary to augment it with a location
map, which defines a distribution p(L|T ) over locations la-

Figure 3. The recognition process. The input testing image (a)
is convolved with the location epitome (b). Then the best label is
found as the one that maximizes (14). Note that the posterior of
mappings p(T |I) tends to be very peaky, and the optimal label is
usually decided by the best mapping position (the green rectangles
in the location map (d)). In this example, the corridor class gets
much more “votes” than cubicle.

bels for each position in the epitome (fig. 3d). For a previ-
ously unseen test image I , recognition is achieved by com-
puting the label posterior p(L|I) using

p(L|I) =
∫

T
p(L, T |I) =

∫

T
p(L|T )p(T |I) (14)

which can be done efficiently using convolution (see sec-
tion 5.4). The whole recognition process is illustrated in
fig. 3.

5.1. Location Instance Recognition on the MIT Data
We compared the location epitome model to our care-

ful re-implementation of Torralba’s mixture of Gaussians
model on the MIT data set used in [15]. In the GMM ap-
proach, the mixture means are set to training images chosen
at random from the training set, and the mixture variances
are fixed to a value found using cross validation.

A separate epitome model is trained for each location,
using the same number of parameters and gist features as
for the mixture of Gaussians. The 62 different location
epitomes {el}l=1:62 were initialized by tiling the features
of a randomly chosen set of images and then learned as de-
scribed in section 3. The mapping variable T was extended
to be over the union of mappings to all epitomes. This ini-
tialization was found to work surprisingly well in the test,
hence a strong prior (b = 0.175 times the inverse data vari-
ance, a = 5.7 times the square of b and β = 200) was found
to make the epitomes stay close to the initialization patches.

When performing recognition on video rather than single
images, recognition accuracy can be improved by exploiting
temporal consistency between frames. This is achieved by
incorporating the label posterior p(L|I) in a hidden Markov
Model as described in [15], and using the forward-backward
algorithm to compute the new label posteriors (fig. 4). The
HMM is used in an identical fashion with both methods.

The results obtained for each method are shown in the
precision-recall curves of fig. 5. This comparison demon-



Figure 4. Location recognition result for one of the 17 testing
sequences in the MIT database. The red solid line represents the
true labels, and the black dots indicate the label posterior p(L|I)
after HMM filtering. See fig. 3 of [15] for comparison. The great
majority of frames are correctly classified with a few inaccuracies
concentrated on transitions between two locations.

strates that introducing translation and scale invariance via
the epitome model leads to a much higher precision-recall
curve (blue). Note that the results for the GMM (red) are
actually slightly better than those reported in the original
paper [15]. This effect is due to small differences in the
implementation and the database itself. In [15], the authors
apply a PCA dimensionality reduction to the gist features.
We found that such step made no appreciable difference to
performance and so omitted it.

5.2. Location Class Recognition on the MIT Data

This section evaluates the algorithm’s generalization
power.

After having trained our epitome model on a specific lo-
cation category (e.g. office, corridor) in a given building and
floor, we measure recognition accuracy on images of a dif-
ferent building or floor. In contrast to the previous instance
recognition test, the nearest-neighbor-like approach tends
to fail due to large inter-class differences. Consequently, a
weaker prior is used here (a = 0.1, b is a times the data
variance, and β = 0.1).

As before, we compared the epitome model with our im-
plementation of [15]. We used the sequences from floor 9
in building 200 and floor 6 in build 400 as the training set,
which includes all the category labels found in the test set,
floor 7 in building 200.

Fig. 6 shows the precision-recall curves computed for
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Figure 5. Location epitome vs. GMM. Precision-recall curves il-
lustrate the median recognition success for the GMM model (red)
and the proposed epitome model (blue). The scale and translation
invariance of the location epitome leads to more accurate recogni-
tion results. Following [15], the error bars indicate variability in
accuracy across different image sequences.
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Figure 6. Location class recognition. Precision-recall curves for
the epitome and GMM model on the task of recognizing unfamiliar
places.

both our approach (blue) and Torralba’s algorithm (red).
The results show higher recognition accuracy for the epit-
ome model in the case of unfamiliar places, thus suggesting
a higher generalization power. Note that here, again, the
same features are used and the only variation is in the scale
and translation invariance properties of the model.

5.3. Incorporating Different Visual Features
Location epitomes can incorporate diverse visual fea-

tures, leading to further improvements in generalization. To
demonstrate this point, we acquired a new data set con-
sisting of several thousand stereo video frames acquired in



Figure 7. Epitomes of local histograms of RGB features. (a,b)
Two sample images from the cubicle area. (c) The epitome con-
structed from all cubicle images. (d) A sample image from the
kitchen area. (e) The epitome constructed from all kitchen images.
Note that the epitomes (c,e) are visualized by 9 × 9 dot patterns
in the epitome cells. The RGB colors of each pattern are sam-
pled from the local histogram distribution contained in that cell.
The colour-coded rectangles indicate the best match of each of the
three input images into their respective epitomes. Since (c) and
(e) are visually very distinct, local histograms of RGB features are
sufficient for discriminating between cubicle and kitchen in this
dataset.

a large office space containing the following seven differ-
ent locations: “cubicle”, “corridor”, “kitchen”, “stairs 1”,
“stairs 2”, “small lecture room”, and “large lecture room”.
Some sample images are shown in fig. 2. The images were
randomly split into 50% training and 50% testing.

In the experiment we used 2×3×50 local histograms of
RGB colours. Often such RGB features may be sufficient
for discriminating between visually distinct locations (e.g.
kitchen and cubicle in fig. 7). However, that is not always
the case, and fusing a variety of visual features promises to
deliver better generalization.

In this paper we incorporate depth cues in the form of
disparities. In fact, for example, the images of two differ-
ent corridors may appear very different (fig. 8a,b); however,
their disparity maps are often very similar to each other
(fig. 8c,d). Integrating depth together with colour during
training allows both of the cues to be combined when per-
forming recognition. Specifically, we use 2 × 3 local his-
tograms of disparities (quantized into only 6 bins).

As this data set is smaller than the MIT one, it suffices to
train a single epitome for the entire data set. The resulting
epitome in this case contains the information from all differ-
ent locations. The supervised learning technique described

(a) (b)

(c) (d)
Figure 8. Stereo vs. RGB for the corridor class (a,b) Two im-
ages of two corridors in an office building. (c,d) The correspond-
ing disparity maps of (a,b). Although the RGB images look very
different, their depths show great similarities. Incorporating depth
cues in our model delivers increased generalization.

in section 3.1 was employed. This supervision allows the
algorithm to put greater emphasis on those features which
provide good discrimination between locations, in a super-
vised fashion. For example, corridors may be more simi-
lar in depth than appearance and so the learned variance in
the corridor region of the epitome will be lower for dispar-
ity than appearance features. Conversely, for other location
classes the learned epitome may be more depth invariant
and more sensitive to appearance features. The resulting
precision-recall curves are plotted in fig. 9. Note how in this
dataset the gist features appear to work less well than the
simpler RGB features. The reason is that the MIT data set
has dramatically different illuminations between sequences,
hence the gist features generated from gray-scale images
are more robust than RGB. On the other hand, the illumina-
tion in our data set is more consistent, hence the RGB in-
formation becomes more effective. However, in both cases
the additional depth information improves recognition quite
considerably; with the RGB+stereo combination leading to
the overall best results.

5.4. Efficiency
All the experiments in this paper were carried out on a

2.16 GHz Intel Core Duo laptop. Most of the computation
load in learning and testing is carried by convolutions.

In the case where no local histograms are used, for
an epitome of size N × M × D and an image of size
Ne×Me×D , the convolution takes O(DNMNeMe) flops.
When using local histograms, if each B-dimensional his-
togram corresponds to CN × CM = (N/BN )× (M/BM )
pixels in original images then the computation becomes
O(BNMNeMe/C2

NC2
M ) flops. For instance, when lo-
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Figure 9. Comparing RGB, Gist and Depth features. The
precision-recall curves when using RGB or gist features, with and
without stereo disparity features.

cal histograms are applied to RGB features, and we have
D = 3, B = 50 and CNCM = 200, the computation is
reduced by a factor of 2400.

For the experiments reported in section 5.3 learning the
epitome from all 693 stereo images (assuming the dispar-
ity maps are precomputed) takes around 120sec. using our
Matlab implementation. Classifying 660 input testing im-
ages takes about 5.7sec; equivalent to 116 fps, fast enough
for real-time recognition on low-end or embedded systems.
Implementing convolutions on graphics hardware would
yield even greater efficiency.

6. Conclusion and Future Work
This paper has presented a new visual model of locations

which is compact and efficient at recognizing new images,
and generalizes well to previously unseen data.

A probabilistic, generative approach extending epitomes
to represent environments allows us to incorporate transla-
tion and scale invariance effectively. Comparisons with a
state of the art GMM model on existing and new databases
demonstrate the validity of the proposed model.

A variety of visual features such as color, gist and stereo
disparities have been integrated together to yield increased
recognition accuracy. High efficiency is achieved by ag-
glomerating feature responses into local histograms while
increasing generalization further.

Future directions include tests in different types of envi-
ronments (e.g. beach scenes, mountain scenes, school en-
vironments etc.), and inventing new, effective techniques to
increase generalization further.
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