
Pipelined Back-Propagation for Context-Dependent Deep Neural Networks

Xie Chen1,3, Adam Eversole2, Gang Li1, Dong Yu2, and Frank Seide1

1Microsoft Research Asia, Beijing, P.R.C.
2Microsoft Research, Redmond, USA

3Department of Electronic Engineering, Tsinghua University, 10084 Beijing, P.R.C.
{adame,ganl,dongyu,fseide }@microsoft.com

Abstract
The Context-Dependent Deep-Neural-Network HMM, or CD-
DNN-HMM, is a recently proposed acoustic-modeling tech-
nique for HMM-based speech recognition that can greatly out-
perform conventional Gaussian-mixture based HMMs. For ex-
ample, a CD-DNN-HMM trained on the 2000h Fisher corpus
achieves 14.4% word error rate on the Hub5’00-FSH speaker-
independent phone-call transcription task, compared to 19.6%
obtained by a state-of-the-art, conventional discriminatively
trained GMM-based HMM.

That CD-DNN-HMM, however, took 59 days to train on a
modern GPGPU—the immense computational cost of the mini-
batch based back-propagation (BP) training is a major road-
block. Unlike the familiar Baum-Welch training for conven-
tional HMMs, BP cannot be efficiently parallelized across data.

In this paper we show that thepipelined approximation to
BP, which parallelizes computation with respect tolayers, is
an efficient way of utilizing multiple GPGPU cards in a single
server. Using 2 and 4 GPGPUs, we achieve a 1.9 and 3.3 times
end-to-end speed-up, at parallelization efficiency of 0.95 and
0.82, respectively, at no loss of recognition accuracy.
Index Terms: speech recognition, deep neural networks, paral-
lelization, GPGPU

1. Introduction
In this paper, we investigatepipelined back-propagation[1] for
multi-GPGPU parallelization of training of deep neural net-
works, specificallyContext-Dependent Deep Neural Network
Hidden Markov Models, or CD-DNN-HMMs.

The CD-DNN-HMM [2, 3] is a recent acoustic-modeling
technique for HMM-based speech recognition that can great-
ly outperform conventional Gaussian-mixture based HMMs.
Like the ANN-HMMs of the 90’s [4], CD-DNN-HMMs replace
GMMs by an artificial neural network, but they differ in signifi-
cantly increased network depth (7 or more hidden layers) and in
that theydirectlymodel tiedcontext-dependentstates (senones)
[5, 2] instead of factorizing the networks [6, 7]. [2] and [3]
achieved relative error reductions of up to 33%.

However, a blocking factor for the wide-spread use of CD-
DNN-HMMs are the large training times.

Conventional GMM-based HMM training is easily paral-
lelizable. Its familiar (Extended) Baum-Welch training consists
of statistics collection that can be parallelized easily over hun-
dreds or even thousands of servers because all speech utterances
are processed independently. At the end of a batch of typically
hundreds of millions of frames, partial statistics from all servers
are merged, and an updated model is distributed to the servers.

CD-DNN-HMMs, on the other hand, are trained with back-
propagation, which involves a full model update after each

minibatch of only a few hundred frames.1 The required band-
width makes parallelization across hundreds of servers pro-
hibitive. However, a smaller-scale, cost-effective solution exists
in the form of GPGPUs (general-purpose graphics processing
units), which are used by most literature on DNNs.

In this paper, we aim to capitalize on servers withmulti-
ple GPU cards—two or four23—through the use ofpipelined
back-propagation[1], where different layers are computed on
different GPUs in parallel, approximating model updates with
delayed data. This raises two issues with CD-DNN-HMMs.

First, the error from the delay grows with network depths—
will it still work for a large deep network of 7 hidden layers?
Under which conditions? Secondly, a CD-DNN-HMM’s output
layer can be significantly larger than the other layers, making
näıve pipelined BP inefficient. We address this by combining
it with model striping, and show that in this combination, it is
indeed efficient and effective for learning CD-DNN-HMMs.

2. The Context-Dependent
Deep Neural Network HMM

A deep neural network (DNN) is a conventional multi-layer
perceptron (MLP, [10]) with many hidden layers (such as 7 or
9). This section recaps the CD-DNN-HMM and its training by
back-propagation, and discusses the question of minibatches.

2.1. Multi-Layer Perceptron

An MLP as used in this paper models the posterior probabil-
ity Ps|o(s|o) of a classs given an observation vectoro, as a
stack of(L + 1) layers of log-linear models. The firstL layers,
` = 0...L − 1, model posterior probabilities of hidden binary
vectorsh` given input vectorsv`, while the top layerL models
the desired class posterior as

P `
h|v(h`|v`) =

N`∏
j=1

ez`
j(v`)·h`

j

ez`
j(v`)·1 + ez`

j(v`)·0
, 0 ≤ ` < L

P L
s|v(s|vL) =

ezL
s (vL)∑

s′ ezL
s′ (v

L)
= softmaxs(z

L(vL))

z`(v`) = (W `)T v` + a` ; v` def
= E`−1{h`−1}

1No successful attempts at full-batch back-propagation of our kind
have so far been published.

2This is of course a far cry from parallelizing over hundreds of
servers, but let us remember that only a few years back, we accepted
that a typical model training would take a few weeks. So we consider
cutting training time from 2 months to 2-3 weeks a very useful result.

3Servers with 2 and 4 GPU cards are fairly standard. 8 GPU cards
is possible but as of yet uncommon.

with weight matricesW ` and bias vectorsa`, whereh`
j and

z`
j(v

`) are thej-th component ofh` andz`(v`), respectively.
Full out-summation over all hidden variables, which is infea-
sible, is approximated by a “mean-field approximation” where
the inputv` to each hidden layer is taken as the expectation of
the output vectorh` of the previous layer.

Unlike earlier ANN-HMM systems, the classess that are
modelled are tied triphone states directly [2, 8, 5]. This is a
critical factor for CD-DNN-HMMs in achieving its unusual ac-
curacy improvements.

Lastly, for use with HMMs, state posteriorsPs|o(s|o) are
converted toscaled likelihoodsby dividing by their prior [4].

2.2. Training by Back-Propagation

We train the MLPs according to the cross-entropy criterion

D =

Tcorpus∑
t=1

log Ps|o(s(t)|o(t)), (1)

by stochastic gradient descent

(W `, a`) ← (W `, a`) + ε
∂D

∂(W `, a`)
, 0 ≤ ` ≤ L,

with learning rateε and gradients

∂D

∂W `
=

∑
t

v`(t) (ω`(t) e`(t))T ;
∂D

∂a`
=

∑
t

ω`(t) e`(t) (2)

eL(t) = (log softmax)′(zL(vL(t)))

e`−1(t) = W ` · ω`(t) · e`(t) for 0 ≤ ` < L

ω`(t) =

{
diag

(
σ′(z`(v`(t))

)
for 0 ≤ ` < L

1 else

with error signals e`(t), the component-wise derivatives
σ′

j(z) = σj(z) · (1 − σj(z)) and (log softmax)′j(z) =
δs(t),j − softmaxj(z), and Kronecker deltaδ. This algorithm
is well-known aserror back-propagation4 [12].

2.3. Minibatch Training—And why it is the Problem

Critically for this paper, due to the highly non-linear nature
of the objective function, reasonable convergence can only be
achieved by performing the above descent inminibatchesof
randomly sampled frames from the training corpus.5 (This is
often combined with a 1st-order “low-pass filter” to smooth the
minibatch gradients, a technique calledmomentum.) Minibatch
sizes of 1000 or less lead to best results in our experiments.

The need to use minibatches of only few hundred sam-
ples is the very root of the parallelization problem: Each mini-
batch requires a model update. Parallelization across data, com-
mon for conventional HMM training, would require prohibitive
bandwidth: For a typical 7-hidden-layer CD-DNN-HMM in
the order of108 parameters, each minibatch would require the
gathering/redistribution of 400 MB worth of gradients and an-
other 400 MB of model parameters, per server. At about 500
ms/minibatch, we get close to the PCIe limit (about 6 GB/s).

4BP can easily get trapped in poor local optima for deep networks.
This can be partially addressed bypre-training, either unsupervised us-
ing Deep Belief Networks [11] or as a supervised layer-building algo-
rithm (Discriminative pre-training [9]). Pre-training is cheap compared
to the main BP stage, and is thus not the subject of this paper.

5Several recent publications report the use of utterances as mini-
batches. We found, however, that that is not a good idea. Frames within
an utterance are highly correlated. In our standard CD-DNN-HMM
setup, utterance training led to a WER loss of 1.4 percentage points.

Figure 1: Relative runtime for different minibatch sizes and
GPU/server model types, and corresponding frame accuracy
measured after seeing 12 hours of data.7

2.4. Effect of Minibatch Size

Other than commonly found in literature, minibatch gradients in
our notation are not averages over the frames of a minibatch, but
the sum (i.e. we don’t divide by the number of frames). This al-
lows to experiment with different minibatch sizes without hav-
ing to adjust the learning rate.

With this, we find that the minibatch size is bounded by two
factors. The upper bound is set by the frequency of model up-
date. Increasing the minibatch size means less model updates,
which can be harmful especially in early iterations.

A lower bound seems not to exist w.r.t. accuracy:Reducing
the minibatch size, even down to 1, does not hurt accuracy in
our experiments. However, GPU computation becomes notably
less efficientdue to poor utilization of computation units. Thus,
we consider minibatch training an optimzation of training time
rather than, say, a means to obtain smoother gradients.

Figure 1 shows runtime and early frame accuracies for dif-
ferent minibatch sizes6 after seeing 12 hours of data.7 The
“Goldilocks zone” is in the range 256 to 1024.

3. Parallelization Strategies
In this section, we will discuss three variants of parallelization
and compare their bandwidth complexity. For that, letK denote
the number of GPUs (for example, 4),T the size of a minibatch
(like 1024),N the dimensions of all hidden layers8, e.g. 2048,
andJ the output dimension (number of senones), e.g. 9304.

3.1. Partitioning the Data (Classic “Map-Reduce”)

The classic map-reduce approach is to split the training data.
While this is suitable for full-batch methods like Baum Welch,
it is not for minibatches of a few hundred or a thousand
frames: For each minibatch, it would require accumula-
tion/redistribution of gradients/models of the dimension of the
entire model to/from a “master” to the otherK − 1 GPUs. On
the shared bus between GPGPUs, bandwidth per minibatch is
ofO(N ·(T + 2(L·N + J)(K − 1))). (A tree-structured com-
munication architecture could reduce the(K−1) to dlog2 Ke.)

3.2. Partitioning the Layer Parameters (Striping)

To avoid the prohibitive gathering and redistribution of model
parameters, an alternative is to partition each layer’s model pa-
rameters (W ` anda`) into stripes and parallelize across these.
Each GPU holds one out ofK vertical stripes of each layer’s
parameters and gradients. In [13], this is called “node paral-

6In later epochs, minibatch size can be relaxed. In actual trainings,
we limit it to 256 for the first 24h of data, and then relax it to, e.g., 1024.

7For the first 2.4 hours, minibatch size was capped at 256.
8For simplicity, we assume all hidden layer dimensions are the same.

In our system, this is true except for the input layer, which is smaller.

Table 1: Bandwidth order per minibatch for three paral-
lelization strategies (T=minibatch size,N=hidden dimensions,
J=output dimension,K=number of GPUs,L hidden layers)
and actual values forL=7, T=1024,K=4, N=2048,J=9304.

parallelization bandwidth e.g.
strategy O(·) [MB]

data partioning N · (T + 2(L ·N + J)(K − 1)) 1116
striped (W `, a`) N · (K − 1) ·T · (2L + 1) 360
pipeline training N ·T · (2K − 1) 56

lelization,” and we used this method in [3], where it achieved
modest 25% speed-up on 2 GPUs.

Model updates (adding the gradient to the model parame-
ters) happens only locally within each GPU: what gets commu-
nicated between GPUs are the frames. In forward propagation,
each layer’s inputv` gets distributed to all GPUs, each of which
computes a slice of the output vectorE`{h`}. The slices are
then distributed to all other GPUs for computing the next layer.
In back-propagation, error vectors are parallelized as slices, but
the resulting matrix products from each slice are partial sums
that need to be further summed up. As a result, in both forward
and back-propgation, each vector is transferredK − 1 times.
Bandwidth is ofO(N · (K − 1) ·T · (2L + 1)) (with dlog2 Ke
possible with tree-structured communication).

3.3. Pipelined Parallelization Across Layers

Pipelined back-propagation [1] is an approximation that avoids
the multiple copying of data vectors of the striping method, by
distributing thelayers themselvesacross GPUs (without strip-
ing) to form a pipeline. Data flows from GPU to GPU. All
GPUs work simultaneously on the data they have. ForK <
L+1, multiple layers are grouped. Each vector travels twice per
GPU, once forward and once for back-propagation. Bandwidth
isO(N ·T ·(2K − 1)). Because the minibatch data needed for
a model update arrives at a delay due to the pipeline roundtrip,
model updates can only usedelayed data—and the deeper the
network, the longer the delay.

Why might this work? Both “momentum” smoothing and
minibatching already incur delays. Consider the last sample
of a minibatch in regular minibatch training: Compared to a
stochastic-gradient training where the model is updated after
each sample, that last minibatch sample operates on a model
that is out of date by (T−1) frames. Yet, both trainings converge
equally well if T is not too large (cf. section 2.4): The effect
of delaying the update by (T−1) frames on that last sample’s
gradient is small enough. If that is so, shouldn’t pipelined BP
also work, as long as long as its delay remains in the order of
known working minibatch sizes of regular minibatch training?

That is indeed what we observe: Pipelined BP does not
harm accuracyif we also reduce the minibatch size. The limiting
factor is the GPU’s inefficiency for small minibatches (Fig. 1).
Experiments also indicate that the most critical delay is that of
the top-most hidden layer; lower layers are more tolerant.

Lastly, näıve pipelined BP is not maximally efficient with
CD-DNN-HMMs because of their significantly larger output
layer. We find that this can be addressed by combining pipelined
BP with striping.

4. Experimental Results
4.1. Setup and Baseline Results

We evaluate CD-DNN-HMMs on the task of speaker-in-
dependent, single-pass speech-to-text transcription using the

Table 2: More training data and model parameters improve
accuracy—but at a cost: Shown are WER and single-GPU
training times (BP) across training setups (L=7 hidden layers.
N=hidden dimensions,J=number of senones).

WER[%] training
Hub5’00 RT03S time

setup SWB FSH [days]

GMM BMMI, 309h SWBD-I 23.6 27.4 -
DNN N=2048,J=9304 17.1 19.8 5.4
+ J=32k (more senones) 16.4 19.5 11.5
+ DNN re-alignment 15.8 18.9 19.8

(rel. change from GMM) (-33%) (-31%)

GMM BMMI, 2000h Fisher 21.7 23.0 -
+ fMPE 19.6 20.5 -
DNN N=2048,J=32k 14.9 16.0 39.1
+ N=3072 (larger hidden layers) 14.4 15.6 58.8

(rel. chg. from fMPE GMM) (-27%) (-24%)

Switchboard-I and Fisher training sets [14]. The system uses
13-dimensional PLP features with mean-variance normalization
and up to third-order derivatives, reduced to 39 dimensions by
HLDA, and CART-tied crossword triphones.

The GMM-HMM baseline systems for 309h and 2000h
use 9304 and 18004 senones with 40 and 72 Gaussian mix-
tures, respectively, trained discriminatively with BMMI and
MMI+fMPE. The senone and mixture dimensions were opti-
mzied for the Hub5’00 set using maximum-likelihood trained
models. The CD-DNN-HMM system modifies this baseline
only by replacing the GMMs with likelihoods derived from the
MLP posteriors, while leaving everything else the same.

The primary test set is the FSH half of the 6.3h Spring 2003
NIST rich transcription set (RT03S), while the 1831-segment
SWB part of the NIST 2000 Hub5 eval set was used for system
development. The trigram language model was trained on the
2000h Fisher-corpus transcripts and interpolated with a written-
text trigram. Test-set perplexity with the 58k dictionary is 84.

Table 2 shows that our best CD-DNN-HMM trained on 309
hours reduces word errors by about one third—a substantial im-
provement. (This result is slightly better than what we reported
in [3] due to increased model size.) Compared to [3], we now
also have results for training on the 2000h Fisher corpus. Com-
pared to a BMMI-trained baseline GMM system, error reduc-
tion is also one third. When the baseline itself is further en-
hanced with fMPE9, the reduction is still in the order of one
fourth (from 19.6 and 20.5 to 14.4 and 15.6%, respectively. We
believe that this is one of the best published results for single-
pass speaker-independent recognition on this task.

4.2. Training Cost vs. Achievable Accuracy

The good results, especially on the large training set, come at
considerable cost. Table 2 shows results for various training se-
tups, and their training times on a NVidia Tesla S2070 GPU, il-
lustrating the need for speeding up the training. 9304 senones is
the optimal number for the GMM, but we see that for the DNN,
increasing them to 32k yields a healthy WER drop on Hub5’00
(17.1 to 16.4%)—at more than double the training time (11.5
days instead of 5.4). DNN realignment provides another 0.6-
point WER drop, at yet another near-doubling of time.

WER is further improved—over 3 percentage points for the
RT03S-FSH set—by increasing the training data to the 2000h
Fisher set and raising the hidden dimension to 3k, at another

9fMPE arguably is structurally similar to a neural-network layer.

Table 3:Simulation of delayed update in pipelined training, for
the worst-case data delay of one GPU per layer. 309h training,
7 hidden layers, word-error rates in [%] on Hub5’00.

minibatch sizeT
minibatch size 64 128 256 512 1024

regular update 17.1 - - - 17.1
delayed update 17.0 17.0 17.2 17.4 [divergent]

three-fold increase of time. Compared to our starting point,
the model size increases from 45 to 156 million parameters,
yielding a relative 21% error reduction on RT03S-FSH (19.8
to 15.6%) and 16% on Hub5’00. For that last and best model,
we had to face a training time of 59 days.

4.3. Effect of Delayed Update

Pipelined BP approximates BP by using delayed data for model
updates. In this section, we look at whether the method is
amenable to our deep networks of 7 hidden layers, assuming
each model layer resides on a different GPU. With respect to
the delay, this is the worst case. This is a simulation to measure
the accuracy impact; we do not actually have such hardware.

Table 3 shows the impact of delayed updating on accu-
racy for increasing minibatch sizesT . For better convergence,
each training was initialized with regular (non-delayed) BP for
24 hours of data. We see that delayed update causes a 0.1-
point degradation forT=256. Here, the lowest layer gets up-
dated with a delay of 13 minibatches, that is 3328 frames. For
T=512, the degradation is 0.3 points (and there is a visible
loss of training-set frame accuracy, from 56.1% to 55.5%). For
T=1024, training diverges.

It is apparent that any speed-up from parallelization will
be a trade-off between accuracy loss (too largeT) vs. GPU ef-
ficiency (too smallT). Our real hardware, however, has less
GPUs (max. 4), and thus less delay, reducing this problem.

4.4. Parallelized Training on Multiple GPGPUs

Table 4 shows training runtimes using up to 4 GPUs (NVidia
Tesla S2090) in a single server (Dell PowerEdge T620), mea-
sured forL=7 hidden layers,N=2048 hidden dimensions, and
J=9304 senones. (The baseline runtime is about 30% better
than Table 2 because of newer hardware and software improve-
ments of device synchronization and data transfers).

Going to dual GPUs (K=2), we find that forstriping, which
in our earlier work [3] yielded a 25% speed-up on C1060 GPUs,
we actually observe aslowdownon the newer S2090s.10

Pipelined BP, on the other hand, yields very good speed-
ups of 1.7 to 1.9 on dual GPUs (e.g. reducing runtime from 61 to
33 minutes forT=512), at no accuracy loss despite its delayed-
update approximation. We found, however, that for the largest
minibatch size (T=1024), convergence could only be achieved
by grouping the top hidden layer together with the output layer,
such that the top hidden layer has no delayed update.

Going toK=4 GPUs barely helps: The overall speed-up
remains below 2.2 (e.g. 61 vs. 29 min). This is because the
output layer is 4.5 times larger (9304× 2048 parameters) than
the hidden layers (20482), and is thus the limiting bottleneck.

We solve this by combining pipelined BP with the striping
method, which we apply only to the output layer. Two GPUs
now jointly form the top stage of the pipeline, while the lower

10The striping runtimes in Table 4 are estimates, extrapolating from
tests done with less optimized software that is about 15% slower.

Table 4: Training runtimes in minutes per 24h of data for dif-
ferent parallelization configurations. [[·]] denotes divergence,
and [·] denotes a WER loss> 0.1% points on the Hub5 set.

#GPU minibatch sizeT
parallelization method K 256 512 1024

none (baseline) 1 68 61 59

striping10 2 - 6710 7510

pipeline training (0..6; 7) 2 40 34 [[33]]
vs. (0..5; 6..7) 2 36 33 31
vs. (0..2; 3..4; 5..6; 7) 4 32 29 [27]

pipeline + striped top layer 4 20 18 [[18]]

7 layers are pipelined on the other two GPUs. At no WER
loss, our fastest pipelined system (T=512, 18 min) runs 3.3
times faster on 4 GPUs than our fastest single-GPU baseline
(T=1024, 59 min), a parallelization efficiency of 82%.

5. Conclusion
We have taken a practical step towards parallelizing the back-
propagation algorithm used for our deep-neural-network train-
ing. The focus was on making best use of multiple GPUs inside
a single compute server. The familiar “map-reduce” over input
utterances is not suitable for minibatch BP due to its immense
bandwidth requirements.

We have shown thatpipelined back-propagation, which up-
dates models withdelayed dataand thereby allows to compute
network layers concurrently, is effective and efficient for deep
neural networks. This required to adjust the minibatch size, and,
for 4 GPUs, to combine it with model striping to address the
layer-size imbalance. At no accuracy loss, we achieved a 3.3
times speed-up on 4 GPUs—a 82% parallelization efficiency.

6. References
[1] Alain Pétrowski et al., “Performance Analysis of a Pipelined

Backpropagation Parallel Algorithm,” IEEE Trans. Neural Net-
works, Vol. 4, No. 6, Nov. 1993.

[2] D. Yu, L. Deng, and G. Dahl, “Roles of Pretraining and
Fine-Tuning in Context-Dependent DNN-HMMs for Real-World
Speech Recognition,” Proc. NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, Dec. 2010.

[3] F. Seide, G. Li, and D. Yu, “Conversational Speech Transcription
Using Context-Dependent Deep Neural Networks,” Proc. Inter-
speech, Florence, 2011.

[4] S. Renals, N. Morgan, H. Bourlard, M. Cohen, and H. Franco,
“Connectionist Probability Estimators in HMM Speech Recogni-
tion,” IEEE Trans. Speech and Audio Processing, January 1994.

[5] B. Kingsbury, “Lattice-based Optimization of Sequence Clas-
sification Criteria for Neural-Network Acoustic Modeling,”
Proc. ICASSP, Taipei, 2009.

[6] H. Francoet al., “Context-Dependent Connectionist Probabilty
Estimatation in a Hybrid Hidden Markov Model–Neural Net
Speech Recognition System,” Computer Speech and Language,
Vol. 8, pp. 211–222, 1994.

[7] J. Fritschet al., “ACID/HNN: Clustering Hierarchies of Neural
Networks for Context-Dependent Connectionist Acoustic Model-
ing,” Proc. ICASSP, Seattle, 1998.

[8] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-Dependent
Pre-Trained Deep Neural Networks for Large Vocabulary Speech
Recognition”, IEEE Trans. Speech and Audio Proc., Special Issue
on Deep Learning for Speech and Lang. Processing, 2011.

[9] F. Seide, G. Li, X. Chen, and D. Yu, “Feature Engineering in
Context-Dependent Deep Neural Networks for Conversational
Speech Transcription,” Proc. ASRU, Waikoloa Village, 2011.

[10] F. Rosenblatt, “Principles of Neurodynamics: Perceptrons and the
Theory of Brain Mechanisms”, Spartan Books, Wash. DC, 1961.

[11] G. Hinton, S. Osindero, and Y. Teh, “A Fast Learning Algorithm
for Deep Belief Nets”, Neural Computation, Vol. 18, 2006.

[12] D. Rumelhart, G. Hinton, and R. Williams, “Learning Represen-
tations By Back-Propagating Errors,” Nature, Vol. 323, Oct. 1986.

[13] K. Veseĺy et al., “Parallel Training of Neural Networks for Speech
Recognition,” Proc. Interspeech, Makuhari, 2010.

[14] J. Godfrey and E. Holliman, “Switchboard-1 Release 2,” Linguis-
tic Data Consortium, Philadelphia, 1997.

