
Programming Sensor Networks

with State-Centric Services

Andreas Lachenmann, Ulrich Müller, Robert Sugar,

Louis Latour, Matthias Neugebauer, Alain Gefflaut

European Microsoft Innovation Center GmbH, Aachen, Germany
{andreasl, ulrichm, rsugar, llatour,
mattneug, alaingef}@microsoft.com

Abstract. This paper presents the uDSSP (“micro DSSP”) programming model

which simplifies the development of distributed sensor network applications

that make use of complex in-network processing. Using uDSSP, an application

is composed of state-centric services. These services interact by accessing the

state of other services or by subscribing to changes of that state. uDSSP sup-

ports heterogeneous networks that consist of PCs, resource-rich sensor nodes,

and resource-limited nodes with just a few kilobytes of RAM. The evaluation

uses a non-trivial application to compare it to Abstract Regions and Tenet.

1 Introduction

In the future, sensor network applications will emerge that do more complex in-

network processing than the simple aggregation (min, max, average, etc.) of most

applications today. For example, in an elderly care application a body-worn sensor

node determines the patient’s activity level whereas nodes in the kitchen and in the

dining room cooperate to infer the activities of daily living such as cooking and eat-

ing. Together with other nodes throughout the home they form the application that

keeps track of the patient’s activities. This information is useful to detect changes in

the patient’s behavior, which could be an indication of health problems.

Creating such distributed applications with complex in-network processing is still a

difficult task. If such an application is – like most real-world applications today –

directly developed on top of a sensor network operating system, the developer be-

comes easily distracted by low-level details such as sending packets and message

formats. Furthermore, since application components are often tightly coupled with

static references to specific nodes, the reusability of individual parts of the application

is very limited. Therefore, in this paper, we present the uDSSP (“micro DSSP”) pro-

gramming model and middleware that addresses these problems. With its runtime

system and a set of standard services, it relieves the developer of many recurring tasks

such as dealing with communication or discovering nodes.

In our terminology, an application spans the whole network and provides the de-

sired functionality to the user. It can include different classes of devices such as

TelosB and Imote2 nodes as well as PCs. Such an application consists of services that

are distributed over different nodes. The application is formed by combining services

A. Lachenmann et al.

and letting them interact. A uDSSP service, which is of similar granularity as a web

service, provides a part of the application’s functionality like sampling data or infer-

ring the activities of an elderly person. Such a service is state-centric, i.e., it is built

around its state and exposes this state to other services. An example for the state of a

service is the data sampled and the result of the computation on that data (e.g., the

activity of an elderly person). A service communicates with other services by invok-

ing operations such as subscribing to state changes or retrieving the state.

By storing the results of their computation in their state and by exposing this state,

the services facilitate a loosely coupled, subscription-based form of interaction. Thus,

a service does not have to broadcast its results to all nodes or include static references

in the code where to send them. This subscription-based interaction reduces coupling

between nodes and fosters software reuse. It fits many sensor network applications

that are event-based and transmit data only when it changes.

This model has been inspired by the ideas of the Decentralized Software Services

Protocol (DSSP) [1] but has been tailored to the special characteristics of sensor net-

works. DSSP is a SOAP-based protocol with some pre-defined operations for state-

centric services. uDSSP implements a subset of the DSSP operations. Instead of using

SOAP, however, it encodes its messages in a small, binary representation.

We have implemented uDSSP for several platforms, including the .NET Frame-

work on PCs, the .NET Micro Framework (e.g., for Imote2 nodes), as well as Contiki

[2] and Mantis [3] (e.g., for TelosB nodes). In both .NET implementations and in

Contiki, uDSSP uses 6LoWPAN for a seamless integration in existing IPv6 networks.

Since no implementation of 6LoWPAN is available for Mantis yet, these nodes are

limited to a custom mesh protocol. This protocol is also supported by our uDSSP

implementations for .NET. All platforms share the same concepts and a common

(application-level) network format. Therefore, it is possible to create distributed ap-

plications that incorporate different classes of devices.

The contribution of this paper is a novel, state-centric programming model to cre-

ate sensor network applications with complex in-network processing. This model

simplifies the development of such applications by fostering the reuse of parts of the

application, by providing easy-to-use mechanisms for communication between ser-

vices, and by including common functionality (e.g., to discover services). As shown

in the evaluation, efficient real-world applications can be implemented with uDSSP.

The rest of this paper is structured as follows. Section 2 presents related work. In

Section 3 we give an overview of our overall system. Section 4 details the use of the

programming model. In Section 5, we then present evaluation results, including case

studies of two non-trivial applications. Section 6 concludes this paper.

2 Related Work

With its network data types, nesC [4], the programming language used for TinyOS,

supports the developer in creating distributed applications that incorporate different

types of devices. However, the interaction is not handled by the runtime system but

requires a custom implementation by the application developer – often with static

references to the data’s destination. A more high-level, network-wide programming

abstraction is offered by database approaches such as TinyDB [5]. However, such an

Programming Sensor Networks with State-Centric Services

approach is limited to simple queries. Li et al. [6] added support for events to

DSware, another database-like middleware. However, they are limited to simple

events that can be expressed in an SQL-like syntax. Macroprogramming languages

such as Kairos [7] provide a way to create a network-wide program that is then exe-

cuted in a distributed way in the sensor network. Unlike our approach, Kairos splits

up a central program into individual threads and distributes them.

With its mechanism to register for certain data, TeenyLime [8] is similar to our

subscription-based approach. Instead of exposing services as a structuring element, it

shares data via a flat tuple space. Abstract Regions [9] uses a similar abstraction to

exchange data. It forms groups of nodes based on properties such as hop distance or

location. However, its data exchange mechanism is pull-based, i.e., nodes have to

query the data of other nodes instead of being notified when it changes.

In Tenet [10], the sensor network consists of resource-limited motes and less con-

strained master nodes. This is similar to the network architecture of uDSSP. Unlike

uDSSP, with Tenet, the application on the motes is written in a simple tasking lan-

guage that is interpreted by the runtime system.

A design alternative for uDSSP would have been to use web services or Devices

Profile for Web Services (DPWS) [11]. With its standard services, DPWS is similar to

uDSSP but has not been designed for as resource-constrained devices as uDSSP: It

requires the use of verbose XML messages. Tiny Web Services [12] have shown that

web services can be implemented on resource-limited sensor nodes, though at the cost

of some overhead. Instead of composing an application of services as with uDSSP,

the architecture of Tiny Web Services seems to be targeted towards interaction with

clients external to the sensor network.

3 System Overview

3.1 Architecture

Our network model is different from the early ideas of sensor network research with a

flat, large-scale network of resource-limited nodes. Like most deployments today, the

networks we target do not consist of thousands of nodes but rather of tens or hun-

dreds. Furthermore, they can be heterogeneous and consist of different classes of

devices. They include resource-constrained sensor nodes such as TelosB nodes, more

Fig. 1. Architecture of the elderly care application

A. Lachenmann et al.

powerful nodes such as Imote2 nodes as well as PCs or servers. In this model, PCs are

not just data sinks but fully participate in the network.

In our architecture, an application is composed of instances of services that com-

municate with each other. Each service instance has its state, a set of partner services,

and functions that can be called by other services.

The overall application can be viewed as a graph of service instances, as shown in

Fig. 1 for the elderly care application that will be used in Section 5.3.1. The arrows in

the figure show the relationship to partner services, which tell a service which ser-

vices it should, for example, subscribe to. The partners can be located on the same

node or remotely in the network. In such an application, there is not necessarily a

need for a single node to keep track of all service instances. Therefore, each service

only has to have local knowledge about the services it interacts with.

The explicit definition of the service state distinguishes uDSSP services from web

services. We think that exposing state fits well with the typical services we expect to

find in a sensor network. For example, such services can make available their latest

computation results on sensor data. Especially with our subscription mechanism, this

model helps to compose the application from individual, loosely coupled services.

3.2 Runtime System

The main tasks of the runtime system are to handle requests, manage subscriptions,

and deal with communication between services. There are two layers of the runtime

system. The first one is service-specific and generated from the service definition. To

access other services, this layer also includes generated proxies. We tried to keep this

layer minimal to avoid duplicate functionality. The second layer is independent of the

service. It dispatches messages to services and manages subscriptions.

In uDSSP, services invoke operations on other services. These operations are a

subset of the operations specified by DSSP. Table 1 gives an overview of them. As

described in Section 4, almost all operations are handled by the runtime system; the

developer does not have to implement these standard tasks.

The CREATE and DROP operations are used to create a new instance of a service

and to remove an existing one, respectively. The LOOKUP operation retrieves the set

of partners of the service instance. GET, QUERY, REPLACE, UPDATE, and SUB-

SCRIBE all deal with the state of the service. These operations can be used to retrieve

or modify either the complete state or parts of it. Furthermore, the SUBSCRIBE oper-

ation is used to subscribe for a notification when the state changes. This operation has

a bitmask parameter, where each bit corresponds to a state variable. A bit set in the

Table 1. Operations supported by uDSSP

Operation Description

CREATE Creates a new service instance

DROP Removes the service instance

LOOKUP Retrieves the partner services

GET Retrieves the complete state

QUERY Retrieves parts of the state

REPLACE Replaces the complete state

UPDATE Replaces parts of the state

SUBSCRIBE Subscribes to state changes

SUBMIT Calls an exposed function

Table 2. Example service definition

Item Values

Service name ShowerDetectionService

Service ID 0x45218A74

State Bool Showering
UInt16 HumidityLevel

Functions -

Partner services -

Programming Sensor Networks with State-Centric Services

mask indicates that the client wants to be notified upon any modification of the corre-

sponding subset of the state. Such a bitmask is also used to select variables with

QUERY and UPDATE. Because of the limited capabilities of sensor nodes, we se-

lected this simple but efficient model. The last operation is the SUBMIT operation. It

is used to call a function that has been exposed by the service which is not directly

related to the service’s state. This mechanism is similar to remote procedure calls and

web services.

3.3 Message Encoding

uDSSP messages are encoded in a binary format that is based on the service defini-

tion. Since we assume that two communicating services share knowledge about the

service definition, the messages do not include any metadata but are just the concate-

nation of the data fields. In fact, the payload of some responses can only be decoded if

the service specification and the original request are known. Compared to binary

encodings of XML such as CBXML [13] this scheme reduces data size even more.

For instance, the size of an example QUERY message (excluding the headers of

layers below) is just 14 bytes. In contrast, a SOAP-based DSSP message with similar

functionality has more than 900 bytes even if each identifier consists just of a single

byte (as suggested to reduce the size of web service requests [12]).

4 Using the Programming Model

In this section, we describe our programming model in more detail. First, we explain

how a service is defined, what the compile-time tools generate from that definition,

and how the service is implemented. Then we describe uDSSP’s standard service and

how an application is composed.

4.1 Defining Services

For our programming model, it is important to explicitly specify the state and inter-

face of a service. The format of this description, however, is not a key component of

our approach. In our implementation, a service is defined in a custom XML format.

Table 2 shows an example for the information contained in such a service defini-

tion. The name of the service (“ShowerDetectionService”) is used to refer to the ser-

vice in the source code. The ID, in contrast, is a (random) 32-bit value that is used to

identify the service type in network messages. Both the name and the ID have to be

unique in an application. While the ID identifies the service type and the correspond-

ing message format (i.e., its interface), the service name is used to identify the imple-

mentation in the source code. At runtime, there can be several instances of a service

running on a single node. Each instance is identified by the combination of the node’s

address, the service ID, and an automatically assigned instance number.

Besides simple data types such as integers of various lengths, uDSSP currently

supports structs, arrays, and strings. In the example, the state consists of the “Shower-

ing” and “HumidityLevel” variables. No functions are exposed by this service.

A. Lachenmann et al.

4.2 Code Generation

A compile-time tool generates source code (C or C#) from the service definition.

First, it generates the service-specific part of the runtime system. This code is respon-

sible for message encoding and decoding as well as for handling all requests. If possi-

ble, it replies to the request without requiring interaction of user-created code.

Second, the code generator creates a client proxy for the service. Another service

can bind this proxy to a specific instance and invoke operations on it. As the counter-

part of the service-specific part of the runtime system, the proxy deals with communi-

cation. The user of the service only has to call a simple function of the proxy.

Finally, the code generator creates a template of the service implementation. The

developer just has to fill the function prototypes given there. Those include the func-

tions exposed in the service definition as well as callbacks that are invoked by the

runtime system when some operations are performed. For example, the service can

react to the case when no subscriber is present any longer and stop sampling data. If

these callbacks are not needed, they can be left empty.

4.3 Implementing a Service

Reacting to events from the runtime system, adding the functionality of the service,

and updating the state are the only parts the developer has to write. Common tasks,

such as communicating with other services are handled by the runtime system.

Fig. 2 shows parts of a service implementation for the .NET Micro Framework.

The implementations for Mantis and Contiki vary slightly because they are not object-

oriented. The service is the ActivityLevelService, which determines the activity of an

public class ActivityLevelService : ActivityLevelServiceStub {

/// Called when the service instance is created

 override protected void OnCreate(ServiceReference[] partners) {

 srProxy = new SensorReaderServiceProxy(this);

 srProxy.Bind(LOCAL_HOST, 0);

 srProxy.Notification += new SensorReaderServiceEventHandler

 (SensorData);

 SensorReaderServiceMask mask = new SensorReaderServiceMask();

 mask.HaveAccelX = true;

 mask.HaveAccelY = true;

 mask.HaveAccelZ = true;

 srProxy.Subscribe(mask, 0, 0, 100);

 }

 /// Notification called with new sensor data

 void SensorData(SensorReaderServiceProxy sender,

 SensorReaderServiceEventArgs e) {

 activityLevel = ComputeActivityLevel(e.State.accelX,

 e.State.accelY, e.State.accelZ);

 ActivityLevelServiceMask mask = new ActivityLevelServiceMask();

 mask.HaveActivityLevel = true;

 NotifyUpdate(mask);

 }

 ...

}

Fig. 2. Sample of a .NET service implementation

Programming Sensor Networks with State-Centric Services

elderly person based on accelerometer data. The “OnCreate” function is called when

instantiating the service. As specified with the “mask” variable, it subscribes to the

three axes of acceleration data of the SensorReaderService on the same host.

“SensorData” is the function registered for receiving the notifications of the Sen-

sorReaderService. Here the service computes the activity level and notifies its sub-

scribers of the state change. The “mask” parameter tells the subscribers which part of

the state has been modified. Rather than sending automatic notifications after each

change, the developer has to call the “NotifyUpdate” function in order to make sure

that subscribers are only notified when the data is in a consistent state. The user code

just modifies local variables and calls functions of the runtime system and proxies.

To simplify application development, all calls to other services are blocking.

Therefore, the developer does not have to deal with replies that arrive asynchronous-

ly. The matching to the request is done by the runtime system. If no reply arrives, the

blocking functions return with an error after a timeout. Since .NET and Mantis sup-

port multithreading, the implementation of synchronous communication is straight-

forward there. For Contiki, each such call is a so-called protothread [14].

4.4 Composing an Application

An application is composed by combining instances of services running throughout

the network. As shown in Fig. 2, a connection between two services is created by

instantiating a proxy and binding it to a service instance. The example refers to a

static node address (in this case the local node). However, using the Discovery and

Metadata Services (see Section 4.5), it is also possibly to find such partner services at

runtime. Then it can, e.g., subscribe to all temperature services in the living room.

Other than binding to an existing instance, a service can use the proxy to create a

new service instance – if the code for executing it is installed. In that case, it can pass

references to other services as parameters. This way a generic service can be reused

unmodified without the need for adding references to specific nodes in the code.

4.5 Standard Services

A key component of uDSSP is that it includes a set of standard services that we ex-

pect to be useful for many applications. We identified the following services by build-

ing several non-trivial applications:

Discovery Service: The Discovery Service detects nodes that have joined or left

the network. Subscribers of this service can react to changes in the network and query

more information from new nodes using the Directory Service and the Metadata Ser-

vice. The Discovery Service is fully implemented on nodes with sufficient resources.

On resource-constrained Mantis and Contiki nodes, it refers to another node.

Directory Service: The Directory Service keeps track of all service instances run-

ning on the local node. It returns their service IDs and instance numbers. More infor-

mation can be retrieved by sending a LOOKUP request to the service instance.

A. Lachenmann et al.

Metadata Service: The Metadata Service links a node to the physical environment

it is deployed in. It provides information about the sensor node’s identity, capabilities

and location. The user can set the metadata upon deployment.

Deployment Service: The Deployment Service is used for installing new services

on a node at runtime (assemblies for .NET or dynamically linked ELF files for Conti-

ki and Mantis). Since each node potentially executes different services, uDSSP cannot

leverage existing code distribution mechanisms.

5 Evaluation

In this section, we present evaluation results from experiments with real sensor nodes.

We present results about the memory footprint of uDSSP and its performance. Fur-

thermore, we describe how uDSSP can be used in real-world applications and how it

compares to other approaches.

5.1 Memory Footprint

Table 3 shows an overview of the memory consumption of uDSSP. These numbers

are just the size of the runtime itself; they exclude the operating system, the network

stack, and services. The Mantis and Contiki implementations consume just 10-13 KB

of program memory and 1.1-2.2 KB of RAM. The Mantis implementation consumes

more RAM since this number already includes the reserved stack space for the uDSSP

threads. In Contiki, our implementation is based on stack-less protothreads [14]. In-

stead, since protothreads cannot use local variables, some (reentrant) functions use

pointers to store their state in variables passed as parameters. This and the use of IPv6

with its longer addresses increase the code size of the Contiki implementation. For the

.NET Micro Framework implementation size limitations are less stringent because it

is executed on less constrained devices. Even there, uDSSP also needs just a few KB.

If services are added, the service-specific part of the runtime system consumes at

least 2-3 KB of program memory. However, the actual size and also the size in RAM

largely depend on the service itself. For example, the CabinetOpenedService, which

will be described in Section 5.3.1, needs 2.6 KB of program memory on Mantis. If not

the full functionality of uDSSP is needed, both the size of the runtime system and the

size of the generated code can be reduced further by deactivating optional functionali-

ty with ifdefs.

5.2 Performance of the Runtime System

Although we expect that services typically do not send requests at a high rate, the

time for processing requests gives a good indication about the performance of

Table 3. Memory size of the runtime (in bytes)

 Program memory RAM

Mantis 10,180 2,188

Contiki 13,055 1,108

.NET MF 44,808 5,346

Programming Sensor Networks with State-Centric Services

uDSSP’s runtime system. To get these numbers, we repeatedly executed a GET re-

quest for arrays of different sizes. Although the results shown here are limited to GET

requests, the performance of the other request types supported by uDSSP are similar.

For example, a local QUERY request takes about 1% longer than the GET request

since the bitmask has to be included in the request and evaluated by the receiver.

Fig. 3 shows the results for requests within a single node. The Mantis and Contiki

services were run on a TelosB node whereas the .NET Micro Framework implementa-

tion was executed on an Imote2. With increasing sizes of the state, the delay grows

slightly by approximately two milliseconds. We attribute the difference between Man-

tis and Contiki to the use of IPv6 addresses in the Contiki implementation. In a real

application that includes some other functionality, the difference would be smaller.

For remote requests, the processing time largely depends on the bandwidth of the

radio channel and the MAC layer protocol. Since uDSSP is independent of those low-

level communication mechanisms, these results are not meaningful to evaluate the

performance of our runtime system. To give a general idea of the performance, de-

pending on the platform and the size of the request, the processing time for a request

to a node in the local neighborhood was measured between 29 and 43 ms.

Using Contiki’s online energy estimation mechanism [15], we measured the energy

overhead of an application on TelosB that sends a notification to a neighboring node

every minute. Compared to a highly optimized, non-uDSSP application that imple-

ments the same functionality with a simple best-effort network protocol, the overhead

of uDSSP is less than 0.07 mW, which should be negligible for most applications.

5.3 Case Studies

In this section we present two applications we have implemented with uDSSP. We

use the first one to compare uDSSP with other programming models and the second

application to show that it can be used to implement a wide variety of real-world

applications. Both scenarios have been taken from the WASP project [16].

Fig. 3. Time in milliseconds for processing a

local GET request, including (almost invisibly

small) 95% confidence intervals

Fig. 4. Activities detected by the elderly care

application

A. Lachenmann et al.

5.3.1 Elderly Care

With an aging population, improving care in the home of elderly people – instead of

having them move to a nursing home – becomes more and more important. By moni-

toring their activities of daily living, sensor networks can help elderly people living

alone and give their relatives the comforting information that they are doing well.

Fig. 1 in Section 3.1 shows the general architecture of the corresponding uDSSP

application. The patient has a body-worn sensor node with an accelerometer to moni-

tor the overall activity (e.g., attached to a wireless emergency button around the

neck). We have selected an Imote2 for this part because it has more processing re-

sources. Besides the body-worn node, the application consists of additional sensors

nodes that are deployed throughout the home (e.g., TelosB nodes). We assume sensor

nodes to be deployed in the kitchen, the dining room, and the bathroom. Using the

input from these sensors, our application can detect if the patient is preparing a meal,

eating, or showering. With the modular approach of uDSSP, this application could be

easily extended with additional services.

The CabinetOpenedService sends a notification when the fridge or a cabinet in the

kitchen has been opened. Our implementation of this service simply uses the light

sensor which is available on most sensor nodes today. The PresenceService uses a

pressure-sensitive foil on a chair to detect if somebody is sitting there. The Show-

erDetectionService is deployed on nodes in the bathroom. If the humidity level is

above a threshold, it assumes that somebody is having a shower. All of these services

just notify their subscribers of state changes and do not send their raw data. Unlike

scientific monitoring applications such as habitat monitoring, the users of this applica-

tion are not interested in the raw sensor data. Therefore, it is sufficient if the services

send messages when they detect an event and can truly benefit from in-network pro-

cessing.

The application makes use of uDSSP’s discovery functionality to incorporate sev-

eral instances of each of these services. Using the standard services such as the Direc-

tory Service and the Metadata Service (see Section 4.5), it discovers services (e.g., the

CabinetOpenedService) on all nodes and determines in which room the nodes have

been deployed. Only if the location fits the expected room (i.e., in this case the kitch-

en), it subscribe to this service.

On the body-worn node, the SensorReaderService provides the data from the sen-

sor board – in our case the acceleration values only – to the subscribers. The Activ-

ityLevelService samples data at a frequency of 10 Hz, adds the values for the three

axes of each sample together, and periodically computes the variance of the values.

The results give a good indication of the patient’s level of activity [17]. Finally, the

ADLDetectionService uses the activity values and information from sensor nodes in

the apartment to determine the patient’s activities of daily living. For this purpose, it

implements some simple rules such as if the fridge and the cabinets in the kitchen

have been opened, the patient probably prepares a meal. The GUI subscribes to ser-

vices running on the sensor node worn by the patient and displays its results.

We deployed this application in an apartment and monitored the activities of the

person living there. Fig. 4 shows an example of the morning activities detected by the

application in this deployment. Using the sensor nodes deployed throughout the

house, the application detects the activities of showering, preparing a meal, and eat-

Programming Sensor Networks with State-Centric Services

ing. Furthermore, it shows the activity level of the person with the body-worn sensor

node. For example, the activity level also shows the reduced movements when the

person sits at the table to eat breakfast. Even with the simple sensors we use, the ap-

plication can give useful hints about the patient’s status and activities.

To compare uDSSP with other approaches, we have implemented (almost) equiva-

lent applications in other programming models: Abstract Regions [9] and Tenet 2.0

[10]. We tried to optimize all versions as much as possible regarding lines of code and

bytes transmitted. The Abstract Regions version does not include support for multi-

hop routing and discovery of other services; each node announces itself only in its

radio range. In the Tenet implementation, cabinet and shower monitoring, which just

check the threshold of a periodic sensor reading, can be easily implemented in Tenet’s

tasking language. However, these small programs are already very close to the maxi-

mum program size supported by Tenet. The complexity of presence detection, which

requires some processing of the sensor signal, was too high to implement in this lan-

guage. Therefore, the raw data has to be transmitted to the less constrained master

node for processing in a C application. Finally, since the activity detection requires

input from other nodes, this functionality is also not supported by Tenet’s tasking

language and has to be implemented on the master node in C. Unlike the size limita-

tions, which could probably be modified, it is a fundamental principle of Tenet that

only the less-constrained master nodes can process input from other nodes.

In Fig. 5 we compare the lines of user-written code to implement the application.

For Abstract Region, these numbers do not include changes that were necessary to its

runtime components in order to support nodes that are part of several regions. For

Tenet, the numbers are quite low on the sensor nodes because the pure functionality

of some nodes is readily available in its tasking language. However, as described

above, some functions cannot be implemented in this language and have to be run on

the master node. Furthermore, since Tenet’s language requires the use of numbered

attributes instead of meaningful variables, writing applications is more error-prone

than the lines of code suggest. uDSSP is somewhere between Abstract Regions and

Tenet. However, compared to Tenet, it provides access to the full functionality of a

node and includes additional support for discovering new nodes. This discovery

mechanism is mostly responsible for uDSSP’s higher numbers for activity detection.

Fig. 6 compares the number of bytes sent in the first 40 minutes in an exemplary

run of the sequence shown in Fig. 4. These numbers only include the bytes sent on the

application layer because the underlying protocols are not important for this compari-

Fig. 5. Lines of code for the elderly care appli-

cation

Fig. 6. Bytes transmitted in the elderly care

scenario

A. Lachenmann et al.

son. For Abstract Regions and uDSSP, the activity node transmits many bytes since

the activity level is sent frequently to the GUI. These numbers are comparatively

small for Tenet because they include only the pure application data in the messages

sent by the C application. Unlike with uDSSP, the GUI application cannot benefit

from the programming model and has to parse the messages manually. On the pres-

ence detection node, the numbers are significantly bigger for Tenet because the node

has to transmit its raw data for processing to a master node.

Abstract Regions has significant overhead for two reasons. First, although we in-

creased the interval from 1 s to 30 s, it still sends periodic beacons to announce itself

to the other nodes in the neighborhood. Second, due to its pull-based data sharing

approach, a node interested in data has to periodically query the data sources. In an

application where data like the result of the shower detection changes very infrequent-

ly, the subscription-based model of uDSSP is preferable.

For uDSSP, these numbers include the overhead for discovering services and for

subscribing to them (about 150 bytes for the cabinet node). In a static network, this is

a one-time overhead. Without that, the shower detection node, for example, just sends

34 bytes. This number is comparable to an optimized manual implementation.

We are convinced that these results can be transferred to other applications. Tenet

is suited well if the resource-limited nodes do only very simple processing and if the

developer switches to its new, unfamiliar programming language. The pull-based

model of Abstract Regions is of advantage if the observed data changes faster than

updates are needed by the nodes interested in this data. uDSSP supports this use case

also well by setting a minimum interval between notifications. Furthermore, it offers a

good compromise between expressiveness of the programming language, complexity

of the source code, and high efficiency for infrequent events.

5.3.2 Livestock Monitoring

Dairy farmers have to deal with claw health problems of their cows. If these problems

are detected early, they can be treated before the cow is seriously impaired. However,

to reduce costs, many farmers have to increase the size of their herds. Therefore, they

have less time to spend with each cow. By continuously monitoring the activities of

the cows with a wireless sensor network, less monitoring by the farmers is needed.

In this application, we focus on two aspects: the proportion of the time the cows

are standing or lying and the number of steps they take. For this purpose, we attach a

Fig. 7. Architecture of the livestock appli-

cation

Fig. 8. Acceleration readings and steps detected

Programming Sensor Networks with State-Centric Services

sensor node with an accelerometer to a leg of each cow. Using the accelerometer as a

tilt sensor, we distinguish between cows that are standing and lying. Furthermore, by

computing the variance of acceleration readings, we detect the steps of a cow.

Fig. 7 shows an overview of the services running in this application. There can be

many sensor nodes present that run such services for one cow. The SensorReader-

Service interfaces with the node’s sensor board. Two services subscribe to the accel-

eration data provided by this service: the CowBehaviorService, which monitors if the

cow stands or lies, and the StepDetectionService, which determines the number of

steps of the cow. These two services subscribe to the SensorReaderService at different

notification rates (1 Hz and 50 Hz, respectively). When the cow is not standing, no

steps have to be detected and the subscription of the StepDetectionService can be

temporarily released. The SensorReaderService is notified of the currently needed

maximum rate and can adjust its sampling rate accordingly. Both processing services

deliver their results to a generic StorageService outside the sensor network. A GUI

application retrieves the data from the storage service and subscribes to it in order to

be notified when new data from a cow arrives. Alternatively, the GUI or an applica-

tion-specific storage service could directly subscribe to the cow services.

To show the practicality of this application, we performed some experiments on a

farm. Since there is always the risk of injuring the animal when attaching or removing

the sensor node, in this application it is important that software updates can be in-

stalled wirelessly. With uDSSP, this is the task of the Deployment Service (see Sec-

tion 4.5). Fig. 8 presents some results of the StepDetectionService and the corre-

sponding raw acceleration data. In this example, there were three steps detected dur-

ing one minute. It should be noted that the raw data shown here has been made avail-

able for testing. To reduce network traffic and energy consumption, the application

only provides access to the behavior and number of steps detected.

6 Conclusions and Future Work

As we have described in this paper, uDSSP provides a programming model and the

corresponding middleware to create applications that do complex in-network pro-

cessing like the applications in Section 5.3. We are convinced that such applications

will be among the first sensor network applications to be widely used. Using the ab-

straction of state-centric services, parts of the application can be developed inde-

pendently and later be combined. Services do not have to deal with the users of their

data. Other services that are interested in the data will be notified automatically or can

retrieve it when needed. With its higher level of abstraction, uDSSP helps the pro-

grammer to focus on the actual functionality of the application.

The runtime system of uDSSP is small and efficient. Furthermore, the evaluation

shows that it is possible to develop a wide range of applications with uDSSP. Compared

to other approaches, uDSSP offers a good compromise of flexibility and efficiency.

With the same programming interface and communication protocols available on

PCs, sensor nodes are no longer simple data suppliers attached to a serial port: They

can invoke services outside the sensor network and fully participate in a network

consisting of sensor nodes and IPv6-capable computers. Therefore, uDSSP will ena-

ble exciting new sensor network applications that integrate with other networks.

A. Lachenmann et al.

Regarding future work, we are planning to add security mechanisms that restrict the

access to nodes and services. Especially if sensitive data like in the elderly care applica-

tion is transmitted, this is necessary for the system to be accepted by the users.

Acknowledgments

This work is partially financed by the European Commission under the Framework 6

IST Project “Wirelessly Accessible Sensor Populations (WASP)”.

References

1. Nielsen, H. F., Chrysanthakopoulos, G.: Decentralized Software Services Protocol –

DSSP/1.0. [Online] http://purl.org/msrs/dssp.pdf.

2. Dunkels, A., Grönvall, B., Voigt, T.: Contiki - a Lightweight and Flexible Operating System

for Tiny Networked Sensors. In: Proc. of the Worksh. on Embedded Netw. Sensors. (2004)

3. Bhatti, S., et al.: MANTIS OS: An Embedded Multithreaded Operating System for Wireless

Micro Sensor Platforms. Mobile Networks and Applications, 10, (2005) 563-579.

4. Gay, D., et al.: The nesC language: A holistic approach to networked embedded systems. In:

Proc. of the Conf. on Programming Lang. Design and Impl. (2003) 1-11.

5. Madden, S. R., et al.: TinyDB: An acquisitional query processing system for sensor

networks. ACM Trans. Database Syst., 30, (2005) .

6. Li, S., et al.: Event Detection Services Using Data Service Middleware in Distributed Sensor

Networks. Telecommunication Systems, 26(2-4), (2004) 351-368.

7. Gummadi, R., Gnawali, O., Govindan, R.: Macro-programming Wireless Sensor Networks

using Kairos. In: Proc. of the Conf. on Distrib. Comp. in Sensor Syst. (2005)

8. Costa, P., et al.: Programming Wireless Sensor Networks with the TeenyLime Middleware.

In: Proc. of the Int'l Conf. on Middleware. (2007)

9. Welsh, M., Mainland, G.: Programming Sensor Networks Using Abstract Regions. In: Proc.

of the 1st Symp. on Networked Systems Design and Implementation. (2004) 29-42.

10. Gnawali, O., et al.: The Tenet Architecture for Tiered Sensor Networks. In: Proc. of the

Conf. on Emb. Netw. Sensor Syst. (2006) 153-166.

11. Chan, S., et al.: Devices Profile for Web Services. (2006)

12. Priyantha, N. B., et al.: Tiny Web Services: Design and Implementation of Interoperable

and Evolvable Sensor Networks. In: Proc. of the Conf. on Emb. Netw. Sensor Syst. (2008)

253-266.

13. Conner, M.: CBXML: Experience with Binary XML. In: W3C Workshop on Binary

Interchange of XML Information Item Sets . (2003)

14. Dunkels, A., et al.: Protothreads: Simplifying Event-Driven Programming of Memory-

Constrained Embedded Systems. In: Proc. of the Int'l Conf. on Emb. Netw. Sensor Syst.

(2006) 29-42.

15. Dunkels, A., et al.: Software-based On-line Energy Estimation for Sensor Nodes. In: Proc.

of the Worksh. on Embedded Networked Sensors. (2007)

16. WASP consortium: WASP project web site. [Online] http://www.wasp-project.org/.

17. Lo, B., et al.: Real-Time Pervasive Monitoring for Postoperative Care. In: Proc. of the

Worksh. on Wearable and Implantable Body Sensor Networks. (2007) 122-127.

