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Despite progress in stereo reconstruction and structure from motion, three-dimensional scene recon-
struction from multipleimages still faces many difficulties, especially in dealing with occlusions, partial
visibility, textureless regions and specular reflections. Moreover, the problem of recovering a spatially
densethree-dimensional representation from many views has not been adequately treated. This doc-
ument addresses the problems of achieving a dense reconstruction from a sequence of images and
analyzing and removing specular highlights. The first part describes an approach for automatically de-
composing the sceneinto a set of spatio-temporal layers (namely EPI-tube$ by analyzing the Epipolar
Plane Image (EPI) Volume. The key to our approach is to directly exploit the high degree of regularity
found in the EPI volume. In contrast to past work on EPI volumesthat focused on a sparse set of feature
tracks, we develop acomplete and dense segmentation of the EPI volume. Two different algorithms are
presented to segment the input EPI volume into its component EPI tubes. The second part describes a
mathematical characterization of specular reflections within the EPI framework and proposes a novel
technique for decomposing a static scene into its diffuse (Lambertian) and specular components. Fur-
thermore, ataxonomy of specularities based on their photometric propertiesis presented as a guide for
designing further separation techniques. The validity of our approach is demonstrated on a number
of sequences of complex scenes with large amounts of occlusions and specularity. In particular, we
demonstrate object removal and insertion, depth map estimation, and detection and removal of specular

highlights.
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1 Introduction

Despite progress in stereo reconstruction and structure from motion, three-dimensional scene re-
construction from multiple images still faces many difficulties, especially in dealing with occlu-
sions, partial visibility, and textureless regions. While the problem of multi-view scene reconstruc-
tion from feature correspondences has been extensively studied [HZ00], despite recent progress
(e.g. [OK93, SD97, SG99, KS99)), the problem of recovering a spatially dens&D representation
from many views has not been completely solved. In this document, we describe an approach
for automatically decomposing the scene into a set of 3D layers by analyzing the familiar Epipo-
lar Plane Image (EPI) Volume. The EPI volume is a dense horizontally rectified spatio-temporal
volume that results from alinearly translating camera.

Layersare apowerful way to describe the visual motion of objectsin scenes. They capturelocal
coherence, and also make occlusion events explicit. In computer vision, they were first proposed
as a method for video compression, where each layer is separately coded and predicted using an
affine motion model [WA94]. A more geometric interpretation was introduced by Baker et al,
who combined the idea of layers with alocal plane-plus-parallaxepresentation [BSA98].

In computer graphics, the same concept under the name of spritesor layered impostorsvas
proposed as a means of capturing local appearance and geometry in order to re-use previously
rendered imagery (image-based rendering) [SLST96, TK96, LS97]. When combined with the
plane-plus-parallax representation, these sprites became sprites with depthSGHS98].

Unfortunately, fully automated three-dimensional layer extraction from image sequences has
thus far remained an unsolved problem. Torr et al. [TSA99] used a Bayesian approach to perform
layer segmentation, but the segmentation was only with respect to a single reference frame, and
hence did not capture all of the data contained in the original sequence. Many authors (e.g. [LH96])
have commented on the large amount of structure inherent in dense motion sequences (4D Light-
fields in the most general rigid-scene setting), but as yet there are no algorithms that can success-
fully analyze this data and break it up into a coherent set of layers.

1.1 Epipolar-Plane-lmage analysis

There are two major parts in this document. In the first part, we develop some novel algorithmsto
analyze a special kind of spatio-temporal volume (image sequence) in order to segment it into sep-
arate layers. The representation we work with is the Epipolar Plane Image Volume (EPI-volume)
[BBM87]. Thisvolumeis constructed by taking aregularly spaced series of imagesfrom acamera
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Figure 1. EPI volumes, strips and tubes: (a-d) Frames from an indoor sequence. The camera is translating
horizontally. (e) The EPI volume corresponding to the indoor sequence. (f) One EPI from that volume.
The streaks correspond to different objects in the scenes. The more horizontal the streak, the closer the
corresponding object. (g) The automatically extracted EPI-tube corresponding to one of the objects in the
scene, namely, the cat statue on the right. (h—m) Frames from another input sequence. (n) The corresponding
EPI volume; (0) The EPI corresponding to th&" scanline in the EPI volume in (n). (p) The automatically

extracted EPI-tube corresponding to the dodecahedron in the scene.
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Figure 2: Definition of an EPI-strip. An EPI-strip is a quadrilateral on the epipolar plane with two sides
aligned with the bottom and top edges of the epipolar plane. Notice that portions of an EPI-strip may be
occluded by other EPI-strips or may lie outside the field of view of the available input images. See also
Figure 1f,0.

moving on a linear rail pointing in a direction perpendicular to the motion (Figure 1). This vol-
ume is equivalent to a ssmple (orthogonal) 3D dlice through the general 4D lightfield of a scene
[SCGI7]. In their semina work, Bolles, Baker, and Marimont showed how the volume could be
analyzed by finding paths and surfaces in this spatio-temporal volume [BBM87]. However, no full
(dense) 3D reconstruction was ever demonstrated.

Our ultimate goal isto perform automated layer extraction from arbitrary collections of images.
For the purposes of this paper, however, we restrict ourselves to specific camera motions that
produce regularly sampled EPI volumes for two main reasons. First, the specia structure of the
frame-to-frame pixel motion makes it much easier to visualize the structure of this data set, and
hence to explain the basic algorithms. Second, it admits certain classes of algorithms (such as EPI
analysis) that are more difficult to formulate with a general collection of images.

The fundamental new primitives we propose are the EPI-strip and the EPI-tube.

EPI-Srip.

An EPI-strip is defined as a quadrilateral on the epipolar plane with two sides aligned with
the bottom and top edges of the epipolar plane (corresponding to the first and last frames of the
sequence, see Figure 2).

EPI-tube.

A collection of EPI-strips constitutes an EPI-tube, i.e. a volumetric primitive with a special
ruled surface boundary that represents a coherently moving set of pixels (none of which occlude
each other).

An EPI-tube consists, effectively, of a collection of EPI-trails, each of which represents the
path of a scene point within the EPI-volume. When the camera translates linearly and at constant
speed, these trails are straight lines in the EPI-volume, and their orientation corresponds to the
disparity (or inverse depth) of the corresponding scene point.



Figures 1e,n show the EPI-volumes for two of our input datasets. Figures 1f,0 show two EPIs,
each associated with a particular horizontal scanline of the corresponding input dataset. Each EPI
isautomatically decomposed, by the algorithms described in this document, into a set of EPI-strips.
An example of automatic EPI-strip extraction can be seen in Figure 10b. Figures 1g,p show two
EPI-tubes, each segmented out of its respective input EPI-volume by our algorithm.

In this document, we describe two algorithms for extracting layers from EPI volumes. The
first algorithm extracts single EPI-trails and groups them by analyzing the disparity hypotheses
for the trails. The second algorithm extracts whole EPI-strips by directly analyzing collections of
EPIs that constitute the EPI volume. Both agorithms operate in two phases. In the first phase,
the EPI volume is segmented into a collection of EPI-tubes that account for the appearance of all
the pixels. In the second phase, each EPI-tube is described by a simpler layer description, e.g. a
single apha-matted image painted onto a 3D plane with optional per-pixel parallax (i.e. a sprite
with depth [BSA98, SGHS98])*.

1.2 Characterization of specularities

In the past some work has aso been done in using layers to model translucency and reflections
(e.g. [SAAQQ]). In the second part of this paper we extend that work by: (i) defining metrics to
distinguish between traces of specular and diffuse features in the EPI and study the factors on
which they depend; (ii) showing the limits to which geometry alone can be used to separate the
two layers and propose the use of photometric together with geometric constraints; (iii) building
a taxonomy of specular reflections which aids in the design of hybrid algorithms to separate the
diffuse and the specular layers of ascene. Finally, we demonstrate the eff ectiveness of our approach
by automatically estimating diffuse and specular components on real scenes with specularities.

The remainder of the paper consists of the following. Section 2 describes the EPI-tube repre-
sentation and derives a set of constraints associated with them. Section 3 describes the algorithms
for layer extraction from EPI volumes. Results on layer extraction and basic manipulation on real
data sets are presented in section 4. Section 5 and section 6 present an analysis of the geometric
and photometric characteristics of specular reflections within the EPI framework. An algorithm
which implements the separation of a sequence of imagesinto its diffuse and specular components
isdescribed in section 7. Finally, Section 8 summarizes the conclusions of the paper and discusses
our plansfor future work.

LAlternative representations of layers such as texture-mapped polyhedral surfaces are also possible, but will not be
explored here.



2 EPI-tubesand layers. representationsand constraints

In this section we describe some of the fundamental characteristics of EPI-tubes.

Each EPI-tube is a coherent portion of the EPI volume, i.e. the local orientation of the trails
within that volume varies smoothly and the trails within the tube do not intersect each other. The
intersections between EPI-trails correspond to occlusion events in the EPI-volume, i.e. when one
point becomes hidden behind another. This aso means that EPI-tubes do not necessarily corre-
spond to objects. A self-occluding object may be represented by multiple EPI-tubes.

More precisely, for acameramoving along the X direction with constant speed B, points move
only along the horizontal scanline. The = position of a scene point at timet is given by

Z’t:$0+td, (1)

where x; denotes the = position of the point at time ¢, =, denotesitsinitial position at time 0, and
d = Bf/Z denotes the disparity [OK93]. Note that the trails of the points close to the camera
(larger disparities) are more slanted in the EPI (Figure 1).

EPI-tubes occlude each other in the usua occlusion-depth ordering. The EPI-tubes corre-
sponding to occluding objects are more slanted (more horizontal) than the ones related to occluded
objects. This can be seen in Figure 1b. Thus, each EPI-tube has one or more visible regions or
volumes where it is not occluded by closer tubes, and zero or more invisible regions, where its
pixels are occluded by nearer objects.

Under ideal conditions (Lambertian reflection model, constant exposure, no significant fore-
shortening or aliasing as the camera moves), an EPI-tube can also be described by the color at
any of its cross-sections and the rate of motion of each pixel (which corresponds directly to the
disparity). Thisissimilar to the layered sprite representation proposed in [BSA 98], but we do not
use a plane-plus-parallax representation for the layer geometry, but rather encode it as a disparity
(depth) map.

The initial goal of our algorithm isto label each pixel in our EPI volume with a distinct EPI-
tubeindex, i.e. to perform a complete discrete |abeling of the EPI-volume. Each EPI-tube can then
be interpreted as alayered sprite.

The various observations made above can be summarized by the following set of constraints,
which will be exploited by our algorithms:

e Visudly distinct and visible image features give rise to visually distinct EPI-trails, i.e. a
sharp intensity or color gradient along an epipolar line in the image resultsin avisible sharp
line in the epipolar planeimage.



e A homogeneous color region in the image will result in an EPI-tube of homogeneous color.
e For opague Lambertian surfaces, the color along the EPI-trail is nearly constant.

e Neighboring EPI-trails that belong to the same EPI-tube/strip will have similar orientations
(disparities).

e EPI-trail intersections (visible as Y junctions in EPIs) indicate occlusions and hence EPI-
strip/tube boundaries.

e Nocrossingsor Y junctions should occur inside an EPI-strip/tube.

e More slanted EPI-tubes/strips (corresponding to closer objects and larger disparity) occlude
less slanted EPI-tubes/strips (corresponding to objects farther behind and smaller disparity).
Exceptions are when non rigid effects, such as specular highlights, occur.

These constraints associated with EPI-tubes and EPI-strips can be used for extracting them
from theinput data. Our algorithms operate by analyzing all the EPIs of the EPI-volumein parallel.
Thus, it isworth highlighting constraints associated with corresponding EPI-strips (that belong to
the same EPI-tube) from adjacent epipolar planes:

e The neighboring strips belonging to the same tube will have similar colors and disparities
(i.e. similar fate).

e Object boundaries are a subset of the tube boundaries. Hence, the continuity of the boundary
shape of an object will result in continuity of strip boundaries in adjacent epipolar image
planes.

3 Segmenting theinput sequenceinto EPI-tubes

In the next two sections we describe two different algorithms for extracting EPI-tubes from EPI-
volumes. The first algorithm analyzes the problem in Disparity Space [Dev74, Mar82, YYL93,
B199] while the second one directly analyzes the color data contained in the EPI-volume. Both
algorithms have been applied to multiple data sets and the results are shown in the respective
sections.

3.1 Disparity Space I mage processing

One approach to extracting EPI-tubes from the EPI-volume would be to look for easily detectable
EPI-trails and to merge adjacent trailsinto tubes. Each EPI-trail correspondsto a particular dispar-
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Figure 3: Duality between Epipolar plane image (EPI) and Disparity Space Image (DS): linesin one space
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Xo

map to points in the other and vice-versa. Top row: Thered line in the EPI maps to thered point in the DS
and the blue line in the EPI mapsto the blueline in the DS. Furthermore, the EPI-strip (grey quadrilateral)
in the EPI maps to a line segment in the DS (shown in grey). Bottom row: Dually, the green point in the
EPI maps to the green line in the DS, and the pencil of lines through a voxel in the EPI mapsto alinein
the DS.

ity hypothesis (z, yo, d), Where (x¢, d) determine thetrail’sz, = f(¢; x¢, d) coordinate according
to (1), and y, determines the trail’s y coordinate. The set of all such possible hypotheses forms
the disparity space, which is an old concept dating back to early cooperative stereo correspon-
dence algorithms [Dev74, Mar82]. More recently, the pixel dissimilarity function sampled on a
regular (zo, yo, d) grid has been called the disparity space image (DSI) [YYL93, BI99]. Finding
correspondences then consists of finding the true surfaces hidden in this disparity-space volume.
The EPI-volume and the disparity space volume haveinteresting duality properties (see[BBM87]

for some nice illustrations and examples). EPI-trails, which are linesin the EPI-volume, are equiv-
alent to points in DSI (Figure 3). Conversely, a point in an EPI volume, which corresponds to a
pixel observed in aparticular image, hasalinear trail of possible hypotheses associated withitina
DSI.? A generalization of this concept to the full space of 3D rays (the 4D Lightfield) is presented
in [LH96, GGSC96]. Disparity space can also be defined as an arbitrary collineation of 3-space
[Col96, SG99] or even aregular 3D grid [SD97]. Thisis useful when dealing with an arbitrary

°Note that the y coordinate is left unchanged when going between the two spaces, so the duality is between the
(z,t) and (z¢, d) spaces.
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Figure 4: Sample disparity space images (scanline y = 45 of sequence in Figure 1h-m): (a) EPI I(z, 1),
(b) mean p(xy, d), (c) standard-deviation o(xy, d), (d) line-masked std-dev, (f) shadow region (in blue) for
one point in the DS ; (f-h) corresponding images after 2nd iteration. The lines in red indicate the extracted

EPI-tube components.

collection of images, but we will not need this concept here.

The DS is built by shearing the EPI volume at a large number of possible disparities and
computing the intensity variances along the vertical direction. The sheared EPI volume can be
computed as

I(wo,y,t,d) = I(zg + 1 d,y,1) )

and its mean and variance can be computed as

Zt]s(xmy)t: d)vs(l‘my:t) d)
Lo, >d - 3
M( 0¥ ) Ztvs(l‘my;tad) ( )

and

Zt[IS(‘T())y)t: d) B M(.’L‘o,y,d)va(fﬁo,y,t, d) (4)
Zt Us(tTO;yat: d) ’

where v, (o, y, t, d) iSasheared version of thevisibility mask v(x, y, t) that we will define later on

(for now, consider it to be 1)3. Figure 4 shows some samples of disparity space images j(zo, y, d)

02(1‘07 Y, d) =

3To perform the shearing, we shift the original images horizontally by fractional pixel amounts using linear inter-
polation.



and o (xg,y, d).

Next, we label voxelsin the DSI that have a variance lower than the other voxels they might
potentially occlude. If the voxel isindeed an occluding voxel, then the occluded voxels should
get a photoconsistency measure (variance) that is contaminated by the occluding voxel. Ignoring
noise and assuming that the color/intensity of the occluding and occluded voxels are different, we
would thus expect the variance associated with an occluding voxel to be smaller than those being
occluded.

In our current implementation, we add some slack in the comparison, i.e. we label a voxel
(xk, yx, di) in the DSI as a good candidate of an EPI-tube if for al (z;,y;,d;) € S(zk, Yk, di) We
have o (v, Yk, di) < o(x;,y;,d;) + € (currently, e = 1), where S(zy, y, di) i the shadow cast by
(2k, Yk, di,) inthe DSI (Figure 4d).*

Once we have identified a good set of candidate voxels, we find connected regions of such
voxelswhilefilling across small gaps. Currently, thisisimplemented using morphological dilation
and erosion operators within the 3D disparity space. Next, we pick a set of layers that do not
occlude one another. Thisis accomplished by casting shadow masks as each layer is being picked
from the DSI in front to back order.

Once these layers are chosen, the corresponding voxels in the original EPI-volume are then
masked out by setting the corresponding v(z, y, t) entriesto 0. The DSl is recomputed, and the
entire cycle is repeated to extract another set of layers (or to add to current ones). In extracting
layers subsequent to the first set, any additional hypothesized layer is tested by reconstructing the
EPI with the current set of layers, and computing the error introduced by this additional layer.
If the average error introduced exceeds a threshold (currently set at 5 intensity levels), then the
hypothesized layer is discarded. Figure 4 shows the temporal evolution of the DSIs.

The termination condition is that either all the voxels in the EPI-volume have been |abeled or
there are no voxelsthat satisfy the photoconsistency condition within the threshold. To ensure that
al pixels are accounted for, al voxels that were not labeled are assigned the smallest disparity
computed for the dataset (another variant would be to set their d < 0, i.e. to put them on the plane
at infinity). A better alternative, which we have not yet implemented, would be to find connected
components of unassigned voxels in the EPI volume and to label them with the smallest nearby
disparity.

Our agorithm thus shares alot of ideas with previous voxel carving algorithms [SD97, SG99,

4The triangle in the opposite direction from the shadow region is the free space region [BBM87], in which no
further matches should in principle be allowed. However, we do not currently use this constraints, since errors early
on in the matching can preclude valid later matches.
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Figure 5: Block diagram of the direct EPI-strip extraction algorithm.

KS99]. However, there are several important differences:
e |t commitson agroup (EPI-tube) basis, not voxel by voxel.

e Each candidate is extracted by comparing its degree of photoconsistency with those it oc-
cludes should it be chosen, rather than some absol ute threshold.

e Multiple passes are made through the data, extracting the most certain data first, rather than
relying on asingle threshold for photoconsistency.

Unfortunately, the algorithm described above sometimes suffers the same problem as with
voxel carving: it tendsto pick the frontmost EPI-tubes that are photoconsistent. This has the effect
of breaking up large texturel ess regions into multiple EPI-tubes.

Our improved algorithm handles this problem by first finding all the strong lines (EPI-trails)
in the EPI (Section 3.2). It then masks out areas in DSI that are not near these points or the lines
connecting such points (on the theory that surfaces connecting strong features are good candidates
for disparity). Thelast column of Figure 4 shows such line-masked variance images. Shown in red
are the current EPI-tube pixelsinthe DSI.

3.2 Direct extraction of EPI-strips

A second approach to extracting EPI-tubes is to directly analyze the color information contained
in the EPI volume.

As noted earlier, for the case of cameras moving linearly at uniform speed, the boundaries of
an EPI-strip are straight linesin the epipolar plane. Asit isevident from Figure 2, each EPI can be
thought of as a collection of EPI-strips. Each EPI-strip can be parameterized as two lines or four
points (the intersections of the two lines with the top and bottom edges of the epipolar plane).

Based on the observations in Section 2, we have designed the following agorithm to automat-
ically extract EPI-tubes (also shown as a block diagram in Figure 5):
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Figure 7: EPI-strip rectification. The EPI-strip marked in green (dashed line) has been rectified to make its
internal streaks vertical.

Stage|: EPI-strip hypothesis generation. In thisstage, we create a set of EPI-strip hypotheses
for each epipolar plane image.

1. For each EPI extract a set of straight lines corresponding to visible streaks (see Figure 6 for
an example). We use the Canny edge operator to extract edges and then fit straight lines to
them. Each lineis a potential strip boundary.

2. For each EPI, augment the set of lines with those of its neighboring epipolar planes, by
taking the union of the straight lines from the two adjacent planes above and below. Thisis
donein order to overcome possible omissionsin Step 1.

3. Sort the straight lines according to their orientation (from most slanted to most vertical, i.e.
from highest disparity to lowest).

4. Assuming there are N linesfor a given epipolar image plane, create an N x NN upper trian-
gular matrix whose rows and columns are both indexed by the lines. Each element of this
matrix correspond to a potential EPI-strip (Figure 8).

11



Stagell: EPI-strip extraction. Inthisstage, we extract EPI-strips separately but simultaneously
from each of the EPIs. One EPI-strip is extracted from each EPI at atime using the steps described
below. This processisrepeated until al the EPI-strips have been extracted from al the EPIs.

1. Cost computation. For each EPI, we compute a cost measure for each element of the matrix
asfollows:
For each potential strip (a matrix element), rectify (shear) the epipolar plane image so that
the selected strip appears vertical in the EPI (Figure 7). The purpose of this step isto avoid
problems due to temporal aliasing and other artifacts®. The required geometric transforma-
tion is defined by the two boundaries of the strip. The resulting transformation is a geometric
bilinear warp, which correspondsto linearly interpolating the disparities of the two boundary
pixels (which, in turn, corresponds to assuming a piecewise-planar geometry.)
Given the rectified EPI-strip, the cost associated with it consists of two parts: (i) a lack
of photo consistency, which measures the variance (4) of the color information for a pixel
across al the views, and (ii) a crossing cost, which penalizes for having non-vertical streaks
in the rectified image. This could be because another EPI-strip crosses the current one. The
crossing cost is measured in terms of the total squared vertical color gradient (indicating
horizontal edges) computed within the hypothesized EPI-strip.
During the first iteration, al the EPI-strips are treated equally. During subsequent iterations
(after some strips have been removed), the cost computation is modified as explained in Step
4. Figure 8 shows the cost matrix associated with a couple of example EPIs. The cost of
each EPI-strip isreflected in the brightness of the associated matrix element (low/dark costs
are good potential strips).

2. Cost relaxation. For agiven EPI-strip, consider EPI-strips on neighboring epipolar planes
near the given strip. Here, distance is defined in terms of the Euclidean distances between
the four corresponding vertices of the EPI-strip quadrilateral. From this set, pick the nearest
one to the given EPI-strip and modify the cost of the current strip with a weighted linear
combination of the two costs. Thisisdone for al the stripsin all the epipolar image planes.

3. EPI-strip selection. For each epipolar image plane, traverse the upper-triangular matrix
row-by-row from top to bottom (i.e. from most slanted boundariesto the most vertical ones).
For each row find the element with the minimum cost in that row. If that element cost is also
the minimum for its entire column and is bel ow a predefined admissibility threshold, the ele-

SMaking a strip vertical is equivalent to warping all the input images in order to align the chosen strip over the
sequence.

12
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Figure 8: Cost Matrices. Two examples of cost matrices for two different EPIs. The element (4, j) of the
matrix indicates the goodness of the EPI-strip defined by the £ and the 5 straight line. Notice that the
dimensions of the cost matrix varies for each scanline, depending on the number of extracted straight lines.
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Figure 9: Srip Removal. After extracting an EPI-strip, the corresponding region of the EPI is blanked out
and removed fromfurther consideration. (a) Original EPI. (b) The most horizontal EPI-strip (corresponding
to front-most object) has been detected and removed from further consideration. (c) The second front-most
EPI-strip has been removed. This process of detecting and removing good EPI-strips continues until the
current EPI has been completely explained by a set of EPI-strips.

ment is chosen, and the corresponding strip isidentified asavalid EPI-strip. This meansthat
the two boundaries of the selected strip are best paired with each other compared to all other
possible pairings of either boundary. Also the resulting strip satisfies our aforementioned
criteriafor being agood strip.

4. Matrix adjustment and cost recomputation.

After astrip is extracted, the costs of all the elements of the matrix are recomputed. Thisis
done by removing the regions of the EPI that are contained within the selected strips from
further consideration and marking them as such (Figure 9). When the cost is recomputed,
EPI-strips that completely overlap these regions are set to a maximum cost that results in
them being removed from further analysis. The algorithm moves back to the cost-relaxation
step above, and the entire process is repeated until no candidate elements are left or none of
the remaining ones pass the admissibility cost threshold.

13
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Figure 10: EPI Segmentation into EPI-strips. (a) The EPI corresponding to the 48" scanline of the input

sequence in Figure 1h-m. (b) The EPI has been automatically segmented into different EPI-strips (color-
coded, different color for different EPI-strip).

Stage ll1: Clean up: At the end of Stage 1, there may still be regions of an epipolar plane that
do not belong to any of the strips that have been extracted. To fill in these “holes’, additional
EPI-strips are estimated using the following method. Since pixels belonging to an EPI-strip have
disparities associated with them, we can detect the pixelsin the holes by checking for the lack of
any disparity assignment. Each connected component of such pixelsis marked a new EPI-strip.

The next task is to assign disparities to the boundaries of these new EPI-strips. There are two
possible cases: interior ones that are enclosed by (possibly multiple) existing EPI-strips, and those
adjacent to image borders, which are enclosed by one or more EPI-strips on one side and the image
border on the other side. In either case, there may be multiple existing EPI-strips that bound these
new strips. For each side of the new strip, we select the bounding strip with the smallest disparity
(farthest in the background) as the boundary of the new strip. The disparities of the interior pixels
of the new strip are linearly interpolated from these boundaries. For those bordering the image, the
entire strip is assigned the same disparity as the boundary on the other side.

Currently, the algorithm produces a separate set of stripsfor each epipolar plane and computes
thelir disparities. We are working on merging the recovered stripsinto EPI-tubes.

4 Layer extraction and manipulation

Once the EPI volume has been segmented into a good set of EPI-tubes, we can convert each EPI-
tube into a separate plane+ parallax layer (or sprite with depth) [BSA98, SGHS98]. To do this, we
must first choose a reference frame for each layer. In our current implementation, we simply use
the first frame in the sequence. A better choice would be to choose the frame where the majority
of the layer surface is best sampled, i.e. where it ismost parallel to the image plane.

Once a reference plane has been chosen, we need to compute the per-pixel colors, opacities,
and disparities. With our Disparity Space Image analysis algorithm (section 3.1), thisinformation
is already present during the EPI-tube construction. At the end of the DSI analysis, each layer is
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represented by acollection of DS voxels. For each voxel, the reference color will have been pulled
from the mean image p(zy, y, d) and the disparity issimply thed value. It isthen asimple matter to
paint these values into the alpha-matted color (“texture”) image (we use binary opacities for now)
and the per-pixel disparity image. For ease of implementation, we currently set the plane equation
for each sprite to be the plane at infinity, which means that the inverse depth disparity computed
during DSI analysis encodes the correct out-of-plane parallax (after appropriate scaling).

For the EPI-strip extraction algorithm (section 3.2), since the strips have not yet been merged
into tubes, we do not generate sprites. However, we can estimate the per-pixel color and disparity
for every strip. The disparity can be easily obtained by linearly interpolating the disparities at the
two strip boundaries, and the colors are computed using the median value estimated during the
visibility-masked shearing used to compute the original strip cost metric.

4.1 Layer extraction, depth recovery and object removal

We have run both our algorithms on two different real image sequences. In both cases, the images
were acquired by a cameratranglating sideways (along the scanline direction) moving at a constant
speed. We also collected a dense set of viewpoints, keeping the interframe disparities to a few
pixelsor less.

Results of applying both our algorithmsto the input datasets are shownin Figures1 and 11. The
first row of Figure 11 showsthree frames of the original input sequence. The most visible occlusion
event in this sequenceisthe occlusion of the background by the multi-col ored dodecahedron in the
foreground.

The DSI agorithm recovered 9 layered sprites (or EPI-tubes) from this sequence. Most of
these bel onged to the background, while one belonged to the dodecahedron. We used these sprites
to re-synthesize the frames of the input sequence. The next three rows (Figure 11b-d) show the
results of the DS algorithm on this sequence. Figure 11b shows all the objects in the synthesized
scene, whereas Figures 11b,c show only the objectsin the background and foreground respectively.
Note that although the synthesized sequence is noisy in places, on the whole the segmentation and
reconstruction is accurate. In particular, note that the boundary of the foreground object is sharp
and does not have the fattened edges that are often typical of stereo reconstruction results.

As noted earlier, our current implementation of the EPI-strip extraction algorithm produces
EPI-strips for each epipolar plane but does not merge them into tubes. In Figure 11e we show the
disparities estimated by our algorithm. The disparity map looks consistent with the scene layout.
Once again, note the sharp discontinuitiesin the disparity map at the boundary of the dodecahedron
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(e) Results of the direct EPI-strip algorithm: the disparity map.

(f) Results of the direct EPI-strip algorithm: the background object.

(9) Results of the direct EPI-strip algorithm: the foreground dodecahedron.

Figure 11: Experimental Results: layer extraction, depth recovery and object removal: (a) Three frames of
the original sequence, (b-d) the corresponding frames of the synthesized sequences obtained using the DS
algorithm, (e) the disparity map for the same scene recovered by the EPI-strip algorithm (corresponding to
the three frames in (a)) (f-g) synthesized frames for the background and foreground portions of the scene
respectively, computed using the EPI-strip algorithn16
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Figure 12: Extracted EPI-tubes: Two views of the automatically extracted EPI-tube corresponding to the
dodecahedron in the input sequence in Figure 1h-m. Another example, for a different input dataset, may be
seenin Figure 1g.

in the foreground. Figures 11f,g show the synthesized frames for the background and foreground
respectively.

Notice that our color estimation process has correctly filled in the areas occluded by the do-
decahedron (the green tea box in Figure 11f). The spatio-temporal layer (EPI-tube) that has been
computed for the dodecahedron may be seen in Figures 11g and 12.

4.2 Object insertion and occlusion handling

The EPI-analysis described above provides us with a complete understanding of the dense three-
dimensional geometry of the viewed scene together with alayer-based representation of it. At this
point it isquite straightforward to manipul ate the extracted EPI-tubes, remove them, duplicate them
or insert new objects in the scene, in a coherent 3D fashion. The inserted object may be extracted
from a different input video or generated with CAD-like tools. Examples of object insertion are
shown in Figure 13.

5 Geometry of specular reflections

In the prior sections, it has been assumed that the scene is Lambertian. In general, however,
this hypothesis may be too restrictive. How do we deal with non-rigid effects such as specular
reflections? In order to answer this question, first of all we need to characterize the motion and
appearance of specularities.

This section addresses the problem of characterizing the geometric behaviour of specularities
and section 6 deals with their photometric behaviour.
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(d) (e (f)

Figure 13: Object insertion: (a-c) Frames from the augmented “ dodecahedron sequence”. One more
dodecahedron has been inserted behind the original, at a lower level. (d) Animage of a 3D model of a toy
airplane, to beinserted into the“ dodecahedron sequence” . (e,f) A complete 3D model of the dodecahedron

sequence”’ has been obtained fromthe EPI analysis and the 3D model of the airplane in (d) has been inserted
behind the dodecahedron (the front-most layer). Notice that, thanks to the geometric understanding that
arises from the automatic EPI segmentation, occlusions are handled correctly.

Shiny objects have specular reflections that move in a non-rigid manner when the camera
moves. Therefore, specularities must be treated with particular attention. This section presents
a mathematical characterization of specular reflections both in terms of their geometry and their
appearance within the EPI framework. Aswe demonstrate in Section 7, this study may be applied
to the automatic detection and removal of specular highlights from static scenes. In [LLK *02]
do obtain some very interesting results on detecting and removing specular highlights from static
scenes, but their work lacks the systematic geometric and photometric characterization of specu-
larities addressed in the present work.

Section 5.1 analyzes the simpler case of a 2D reflector, while Section 5.2 deals with the com-
plete three-dimensional case. Section 6 presents the photometric constraints which characterize
specular highlights and finally, Section 7 proposes a novel technique for separating diffuse and
specular components in static scenes.
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Figure 14: Reflections on curved surfaces, the two-dimensional case: (a) The geometry of reflection on
curved specular surfaces. The position of the virtual feature at two viewpoints lies on the caustic curve at
two distinct points. Any point on the caustic is visible only along the tangent to the caustic at that point. (b)
Two-view stereo algorithms applied to reflective surfaces would estimate an erroneous depth for the virtual

feature, due to lack of sufficient information.

5.1 Specular motion in 2D

In general, in the case of flat specular surfaces, the reflected scene point (virtual feature) liesat a
single point behind the surface. However, for curved surfaces, the position of the virtual featureis
viewpoint dependent (Figure 14) [ON97]. Thelocusof thevirtual featureisacatacaustic[Ham28],
referred to in this document as just a caustic. Figure 14aillustrates the caustic curve formed for a
circular reflector in 2D and some scene point. Note that any point of the locus of virtual features
(caustic) isonly visible along the tangent ray to the caustic curve. Also, any two views of a scene
containing specularities are insufficient to unambiguously estimate the depth of virtual features
(Figure 14b) necessitating the use of more than two images.

This section analyzesthe geometry of reflectionsfor curved surfaces, starting from the simplest
case, that of acircular reflector, and then moving to a more general case in Section 5.1.2.

5.1.1 A circular reflector

For purposes of demonstration we assume the specular curve (in 2D) to be circular. The caustic is
defined by the geometry of the specular curve and the scene point being reflected. Thus, we can
compute the caustic curve in closed form [BS73, BG84].

Now, given a camera position, we can derive the point on the caustic where the virtual feature
becomesvisible. Itsimageis simply a projection of the caustic point onto the image plane. We de-
rive theimage location of avirtual feature as afunction of camera pose, specular surface geometry
and the scene point.
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Figure 15: Plots of specular surfaces, associated caustic curves, and EPI traces. Please note that corre-
spondence between points on the actual surface, caustic curve, and EPI trace, is color-coded. (a) A high
curvature surface, such as a soda can (viewed from above), for which the caustic curve is small and has
high curvature. (b) The corresponding EPI trace is almost linear since the virtual feature undergoes mini-
mal motion. (c) An extreme case: In the vicinity of the drawn reflected ray, the camera observes reflection
on an almost flat surface (e.g. a monitor screen) at an oblique angle. The corresponding part of the caustic
has the least curvature. Thus for small viewpoint changes, the virtual feature moves significantly. (d) The
corresponding EPI trace is noticeably bent having strong disparity deviations.

To compute the EPI trace of the specularities, we assume that the camera motion is linear in
the plane parallel to the imaging plane. As stated previously, the linear camera motion implies that
the EPI trace of any static scene point must lie along straight lines within the EPI-slice. However,
reflected points move along their caustic. Thus, their EPI traces would be expected to be curved.

We define the deviation of an EPI-trace from a straight line as disparity deviation (DD). Dis-
parity deviation depends entirely on the movement of the virtual feature and distance of the viewer
from the scene. Motion along the caustic in turn depends on the curvature of the surface, surface
orientation and the distance of the reflected point from the surface. The greater this distance, the
greater the motion along the caustic surface.

Figure 15 shows sample EPI curves for two specular curved surfaces. Surprisingly, the curve
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Figure 16: Two-dimensional analysis of specular reflection for generic reflecting geometry: (a) Reflection
of point S (source) by the reflecting curved surface at point O as seen by camera C; (b) Projection of the
reflected image into the camera C' with image plane « moving along the ¢ axis.

with higher curvature (Figure 15b) shows little disparity deviation. In fact, although high curva-
tures lead to faster angular motion along the caustic, this motion is contained within a very small
area. Lower curvatures, on the other hand, can produce noticeable disparity deviation in the EPI.
For a given curvature, disparity deviation is accentuated at grazing angles of reflections (as we
show below). We now expand the surface to alocal cubic approximation, and study the stability of
the disparity (trace in the EPI) as afunction of curvature and surface orientation.

5.1.2 Infinitesimal motion

Having observed the qualitative behavior of a specularity’strace in the EPI, can we say something
more exact about its behavior. In other words, is there a closed form equation that relates local
surface curvature, curvature variation, orientation, and the locations of the scene point and camera
to the Disparity Deviation (curvature in the EPI trace)?

Figure 16 shows a diagram of the 2D case. The scene point being reflected is at .S, the camera
isat C', and the reflected surface point O isat the origin, with the surface pointing along the = axis.
The incident angle to the surface is @, while the surface itself has a curvature x = 1/p.

Consider an infinitesimal change of angle « = /OSN in the direction of the light ray leaving
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S. This corresponds to a motion along the surface from O to N of length z,,
To = dg[sinf — sin(f — «)], (5)

where, dg is the distance from S to O. At the new reflection point /V, the surface normal has
changed by an angle 3,

1
B = Ko+ Eﬁxz +O(3). (6)

(Note that we explicitly model the change in surface curvature £, as this will be important in
determining the reflection’s stability.) Thus, while the incidence angle is § — «, the emittance
angleisf — a — 20.

This emittance angle determines the angle /OV N = « + 23, where V' is the virtual image
point, formed by the intersection of the reflected ray at the origin and the reflected ray at the new
point N. We obtain:

To = dy[sinf — sin(fd — o — 2)], (7
where, dy isthe distance from V' to O.
Equating (5) and (7), we obtain

sinf — sin(f — «)

dv = dssin@— sin(0 — a —20)°

(8)

The limit of the above expression as o — 0 givesusthe location of the virtual image V. (Note that
if theimageis stable, asisthe case for a planar reflector 5 = kK = £ = 0, dy = dg isthe samefor
al valuesof «.)

Applying L'Hospital’srule to the limit of (8) and simplifying, we get

d
lim dy = el

_ 9
a—0 1+ 2dgsk cosf ©)

How doesthisvirtual depth vary in practice? Inthelimitingcaseasds — oo of k — oo (p — 0),
i.e. as the scene point distance becomes large relative to the radius of curvature, we get

dy = gsec 6. (10)

This result is quite intuitive: the virtual image sits at the focal point behind (or in front of) the
reflector for head-on viewing condition, and further away for tilted surfaces.

The behavior in the general case when the source is closer to the surface is plotted in Fig-
ure 17a. The virtual depth slowly decreases for a convex reflector as the curvature increases. For
a concave reflector, the virtual depth decreases, moving rapidly towards negative infinity as the
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Figure 17: (a) Plot of virtual depth dy as a function of curvature x for d¢ = 1 and § = 0° and 60°.
(b) Disparity deviation for f = 100 as a function of « for ds = 1, d¢ = 4, and 8 = 30°,45°,60°, 75°.
The horizontal axis in both cases is actually 2/ tan™! &, so that the full range k = (—o0,0, c0) can be
visualized.

radius of curvature approaches the object distance (as the object approaches the focal point), and
then jumps back to positive virtual depths. The actual distance seen by the cameraisd, + d¢, SO
that impossible apparent depths only occur when dy < —d.

These results are consistent with the shapes of the caustics presented previously for the circular
reflector. What is more interesting, however, is the stability of the virtual depth as a function of
curvature and slant. In other words, as we vary our viewpoint, how does v, change? The answer
to this can be approached by differentiating (8) w.r.t. « and setting o = 0, yielding

ody

| = —db (dsi(1+ cos 20) + 4 sin 0 + 2dr? sin 26) . (12)

a=0

This tells us how the virtual image point V. moves as we vary «, e.g. how V" movesto V' in
Figure 16a when we replace o with —« (the dashed curve indicates the caustic surface). Note
that the first term is due to the change in curvature £ and becomes negligible for highly slanted
surfaces, while the other two terms are due to the surface foreshortening sin 6 and sin 26.

Now, how does the disparity (curvature in the EPI) change as we vary the camera position? In
other words, what is the disparity deviation of a specular feature? From Figure 16b, we see that
the disparity D isgiven by

0 f
D="°= 12
t dy+do’ (12)

which is the usual equation relating disparity to inverse depth.
To see how D varieswith ¢, we apply the chain rule to obtain

oD f 9dyda

ot (dy +dg)? da Ot

(13)
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The first partial derivative is given by (11). The second can be computed from the relationship
t = (dy + d¢) sin(a + 23). For small o and 3,

ot 0 2 d

— = (dy +d¢) cos(a + ZB)M ~ (dy + de) (1 + 2dsk cos8) = (dy + de) =2, (14)

Oa Ow dV

using the approximation
B~ Kxo & akdg cosb.
Putting all of these together, we get
. 0D fd3 ) K . 5 .
D=—=——"—"— 1 2 4— 2 20 . 15
ot~ [y +do)? </<;( + cos 20) + i sin @ + 2k° sin 0) (15)

Notice that there is no disparity deviation for planar reflection, i.e. D = 0 whenk = /¢ = 0, as
expected.

We can now examine each component in (15). The first ratio (dy/(dc + dy)) becomes large
when d¢ =~ —dy, i.e. when the virtual image appears very close to the camera, which isalso when
the disparity itself becomes very large. The term that depends on the curvature variation % is
most significant for frontal surfaces, and decreases for slanted surfaces. It is most significant for
undulating surfaces, like the inflection points in a wavy fun-house mirror where things go from
“thin” to“fat”. At such inflection points, the apparent location of the virtual image can move very
rapidly.

The term x/ds might at first appear to blow up for d¢ — 0, but since dy is proportional to
dg, this behavior is annihilated. However, for moderate values of d 5, we can get a strong disparity
deviation for slanted surfaces. The last term isstrongest at a45° surface slant. It would appear that
this term would blow up for large «, but since dy- isinversely proportionally to « in these cases, it
does not.

To summarize, the two factors that influence the disparity deviation the most are (1) when
dc + dy = 0, which iswhen disparities are very large to start with (because the camerais near the
reflector’s focal point), and (2) fast undulations in the surface. Ignoring undulations, Figure 17b
shows how D varies as a function of « for avariety of dants, withds = 1 and dc = 4. There-
fore, under many real-world conditions, we expect the disparity deviation to be small enough that
treating virtual features asif they were real features should work in practice.

5.2 Specular motion in 3D

We now discuss the effect of specularities in 3D again using the caustic surface to perform our
analysis. We present our results for a spherical reflector although the results can be extended to
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Figure 18: (a) Analytic setup showing the location of the scene point in relation to the specular surface and
camera path. (b) Section of the 3D caustic surface associated with (a). The thin curve on this surface is
the locus of virtual features as a function of camera motion. It is clearly seen that the locus of virtual fea-
turesis neither stationary nor planar. (¢) The corresponding EPI-curve clearly exhibits significant epipolar
deviations.

arbitrary surface geometries.

The framework to analyze specularities in 3D is similar to that in 2D. However, in order to
simplify the resulting equations, we alter the coordinate frame aswell as relative positioning of the
scene feature.

Consider a spherical specular surface whose center lies at the origin. The scene point being
reflected is located along the positive Z-axis at a distance ds from the origin. We again derive the
caustic surface using the Jacobian technique [BS73, SGNO1]. To study the motion of specularities,
we assume the camera to move in the X, Y-plane, parallel to the Y-axis at a distance d. from the
origin® (Figure 18a). Since the reflector surface is symmetic, the caustic is defined by a profile
curvein 2D rotated about the Z-axis [ SGNO1].

We need to derive the image location of avirtual feature as afunction of camera pose. We note
that the position of the virtual feature locus is essential defined by the caustic surface. Thus, for
any camera path, the locus of observed virtual featuresisacurve in 3D which lies on the caustic
surface. For any camera position, the virtual feature not only lies on the caustic surface but is aso
restricted to the plane defined by the Z-axisand the cameraposition. Thevirtual featurethereforeis
apoint on the caustic profile in this plane. Given the camera pose and caustic surface, determining
the position of the virtual feature is now reduced to a 2D problem for which an analytic solution
exists.

We know the pose of the camera and hence, can poject any scene point to derive its image

SNote, this camera path is not critical to the results we derive.
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location. Thus, the image of the virtual feature is a ssmple projection of the above derived virtual
feature, onto the image plane.

5.2.1 Epipolar deviationsfor a spherical reflector

Under linear cameramotion, the images of arigid scene point must al lie on the same epipolar line
(or plane). However, the motion of avirtual feature on the caustic surface (Figure 18b) violatesthis
constraint. Asseen in Figure 18c, the image of the virtual feature does not lie on asingle scan-line.
We refer to this phenomenon as epipolar deviation (ED). The question then arises. how fast does
the virtual feature leave any epipolar plane?

In general, epipolar deviations depend on three primary factors: surface curvature, orientation
of surface, and distance of the camera from the reflecting surface. We only consider scene points
distant from the surface as they usually produce the largest caustic surfaces. We now analyze each
factor for its contribution to ED. This study helps determine situations when ED effects can be
neglected and when they provide significant cues to the presence of highlights and specularities.

Surface Curvature. We know that for planar mirrors, the virtual feature is stationary at asingle
point behind the surface. Similarly, high curvature surfaces such as sharp corners, have very local-
ized tiny caustic surfaces. Between these two extreme curvatures, surfaces exhibit higher epipolar
deviations as seen in Figure 19a.

Surface Orientation. Theangle of incidence of an observed reflection isalso critical to epipolar
deviation. The more oblique the incidence, the greater the motion of the virtual feature along the
caustic surface, causing larger ED. From Figure 19b we can see how ED dropsto zero at an angle
which corresponds to the plane in which the caustic curve is planar. Beyond this point, the virtual
feature locus is again non-planar and causes epipolar deviations. As one moves to near-normal
reflections, we see that the feature locus is restricted to the cusp region of the caustic. Thisimplies
very small feature motion, in turn reducing ED.

CameraDistance. Ascameradistance from the scene increases, disparity between scene points
decreases. Thus, decreasing disparities, imply lower virtual feature motions, in turn decreasing
epipolar deviation (Figure 19c).

To empirically validate these analytical results, we took a series of pictures of some mirrored
ball at different distances and orientation, and manually plotted the specularity trajectories (mea-
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Figure 19: Epipolar Deviations as a function of the three most significant factors - (a) Surface curvature:
Initially thereisarisein epipolar deviation with respect to increasing radii of curvatures, however, beyond
some point ED starts dropping towards zero as the surface flattens. (b) Surface orientation: The epipolar
deviation initially dips to zero before rising again and then further reducing back towards zero. This is
because, at some surface orientation, the sphere reflects all rays from the scene point in the horizontal plane
in which the camera lies. The EPI trace is then restricted to a single epipolar line. (c) Camera distance
from scene: Thisisthe most intuitive observation also stemming from stereo parallax, that disparity drops
inversely with distance from scene. In the context of virtual feature loci, the dropping disparity reduces
effects of the moving virtual feature, inturn reducing epipolar deviation. (d-f) are the corresponding results
of experiments using real objects. (d) We used reflective balls with radii ranging from 1.95 to 0.3 inches;
each was placed about 3 feet away from the camera. (€) The ball of radius 1.95 inches was placed 3 feet
away from the camera. The height of the ball was changed up to 14 inches. (f) The same ball was used,
with the distance of the camera to the ball varied from 1.5 to 5 feet. Notice the similar trends between the
theoretical and experimental plots.
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sured to the nearest pixel). Asseenin Figure 19d-f, the results of our experiments are in agreement
with our theoretical prediction.

In general, specular reflections or virtual features do not adhere to epipolar geometry. In our
geometric analysis, we assume large camera field of view and range of motion, and on occasion,
large scene distances. However, in typical real situations, both the camera's range of motion and
field of view are limited; as a result, the specular features appear to adhere closely to epipolar
constraints. This makes it hard to disambiguate between specular and diffuse EPI-strips solely on
the basis of geometry. As aresult, in order for any diffuse-specular separation technique to be
effective, photometric characteristics have to be considered as well.

It is clear from the geometric analysis that specular reflections need not adhere to epipolar
geometry. Thus, the trace of virtual features across an image under camera motion need not lie
in the epipolar plane. Moreover, even if the virtual feature were constrained to the epipolar plane,
itstrace in the EPI need not be a straight line. In contrast, Lambertian or real scene points aways
trace out straight linesin the EPI.

Since the traces of specular points (virtual features) can be straight lines as well as curvesin
the EPI volume, an algorithm that seeks out such “curved tubes’ may not be successful. This
ambiguity between specular features and Lambertian scene points in the EPI makes geometric
constraints necessary but not sufficient. This deficiency of geometry is however, complimented by
photometric constraints.

In the next section, we present photometric analysis of specularities under linear camera mo-
tion. Results presented in this section motivate the need for hybrid algorithms that use geometric
as well as photometric constraintsin separating the diffuse layer from the specular layer.

A question that still remainsis: “Why do we use EPI analysis to study specularities, if they do
not adhere to epipolar geometry?’. Given the finite resolution of cameras and sufficient distance of
the camera from the scene; epipolar deviation (ED) error is quite limited. The only case in which
it is impossible to use EPI analysis when the specular point jumps epipolar/scan-lines between
consecutive frames. This in turn corresponds to a large ED. When temporal sampling is high
enough and ED low enough (typical scenarios), the specular region lies on a single scan-line long
enough to be segmented using photometric and geometric constraints.

6 Photometry of specular reflections

We now present a photometric analysis of specularities under linear camera motion. Within the
framework of EPIs, we develop a taxonomy of specularities and motivate the need for hybrid
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Figure 20: Taxonomy of specularities with example snapshots of sequences. Below each image is the EPI
associated with the marked scan-line. Note that all of the EPIswere sheared for visual clarity.

algorithms that use geometric and photometric constraints to separate the diffuse and specular
components.

6.1 Taxonomy of specularities

In order to handle specularities in image sequences, it is instructive to first identify what we con-
sider different kinds of observed specularities and their associated photometric behavior. This
classification helpsin the design and use of “ case specific” layer separation algorithms.

We categorize the type of observed specularities based on whether the reflecting and reflected
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surfaces (which we term reflector and source respectively) are textured (Figure 20). Furthermore,
we differentiate between area and point sources, since this has an impact on how separation can be
accomplished.

We describe the reflection phenomenon in each of the cases in some detail and explain what
separates them from one another. In the analysis to follow we do not assume any attenuation of
light as it reaches the viewer. Thus, the result of reflection is simply the addition of light energy
such that the reflected component adds to the underlying diffuse component.

Textured reflector — Textured source. The EPI-strip associated with this type of specularity
is characterized by a blending between the reflector and source textures leading to a criss-cross
pattern. With textured surfacesit is difficult to extract individual EPI strips having the same albedo
within the EPI. One has to process each column with the EPI-strip individually. Thisis equivalent
to analyzing every scene point over time.

As the camera moves, a scene point reflects different parts of the surrounding scene. The
diffuse component of the surface is bounded by the minimum observed color intensity along any
column. In such cases approaches such as those proposed by [SAA00, Wei01] are better suited for
separation.

Textured reflector — Textureless area source. In this case, the underlying specular surface is
assumed to be textured while the reflected region has almost no texture. Most of the EPI strip is
brightened by a uniform color associated with the source. Thismay cause ambiguity in separation.
We discuss more on EPI ambiguities in the next section.

However, when the EPI strip is correctly rectified, every column within the EPI strip corre-
sponds to the effects of reflection of the un-textured source on a single scene point. Each column,
when projected in RGB space, would form a Dichromatic plane. However, all the columns would
form planes which all meet along the same color vector corresponding to the source. Thus, a
simple dichromatic model [KSK88] could by used to disambiguate between the two layers.

Textured reflector — Textureless point source. In principle, thisis similar to the previous case,
except that the source is highly localized (Figure 20). Asaresult, separation can be accomplished
by analyzing constant color sub-strips of the EPI-strip, e.g. using the Dichromatic Reflectance
Model [KSK88].
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Texturelessreflector — Textured source.  Inthiscase, we assumethe underlying specular surface
to betextureless. Thereflected scene may berichly textured, and the result can be seenin Figure 20.
We also assume that the entire EPI-strip (corresponding to the specular surface) were extracted as
awhole. This happens when either there exist multiple scene illuminants or under inter-reflections
[KvD83, NIK91]. Extraction of the underlying diffuse component, could then be obtained using a
method similar to the multi-chromatic reflection model [BLL96].

Textureless reflector — Textureless area source. In this scenario, both the underlying specular
surface as well as the reflected scene have no texture. Again, we differentiate between an area
being reflected to point reflection. If the reflected region has considerable size with respect to
the enclosing surface texture's EPI-strip, ambiguities arise as described earlier. A more detailed
explanation of thisambiguity is given in the following section.

Textureless reflector — Textureless point source. Once again, this is similar in nature to the
above case, except the reflected scene is assumed to be very localized or a point. The difference
follows from the fact that this thin trace within the EPI is easier to extract as part of alarger EPI-
strip. Thus, aiding its being separated as a specularity (Figure 20). Possible separation techniques
include Dichromatic Reflectance Model [KSK88].

6.2 EPI-stripsand their inherent ambiguity

There exists an inherent ambiguity in EPI analysis for specularities and diffuse regions when con-
sidering individual EPIs. Figure 21(a) illustrates such an EPI. One EPI-strip (darker) iscompletely
enclosed by another EPI-strip (lighter). Individual layers can now be extracted in severa ways
leading to valid and unique interpretations.

Figure 21(b) is one interpretation where each EPI-strip was extracted separately representing
three unique diffuse layers (d; . . . d3). The varying tilts of their bordering edges in the EPI lead
to dlanted segments in the scene of varying depths. In contrast, another equally valid extraction
includesthe inner EPI-strip (Figure 21c). If thisinner strip conforms to the photometric constraints
discussed earlier, we interpret it as a specularity s over the otherwise diffuse region d.

Such ambiguities arise in purely Lambertian scenes as well as those containing reflections. In
principle, one can reduce the ambiguities by analyzing multiple EPIs al at once. However, this
still does not guarantee an ambiguity-free scenario.
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Figure 21: EPI-strip ambiguity. (a) A typical EPI in which a smaller EPI-strip (dark/brown region) is en-
closed with another EPI-strip (light/yellow region). In the absence of prior scene knowledge this EPI may
be interpreted in many ways. (b) One interpretation could be that each thin strip of alternating colors, rep-
resentsa“ region” inthescene. Thus, each (di, ds, d3) isunderstood to be an unique Lambertian region. (c)
Another interpretation could be that the larger EPI-strip (d) includes the lighter EPI-strip (s) within it. This
situation can happen only if s isa specularity: geometrically it appears to be behind d, but photometrically
it appears to occlude d.

6.3 Surface curvature and specularities

As stated in Section 2 within an EPI, closer scene surfaces have a more horizontal orientation than
those farther away. For convex surfaces, the locus of virtual features resides behind the surface.
Therefore, the corresponding EPI-strip of specular reflection has a more vertical orientation than
that of the underlying diffuse component (Figure 22a,b). However, photometrically, this region
of the EPI-strip tends to occlude the underlying diffuse component. In contrast, a true occlusion
event within an EPI is characterised by the occluding stip having amore horizontal orientation than
the underlying surface. Thus, using geometric and photometric techniques, one can dis-ambiguate
between occludions and specular reflections.

In contrast, concave surfaces typically form the virtual feature in front of the surface. The EPI-
strip of the specular component is therefore more horizontal but restricted to the concave region
alone (such asdimples on aregular surface). Thisisamuch harder case to deal with and is beyond
the scope of our current work.

7 A techniguefor removing specular highlights

We now describe a technique for removing the specular components from an image sequence and
estimating the underlying diffuse colors associated with the specular regions.
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Figure 22: Estimating diffuse and specular components for each EPI-strip: (a) Some frames from the
original imput sequence showing some shiny objects, e.g. the central maroon box. (b) One of the input
frames with a superimposed scanline. (¢) The EPI corresponding to the selected scanline. (d) An EPI-
strip selected on the EPI in (c). Notice the typical highlight pattern seen on convex specular surfaces.
Chromatically, the highlight region seems to occlude the underlying texture of the surface. However, the
orientation of the highlight is more vertical implying a farther depth. This confirms the bright pattern to
be caused by a specularity. (€) Rectification of the marked EPI-strip. The diffuse component is now made
vertical, while the specular component is oriented beyond 90°. See also Figure 7 for the rectification of a
purely Lambertian EPI-strip. (f) Using photometric analysis along with geometric reasoning, the highlight
is extracted and the diffuse component of the selected EPI-strip fully recovered.

The proposed algorithm first extracts EPI-strips from each EPI (Section 3.2) and then analyzes
each individual EPI-strip and decomposes it into its specular and diffuse components. EPI-strips
are analyzed for specularities using a variant of [SAAQO]. Our technique is more general in that it
is designed to work with textured reflectors and all three types of sources shown in thefirst row of
Figure 20 and is not constrained to planar surfaces.
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7.1 Specularity extraction

Once the EPI volume has been segmented into a collection of EPI-strips, each EPI-strip isrectified
so that trailswithin it are vertical (Figure 22).

The scenario assumed here is that of a textured reflector with an arbitrary source. Many high-
light regions tend to be saturated in parts. To simplify our process, we look for specularitiesin
EPI-strips containing pixel intensities above a pre-defined minimum value.

In any column of the rectified EPI-strip, the pixel with lowest intensity gives us an upper bound
on the diffuse component of that scene point. For every column, we estimate this upper bound
and assume the scene point to have the associated color (Figure 22f). The residua is then the
specularity. To validate this step, we group all pixels that are strongly specular and observe their
relative orientation within the EPI-strip. If they have a more vertical orientation, then they must be
specularities. Note that thisis only true for convex surfaces. In our current implementation, we do
not consider the effect of concave reflectors.

7.2 Experimental results

To validate our technique, we took an image sequence of areal scene that contains both specular
and Lambertian objects. The camera was mounted on a linear trandation stage about three feet
away from the scene. A set of fifty images was captured at uniform intervals as the camera was
translated from left to right. A subset of the acquired images can be seen in Figure 23a.

This sequence of images were then stacked together to form a spatio-temporal volume on which
the EPI segmentation described in Section 3.2 was performed. As seen from Figure 23b, the spec-
ular regions were effectively segmented out from the image sequence. Furthermore, the underlying
diffuse component of the scene was recovered successfully in Figure 23c.

However, inaccurate EPI-strip extraction and interpolation issues while creating the rectified
EPI-strip result in some visible artifacts (black spots and residual specularitiesin Figure 23c). The
same separation result is also shown for a selected scanline in the spatio-temporal volume defined
by the input sequence in Figure 24.

Since we employ a relatively simple technique to detect and separate layers, the results are
somewhat sensitive to the EPI-strip segmentation process.



(c) The estimated diffuse component.

Figure 23: Automatic separation of diffuse and specular components. (a) A subset of input images of a real
scene (already seen in Figure 22a and repeated here for clarity). (b) The automatically estimated specular
component. The specular component is removed from the input sequence thanks to a combined use of geo-
metric and photometric constraints on the behavior of specular highlights. The two strong highlight regions
on the maroon box (together with many smaller regions) are correctly detected. (¢) The automatically esti-
mated diffuse component. The diffuse component is almost devoid of specular effects. Some artifacts show
up in this sequence because of incorrect EPI-strip selection.

8 Discussion and Conclusions

In this document, we have described a new approach for automatically recovering 3D layers from
extended multiview sequences by analyzing the data in the entire Epipolar Plane Image volume.
Our approach is based on decomposing the EPI-volume into a set of EPI-tubes, each of which
represents a coherent subvolume corresponding to a coherent portion of the 3D space. The EPI-
tubes are the basis for a complete 3D layered sprite representation and for novel techniques to
separate diffuse and specular components in static scenes.

We have described two algorithmsfor extracting EPI-tubes from EPI-volumes, and shown their
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Figure 24: Specular/Diffuse separation in the Spatio-Temporal volume. (a) The Spatio-temporal volume

(d)

defined by the input sequence in fig.22. (b) One EPI from the volume. (c) The detected specularity in
the selected EPI. (d) The recovered diffuse component for the selected EPI. The specular streak has been
removed and the colour information filled in correctly.

application to real image data sets.

In order to extend these techniques to non-Lambertian scenes, first of all, we need to charac-
terie the motion and appearance of non-rigid effects such as specular reflections. We performed
a geometric analysis of the behavior of specularities in typical scenes, studied their image traces
under linear camera motion and introduced the disparity deviation and epipolar deviation metrics
to characterize specular motion. We showed that these deviations depend on surface curvature as
well as orientation of the specular surface. There is an expectation that reflections from curved
surfaces would aways produce curved EPI traces. Surprisingly, both flat and highly curved sur-
faces do not produce significant deviations. Instead, it is the mildly curved surfaces that produce
the largest deviations. In addition, the closer the object (to the observer), the larger the deviations
tend to be.

Such findings point to the possibility of ambiguity in differentiating diffuse from specular com-
ponents using geometric constraints alone. As aresult, geometric analysis must be supplemented
with photometric considerations. We have devel oped a taxonomy of specular reflections to aid in
the design of hybrid algorithms that use both geometric and photometric constraints.

Finally, we have presented an application of the EPI analysisfor detecting and removing spec-
ular highlights from static scenes. Results on real image sequences, using our hybrid algorithm
to separate the specular and diffuse component into different layers, show the capabilities of our
techniques.
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8.1 Futurework

Encouraging results have been achieved for specific camera motions (rectilinear with constant
velocity in this case) but many of our algorithms extend naturally to the genera viewpoint case
(e.g. EPI volume shearing is equivalent to a plane-sweep algorithm). In future work, we plan to
develop a set of robust algorithms to handle the general viewpoint case. Thus, this work lays
the foundations theory for multi-image layer extraction, without yet producing an implementation
that handles this general case. In the longer term, we would also like to handle dynamic scenes,
deforming objects, and the recovery of soft boundaries for layers that better describe the colour
mixing that occurs at object boundaries.

Furthermore, we would like to move away from the “local” edge based approach to selecting
EPI-strips, to a more global approach. One possibility isthat of using “generalized cylinders’ to
track the contours of image regions across time. This has the advantage of enforcing coherency
across scan-lines, while at the same time segmenting the various EPI-tubes. This would of course
reguire arobust image segmentation step.

The final goal of our work is to be able to realistically re-render video sequences from novel
viewpoints. To accurately render scenes, we must understand not only their geometry but also
their surface properties. By separating the specular component from the diffuse, we can model
each independently and achieve better realism as well as high compression rates.
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