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Abstract

This paper describes an improvement to the dynamic programming approach for
dense stereo. Traditionally dense stereo algorithms proceed independently for
each pair of epipolar lines, and then a further step is used to smooth the esti-
mated disparities between the epipolar lines. This typically results in a streaky
disparity map along depth discontinuities. In order to overcome this problem the
information from corner and edge matching algorithms are exploited. Indeed we
present a unified dynamic programming/statistical framework that allows the in-
corporation of any partial knowledge about disparities, such as matched features
and known surfaces within the scene.  The result is a fully automatic dense
stereo system with a faster run time and greater accuracy than the standard
dynamic programming method.

1 Introduction

Automatically generating 3D models from images is an on going topic of re-
search. A successful image to model system has been developed by the research
groups at Oxford [2] and Leuven [11]. The method proceeds as a set of inde-
pendent modules: first features are extracted and matched, second projection
matrices and calibration recovered, third a dense stereo algorithm based on dy-
namic programming is used to extract depths and finally a three dimensional
model is constructed. It can be seen that this process involves two represen-
tations, one sparse and feature based, the other a dense depth map yielded by
dynamic programming. Within this paper the dynamic programming algorithm
for recovering the dense depth map is discussed and various improvements to
its speed and accuracy are advocated, which utilize the results already obtained
by the sparse feature matcher. It will be seen that this unique synthesis of the
sparse and dense matching techniques leads to improved results and run times.

The problem of obtaining dense correspondence along pairs of corresponding
epipolar lines may be solved using dynamic programming as an optimal path
finding problem on a 2D plane. However there is no corresponding efficient
method to impose a smoothness constraint between the epipolar lines. The so-
lution along consecutive epipolar lines can vary significantly, creating artifacts
across depth discontinuities and in homogeneous patches of intensity. An ex-
ample of this is shown in figure 1. It can be seen that indeed the estimated
disparity along the depth discontinuities is poor, despite being estimated by a
method that attempts to enforce inter epipolar line consistency [5] (the epipolar
lines in this case run roughly horizontally).

There have been a variety of proposals to solve the “streaky” artifact. Hen-
derson [9] was the first to use dynamic programming to solve the structure from
motion problem. He proposed a sequential approach to impose inter epipolar
line constraints, starting at the top of the image and proceeding down through
the epipolar lines using the result of the previous as a guide for the next. This
method however suffers from an avalanche effect in the errors, in that small



errors made early on can be magnified as the algorithm progresses.

Figure 1: (a)(b) The left and right images of the Pentagon standard test stereo pair obtained
from the CMU VASC database (http://www.vasc.ri.cmu.edu/idb/). (c) the disparity map
generated by the Cox MLMH+V algorithm, typical of the dynamic programming approach [5]
(lighter shades indicate larger disparity). What this disparity map does not show is those
pizels that are unmatched (occlusion), this will be discussed in more detail in Section 5. Note
the lack of consistency between epipolar lines, which run horizontally.

Baker and Binford [1] popularized dynamic programming for stereo, explain-
ing it in terms of the Viterbi algorithm [6]. First using Viterbi to match edges,
and then a second round of Viterbi to match pixels between edges. However
their method does not adequately deal with occlusion and cannot recover if the
edges are mismatched. A slightly different idea is put forward for edgel match-
ing by Ohta and Kanade [13] who propose performing dynamic programming to
solve a path planning problem in the product space of the epipolar lines. To im-
pose consistency between epipolar lines they extend the dynamic programming
to 3D. This furnished only a sparse representation in terms of edges however.

A problem with the above methods is that they do not deal with occlusion
very well, and have no mechanism for detecting occluded pixels. A series of
methods [3, 5, 7] that were developed roughly concurrently are all characterized
by the modelling of an occlusion process together with a shift to estimate a
per pixel disparity (as opposed to matching edges first as in [1, 13]). Cox et
al [5] propose a purely maximum likelihood approach, whereas Belhumeur [3]
and Geiger et al [7] prescribe a Bayesian philosophy. The other difference is
algorithmic, all the methods can be cast as one of finding the best path through
a graph, but the structure of the graphs are different. However, the methods all
operate on each pair of epipolar lines independently and rely on further iterative
steps to enforce smoothness constraints between epipolar lines.

Recently a new class of methods based on maximum flow/minimum cut
algorithms has promised to generalize the dynamic programming approach to
incorporate inter epipolar line constraints. Roy and Cox [14] introduced a max-
imum flow algorithm on an undirected graph for stereo, however as pointed out
in [10] their method does not really generalize dynamic programming and does
not model discontinuities and occlusions as all pixels are forced to have a match.
Ishikawa and Geiger [10] propose a max flow algorithm on a directed graph with



the aim of imposing constraints between epipolar lines, this approach seems in-
teresting but there is still evidence of the streaky effect at depth discontinuities
suggesting that the algorithm does not adequately enforce inter epipolar line
constraints. These algorithms are also very computationally intensive when
compared with the pair-wise epipolar line solutions.

None of these papers exploit external information that might already have
been gathered. Within this paper we explore a class of methods that com-
bines the sparse but accurate representations yielded by feature detectors and
matchers with the dense representation yielded by dynamic programming.

This paper is laid out as follows: Section 2 explains the dynamic program-
ming approach to dense stereo. Section 3 briefly describes the feature extraction
and matching algorithms. It also suggests an improvement on the edge match-
ing by making use of the results of the corner matching. Section 4 shows how
the corner and edge information can be readily incorporated into the dynamic
programming framework. A comparison of the disparity map computations for
our methods and for that of Cox et al [5] is given in Section 5.

2 Dynamic Programming to solve stereo corre-
spondence

Within this section the dynamic programming approach is described in detail,
and it is observed that the difference between the various methods that have
been previously proposed lies in the structure of the graph on which the path
planning is performed. We then lay out a statistical framework so that addi-
tional constraints are easily incorporated (in Section 4).

All of the dynamic programming approaches to dense stereo described in
the introduction can be thought of in terms of a path planning problem on a
graph. There are two types of graph that are typically constructed differing
in their connectivity. The first (espoused in [5, 7, 13]) is a graph formed on
the product space of the two epipolar lines as shown in figure 2, the second
(advocated in [1, 3, 9]) is a graph formed on the product space of one of the
epipolar lines and the set of putative disparities. The two approaches lead to
similar results and the differences are small, in this paper we explore the first in
some detail and show how it can be improved, but the improvements are generic
to both methods. The path defines a mapping between the two epipolar lines
for each corresponding pairs of points e.g. points A and B as shown in figure 2a.
Uniqueness and the ordering constraint (evoked by Cox) enforces the gradient of
this path to be greater than or equal to zero, as does the monotonicity constraint
of Geiger et al [7].

In the Cox et al formulation horizontal or vertical parts of the path corre-
spond to occluded regions that are seen in one image but not the other (some-
times referred to as half-occlusions). However only diagonal moves can be made
(fig. 2b) meaning that there is no effective way to represent expansion or contrac-
tion of the image. Geiger et al [7] allow for a wider range of changes in disparity



between consecutive pixels together with a prior on the changes (fig. 2¢). For
the most part this is only important to represent sub-pixel disparity changes,
however we found in our experiments that the increased computational time for
the sub-pixel calculation was not worth the slight increase in the quality of the
result.
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Figure 2: Dense epipolar matching. (a) the path defines a matching between the two epipolar
lines, e.g. point A is matched to point B. Horizontal and vertical arcs represent occlusions.
(b) the connectivity of the graph of the Cox et al method, each vertex represents a putative
matching of a left and right pizel and has three input arcs and three output allowing horizontal,
vertical and diagonal moves. (c) the connectivity of the Geiger et al method, here more
complex movements can be made.

Matching Cost Cox et al use the squared difference of pixel intensity for
his matching cost between two pixels, Koch [11] et al proposes using the cross
correlation of a neighbourhood around the pixel as matching cost. Geiger et al
proposes splitting the cross correlation window into two, one to the left of the
pixel on the epipolar line one to the right, to take into account half occlusions.
The effects of these different choices will be explored in the results section 5.
Typically there is a constant cost for unmatched pixels, this can be explained
in statistical terms as follows.

Statistical Formulation For ease of exposition it is first assumed that the
two images have been rectified so that the epipolar lines are horizontal and have
the same length. Given a pair of corresponding epipolar lines discretized into
m pixels, feature vectors 1 and r are extracted for left and right epipolar line re-
spectively, with the result indexed by the pixel: I;,7;,i = 1...m. Following [12]
a matching process is defined d;;, such that 6;; = 1 if the ith pixel in the left
view matches the jth pixel in the right, and d;; = 0 otherwise. The matching
process can be represented by a m x m matrix A with ¢jth element given by d;;.
To ensure that each pixel has only one match each row or column of A must
sum to 0 (no match) or 1 (match). The likelihood of generating the feature
vectors L, r given a matching A is defined to be

> (05e(li,rj) + (1 = d45)co)
1

Pr(L,r|A) = exp — (1)
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Figure 3: The input to a node for the mazimum likelihood model shown in figure 2b. Hor-
izontal and vertical moves mean that a point is unmatched and are assigned cost co, the
diagonal move means that the ith left pizel is matched to the jth right pizel with cost c(l;,r;).

where p is a normalization constant, co is the cost for occlusion [5], and ¢() is
the matching cost function (e.g. difference of pixel intensities or sum of squared
differences). Different forms for ¢() arise naturally from different assumptions
about the statistical form of the errors, for instance maximizing normalized cross
correlation for matching yields the maximum likelihood match if the scaling of
intensities between images is unknown.

The match matrix A that maximizes (1) and satisfies the uniqueness and
ordering constraints is the maximum likelihood matching. The optimal match-
ing A can be found by finding the minimum cost path through the Cox et al
graph shown in figure 2b, the costs on the arcs are assigned as in figure 3. By
inspection it can be seen that the total cost of the minimal path is the negative
log likelihood:

Path Cost = Z (0s5¢(li,75) + (1 — d35)co) + constant (2)
ij

In this formulation it appears that there is no smoothness prior as opposed to
the Geiger et al formulation in which the smoothness of disparities along the
epipolar line is made explicit as a Markov Random Field. However examination
of the structure of the graph reveals that this is not the case. First disparity
is defined. If §;; = 1 then the disparity is defined to be on the left epipolar
line v(i) = j — ¢ and on the right epipolar line p(j) = i — j. Assume that
the (i — 1)th pixel in the left image is matched to the (j — 1)th in the right,
thus (i — 1) = j — 7; a diagonal move in the graph from (i — 1,5 — 1) to (i, )
corresponds to the consecutive pixels represented by the nodes having the same
disparity (i — 1) = v(i) = j — 4, with cost ¢(l;,r;). For the next pixel to have
one greater disparity this involves a move from (i — 1,5 — 1) to (i — 1,5 + 1),
which can only be achieved by a vertical move followed by a diagonal move with
cost ¢(l;,7;) + co thus the change in disparity is penalized by ¢o. Therefore, a
change of k pixels in the disparity leads to a penalty of kcy which effectively
encodes a smoothness constraint.

The second formulation of Henderson/Binford/Belhemeur lends itself to the
Viterbi algorithm and has a slightly different structure. One image is considered
as a principal image and the disparity is hypothesized for each pixel (or part
thereof) along each epipolar line. There are a finite number of discrete disparities
and also the possibility of the void disparity representing occlusion of that pixel
in the next image. The structure of this graph is shown in figure 4.
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Figure 4: Epipolar matching: Viterbi formulation. Left: a path is selected that gives a
disparity per pizel. Right: the connectivity of the graph, each vertex gives a disparity for the
corresponding pizel and has k + 1 inputs and outputs, where k is the number of disparities
hypothesized (+1 to take into account the occlusion hypothesis).

However all the dynamic programming algorithms that operate only on
epipolar line pairs give similar sorts of results, failing to adequately enforce
inter epipolar line constraints. In the next sections it will be shown how to use
the output of the feature matchers to (a) enforce inter epipolar line constraints,
(b) improve the accuracy of the depth map and (c) speed up the algorithm.

3 Feature extraction and matching

Within this section first it will be shown how to match features and then how the
matched features can be used to improve the dense stereo. There are two types
of features that are used in this paper: corners (points) and edges. Corners are
extracted using the Harris corner detector [8] and then matched using cross-
correlation, from this the fundamental matrix is estimated and the matches
refined using the type of robust methods (RANSAC based) described in [17, 18,
19], this process can be extended to multiple views [2]. The corner matches for
the pentagon stereo pair are shown in figure 5d.

Once the epipolar geometry is recovered Canny edges are extracted [4] in
each image. Next the recovered epipolar geometry is used to match the Canny
edges based on the curve matching algorithm of Schmid and Zisserman [16,
15]. This algorithm scores two curves that are putatively matched by cross-
correlation of image intensities. The point-to-point correspondence between
the curves is determined by the intersection of epipolar lines with the curves
(figure 5a). For each edge all the edges within a search region in the next image
are scored as candidate matches. The score is simply the sum of the correlation
scores between points in correspondence along the curve divided by the length
of the curve. The best correlating curve is taken as being matched if its score
lies above a threshold.

3.1 Improvements to the edge matching

Within this section a heuristic is described that speeds up and improves the ac-
curacy of the edge matching algorithm. The algorithm described in the previous
section typically achieves a high number of correctly matched edges, but also
many mismatches. In fact it fails when the image presents repeated structure
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Figure 5: Corner and edge matching in pairs of images. (a) A matching score is established
for curves by correlating corresponding points on the curves, determined by the intersection of
edge and corresponding epipolar lines. C; and C, are the camera centres. (b), (c) Erroneous
matches caused by repeated structure using the algorithm of Schmid and Zisserman. (d) The
Harris corner matches shown as disparity vectors (the matches are used to guide the edge
matching and dense stereo, see text). (e), (f) The corresponding edges between the two
images of the Pentagon, correctly computed by our guided matching algorithm. The matched
edges are used to guide out dense matching algorithm, see text.

(as in the pentagon case). The edge matches originated for the pentagon stereo
pair by this algorithm are shown in figures 5b,c. Some of the mismatched edges
are marked in the figure. This matching algorithm can also be unnecessarily
slow if the motion between images is large, as there is a combinatorial explo-
sion in the number of putative edge matchings that must be considered. As
suggested in [16] the epipolar geometry can be used to reduce the search space.
As shown in figure 6a the two end points x,y of the curve, in the left image,
generate two epipolar lines 1,1, in the next image. These two lines define a
region called an epipolar beam within which the corresponding edge must lie.
Assuming known calibration so that the homography of the plane at infinity
H., can be computed then a search window in the shape of a parallelogram
(the shaded region in figure 6a) can be defined with vertices given by H.x,
H. y and two other vertices lying on 1., 1, and defining the minimum distance
of lines, from the cameras, that can be matched. However this still leaves a large
number of putative matches to be correlated in some images, as the range of
motions can be potentially great and any edge that is even partially contained
in the beam must be considered as a candidate match.

As mentioned, in the Oxford/Leuven system and most other SEFM systems,
the output of each module is estimated separately, thus corner detection and
matching has no direct bearing on edge detection and dense stereo. In keeping
with our philosophy of integrating all the disparate parts of the algorithm we
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Figure 6: Edge matching. (a) The search window (epipolar beam) suggested by Schmid and
Zisserman [16] is shown in the left image as a shaded region. (b) The reduced search window
determined using feature correspondences.

propose that the corner matching algorithm should be used to aid the curve
matching.

This has a two-fold effect: increasing the speed and the accuracy of the curve
matching. The algorithm is as follows: the set of n (a user defined constant)
matched corners nearest the curve are found either side of the curve; the dis-
parity of each of these matches is examined, let the maximum and minimum
value of the disparity be dpi, and dpax, and the distance of the corresponding
features from the edge be dmin and dmax- The distances dmin and dyax are
recorded, as the further the matched corner is from the edge the less effect it
should have on the size of the search region. The left image of figure 6b shows
three such corner matches whose motion can be used to guide the search for
the nearby edge. The maximum and minimum disparity can be used to reduce
the area of the epipolar beam that needs to be included in the search as shown
in the right image of figure 6b. The maximum disparity to be searched equals
Omax + dmax and the minimum i, + dmin. Given a large number of matching
features within the image this heuristic can often reduce the search region by
in excess of 95% with a commensurate increase in speed of the edge matching
process.

The reduced search range, estimated from the corner matches, helps reduce
ambiguous edge matches. An example of this is shown in fig. 5e,f. Here far
more correct edge matches are found than in the basic algorithm (fig. 5b,c).

4 Matched features to guide dense matching

The feature matching algorithms described in section 3 yield a sparse set of
disparities for matched corner features and slightly less so for matched curves.
This can be thought of as a prior distribution for those points and it can be
combined with the likelihoods developed in section 2. In order to do this some
new notation is needed. First the likelihood function (1) is rewritten in terms of



disparities. Let I' be the set of disparities v; ...~,, for the left epipolar line, as
some pixels are occluded the null disparity is defined: ; = () if the ith pixel is
unmatched (@) being adopted as the symbol for no match). Again, the disparities
must conform to the uniqueness and ordering constraints so that finding an
optimal T' is equivalent to finding the optimal A i.e. Pr(l,r|A) = Pr(l,r|).

Thus (1) becomes
i (c(li7 rv(i)))

v

Pr(1,r|I") = exp — (3)
with ¢(l;,7(;)) = co, if 7(i) = 0, and v being the normalization constant.

In the maximum likelihood formulation it is implicitly assumed that there
is a uniform distribution on I', if we already have some indication of likely
disparities from the feature matchers then this is not the case. A Bayesian
estimate of I' would be

max Pr(C|Lr) = max Pr(Lr|T") Pr(T) 4)

assuming that the ~; are all independent, leading to
c(li,
Pr(T|L,r) Hexp ! TV( ) Pr(v(i)) . (5)

Modelling the (i) as independent may not be correct as it ignores the smooth-
ness constraint, however it has already been shown how the uniqueness and or-
dering constraints implicitly encode smoothness, so it may not be a bad model.

Next the prior distribution Pr(y(i)) is formulated. On the epipolar line if
the ¢th pixel is by the feature matchers unmatched then there is prior knowledge
about v(i) and a natural choice of prior is a uniform distribution on Pr(vy(7)),
i.e. if there are m possible disparities Pr(y(i) = k) = (1 —e)+,k=1...m, and
Pr(y(i) = 0) = e, € is the prior probability of there being no match for a pixel
due to occlusion. Note that in the framework we shall propose any other prior
could be used, for instance one that favours smaller disparities.

If one of the feature matchers has matched the ith pixel then this gives some
information about its the disparity. How much information depends upon how
accurate we believe the feature matching to be. This entails learning the error
rate of the feature matcher, i.e. the probability that any given match generated
by the algorithm is, in fact, incorrect. Suppose that the error rate for the corner
matcher is A\, and suppose that the corner matcher indicates that the ith pixel
has disparity v(7) = p; then the probability that the ith pixel is in fact correctly
matched is 1 —\.. This means that Pr(y(i) = p) = 1 — \. and Pr(y(i) # p) = A,
the remaining probability is distributed uniformly amongst the other disparities:
Pr(y(i) =k) = (1 —€)2<,k =1...m,k # p, and Pr(y(i) = 0) =

Taking account of thls prior, the new cost for matching the ¢th pixel to
Jjth pixel becomes cp(l;,r;) = c(l;,7;) — logPr(y(i) = j —i). Given this new
matching cost dynamic programming can again be used to find the optimal
matching path. In effect the cost for points that have already been matched
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Figure 7: The optimal path can be pivoted by the addition of some known corner and edge
matches (pivots), (a) Optimal path before pivoting. (b) Optimal path after pivoting. The
optimal path has been attracted towards the pivots, thanks to their lower matching costs. The
optimal matching path does not necessarily go through the pivots. (c) The reduced graph
computed for speed (cf. fig. 2b).

by the corner or curve matcher is drastically reduced; this forces the optimal
matching path to be attracted towards those matches.

We call this idea pivoting as it allows the matched corners and edges to pivot
the paths estimated in adjacent epipolar lines into alignment. The matched
corners and edges are referred to as pivots (for them the cost ¢, is lower).

Consider, for example, figure 7a,b. Fig 7a shows a matching path computed
for a pair of corresponding epipolar lines by standard dynamic programming
techniques and also some pivots in the matching space. In fig. 7b our pivoting
strategy is employed: additional weight (lower matching cost ¢,) accrues at the
pivot locations and these, in turn, attract the path towards them. However,
the path is not forced to go through the pivots. This still leaves the chance
for recovery from bad edge or corner matching if the rest of the pixels on the
epipolar line indicate that a different matching is more probable.

4.1 Reducing the disparity search range

In order to speed up the path planning algorithm several heuristics could be used
such as the A* algorithm. One heuristic commonly employed is to reduce the
range of disparities that the graph is calculated on. This reduces the number of
evaluations of the matching cost function (c(l;, r;)) necessary, which is the most
expensive part of the algorithm. As a heuristic the search range on disparities is
reduced to £30 disparities of the nearest matched point. This produces a graph
such as that shown in figure 7c (cf. fig. 2b).

However just as nearby corners can be used to reduce the search for match-
ing edges so matched edges and corners can be used to reduce the number of
disparities that need to be searched in the dense stereo algorithm. This has
the effect of guiding the search path by changing its shape with a considerable
increase in speed and accuracy. This will be shown in the example fig. 13.
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5 Results

Within this section results are presented that demonstrate the palpable im-
provement yielded by the pivoting approach, both in the quality and number
of dense matches produced. The results are illustrated on the pentagon stereo
pair and on a stereo pair provided by Tsukuba University with known ground
truth.

Figure 8 shows the result of our implementation of the standard Cox et al
dynamic programming method on the pentagon pair; with the same parameters
used as their paper [5]. Figure 8a gives the disparity map. The lighter the
pixel the larger the disparity. The image has been histogram equalized but the
disparity range is about 20 pixels. Note that there is little consistency between
the epipolar lines, the white “streaks” correspond to particularly bad matching,
such that the whole line is outlying relative to its neighbours. Figure 8b shows
(in black) unmatched pixels which are liberally sprinkled across the image. Note
that in the original paper of Cox et al the unmatched pixels are not shown
separately.

a

Figure 8: Standard Coz et al method (a) Disparity Map, very streaky (b) Occlusion Map.

Figure 9 gives the results of the Cox algorithm shown in figure 8, but this
time incorporating the effects of our pivoting strategy. Here the pivots are the
matched Harris corners shown in figure 5d and matched Canny edges shown
in figures 5e and f. Note that the disparity map is far smoother than in the
previous case with far fewer errant epipolar lines. The depth discontinuities are
much sharper than in the previous example. Furthermore the occlusions around
the depth discontinuities are better detected (fig. 9b).

Next, the effect of increasing the correlation window is observed. It is well
known that greater correlation window sizes can increase the accuracy of the
disparity, but if the window is made too large the map again degrades due to
over smoothing. We found that a 5 x 5 window produced good results across

11



a

Figure 9: Coz method with pivoting (a) Disparity Map. (b) Occlusion Map.

the whole image as seen in fig. 10, which are an improvement over the first
example (shown in figure 8). However note the “streaking” effect in the depth
map (marked with white boxes in fig. 10a) where whole segments of the epipolar
lines in the upper middle part have incorrectly estimated disparities (they are
too large). No pivoting has been employed in this example.

Figure 10: Coz method using 5 x 5 window for normalized cross-correlation (no pivoting)
(a) Disparity Map with some errors marked. (b) Occlusion Map.

Next, the combination of larger correlation windows and pivoting is exam-

ined, the disparity maps and unmatched pixels for which are shown in Figure 11.
Once again the results are improved, with the streaking removed. The occlud-

12



ing edges, especially the ones internal to the pentagon, are better picked out.
Another key improvement of our method is that it dramatically increases the
number of correctly matched pixels.

Figure 11: Coz method with pivoting using 5 X 5 window for normalized cross-correlation.
g 9 g
(a) Disparity Map. (b) Occlusion Map.

The results for the pentagon pair could be further improved by incorporating
other prior information on shape such as the detected planes in the image. This
is an easy constraint to incorporate in the pivoting paradigm.

The next example will illustrate the effect of pivoting on a different stereo
pair. Figure 12a,b shows a stereo pair taken at the University of Tsukuba.
The scene is a simple composition of a slanted rectangular textured background
plane in front of a textured background plane. Note that the apparent motion is
horizontal. The computed corner and edges matches are shown in fig. 12d-f. The
disparity ground truth has been constructed by hand (fig. 12¢), but notice that
the ground truth does not take occlusions into account. However, comparison
with the results of our dense matching algorithm (resulting disparity map in
fig. 12i) shows a close agreement. The computed occluded pixels are shown, for
the left and right images, in fig. 12g and fig. 12h respectively.

A manually selected corresponding pair of epipolar lines is shown on fig. 13a,b.
This pair is now used to illustrate the effect of pivoting in detail. Fig. 13c shows
the matrix of matching costs, the z axis is the left epipolar line and the y axis
is the right epipolar line. The = and y axes give the intensity values along the
left and right epipolar lines. Each point (z,y) shows the cost of matching the
pixel in the x position on the left epipolar line with the one in the y position
on the right epipolar line. Rather than form the whole graph, one heuristic
to speed the algorithm is to set a maximum disparity (here 90 pixels) for each
pixel, this produces a cost matrix in the form of a diagonal band. Here the
matching cost is the difference in pixel values. Notice the checkerboard effect
caused by repeated structures making the matching quite difficult. In fig. 13d

13
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Figure 12: (a)(b) The original Tsukuba stereo pair; left and right images. (c) The hand
labeled disparity “ground truth”. (d) Computed corner matches, (e) (f) Edge matches com-
puted by the matching algorithm described in sect. 3.1. Note that the boundaries of the fore-
ground slanted rectangle are not detected by the Canny edge detector. (g)(h) The computed
occluded pizels (in black) for the two images. (f) The disparities computed by our improved
dense stereo algorithm using a 5x5 correlation window and pivoting.

the same cost matrix is represented but this time the pivoting strategy has been
employed. Notice that the reduced search range, guided by the corner match-
ing, is no longer straight but it follows the movements of the matched corners.
Thanks to this guidance the width of the search range can be reduced from 90
pixel to 30 pixel with a commensurate further improvement in the speed of the
algorithm. Fig. 13e shows the cost matrix for normalized cross-correlation and
pivoting. In fig. 13f-h the computed optimal path is shown for the same three
situations: first for the standard Cox algorithm (matching costs are difference
of pixel intensities), second with the pivoted version of the Cox algorithm and
third with normalized cross-correlation (5x5 correlation window) and pivoting.
Notice that the estimated path is quite wiggly for the vanilla Cox (fig. 13f), the
actual disparities should be constant across the background and foreground thus
the path should be straight with gradient one, without these wiggles. Pivoting
(fig. 13g) improves the straightness of the line, however there are still some wig-
gles. The best result is obtained by both pivoting and increasing the correlation
windows to 5 x 5 (fig. 13h).

Finally in fig. 14 we show an application of our dense stereo reconstruction
technique. From a pair of stereo images of an everyday scene (a kitchen scene,
see fig. 14a,b) we generate a three-dimensional animation. The matched edges
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of the objects (coffee machine, bread stick, fruit bowl...) in the scene have been
used for pivoting. Only two frames of the generated three-dimensional sequence
(20 frames) are shown in fig. 14c,d.

Finally we have uploaded two AVI animations for the reviewers of the final
result of our reconstruction algorithm. The animations depict the 3D model
created from stereo images of two indoor scenes. Note the sharpness of the
edges at the depth discontinuities.

6 Conclusion

Within this paper a new integrated methodology has been put forward. Rather
than considering the corner matching, curve matching and dense stereo match-
ing parts of the SFM process in isolation, we propose that they should be
strongly entwined. We consider the output of each stage as a prior for the
next stage, i.e. the corner matching helps the edge matching, the corner and
edge matching help the dense stereo. To do this the method of pivoting is intro-
duced which involves modifying the cost function in the dynamic programming
method of estimating dense stereo.  The new pivoting method helps to en-
force constraints between epipolar lines and helps to reduce ambiguity within
an epipolar line for disparity estimation. Furthermore it is shown how the corner
matching can speed up the edge matching and the corner and edge matching
can speed up the dense matching. This increase in speed can be by as much
as a factor four. These improvements have been demonstrated on standard test
sequences. Finally, we have uploaded results of a simple application, based on
our novel pivoted dense stereo algorithm, for generating 3D animations from a
single stereo pair.
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g h

Figure 13: (a)(b) Left and right images of the Tsukuba image pair with a se-
lected pair of corresponding epipolar lines superimposed (in white). (c)(d)(e)
Cost matrices for matching (lighter shades mean higher matching cost), see text.
(£)(g)(h) Change in path due to pivoting and increase of correlation window;
the dark curve is the estimated optimal path and the gray crosses are the pivots,

see text.
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Figure 14: (a),(b) The left and right images of the kitchen stereo pair. (c),(d) Two frames
of the generated three-dimensional sequence (the scene is viewed slightly from above).
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