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Abstract—The recently proposed context-dependent deep
neural network hidden Markov models (CD-DNN-HMMs) have
been proved highly promising for large vocabulary speech recog-
nition. In this paper, we develop a more advanced type of DNN,
which we call the deep tensor neural network (DTNN). The DTNN
extends the conventional DNN by replacing one or more of its
layers with a double-projection (DP) layer, in which each input
vector is projected into two nonlinear subspaces, and a tensor
layer, in which two subspace projections interact with each other
and jointly predict the next layer in the deep architecture. In
addition, we describe an approach to map the tensor layers to
the conventional sigmoid layers so that the former can be treated
and trained in a similar way to the latter. With this mapping we
can consider a DTNN as the DNN augmented with DP layers so
that not only the BP learning algorithm of DTNNs can be cleanly
derived but also new types of DTNNs can be more easily devel-
oped. Evaluation on Switchboard tasks indicates that DTNNs can
outperform the already high-performing DNNs with 4–5% and
3% relative word error reduction, respectively, using 30-hr and
309-hr training sets.

Index Terms—Automatic speech recognition, CD-DNN-HMM,
large vocabulary, tensor deep neural networks.

I. INTRODUCTION

R ECENTLY, the context-dependent deep neural net-
work hidden Markov model (CD-DNN-HMM) was

developed for large vocabulary speech recognition (LVSR)
and has been successfully applied to a variety of large scale
tasks by a number of research groups worldwide [2]–[9]. The
CD-DNN-HMM adopts and extends the earlier artificial neural
network (ANN) HMM hybrid system framework [10]–[12].
In CD-DNN-HMMs, DNNs—multilayer perceptrons (MLPs)
with many hidden layers—replace Gaussian mixture models
(GMMs) and directly approximate the emission probabili-
ties of the tied triphone states (also called senones). In the
first set of successful experiments, CD-DNN-HMMs were
shown to achieve 16% [2], [3] and 33% [4]–[6] relative recog-
nition error reduction over strong, discriminatively trained
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CD-GMM-HMMs, respectively, on a large-vocabulary voice
search (VS) task [13] and the Switchboard (SWB) phone-call
transcription task [14]. Subsequent work on Google voice
search and YouTube data [7] and on Broadcast News [8], [9]
confirmed the effectiveness of the CD-DNN-HMMs for large
vocabulary speech recognition.
In this work, we extend the DNN to a novel deep tensor neural

network (DTNN) in which one or more layers are double-pro-
jection (DP) and tensor layers (see Section III for the explana-
tion). The basic idea of the DTNN comes from the motivation
and assumption that the underlying factors, such as the spoken
words, the speaker identity, noise and channel distortion, and
so on, which affect the observed acoustic signals of speech can
be factorized and be approximately represented as interactions
between two nonlinear subspaces. This type of multi-way in-
teraction was hypothesized and explored in neuroscience as a
model for the central nervous system [15], which conceptually
features brain function as comprising functional geometries via
metric tensors in the internal central nervous system represen-
tation-spaces, both in sensorimotor and connected manifolds.
In DTNN, we represent the hidden, underlying factors by pro-

jecting the input onto two separate subspaces through a double-
projection (DP) layer in the otherwise conventional DNN. We
subsequently model the interactions among these two subspaces
and the output neurons through a tensor with three-way connec-
tions. We propose a novel approach to reduce the tensor layer to
a conventional sigmoid layer so that the model can be better
understood and the decoding and learning algorithms can be
cleanly developed. Based on this reduction, we also introduce
alternative types of DTNNs. We empirically compare the con-
ventional DNN and the new DTNN on the MNIST handwritten
digit recognition task and the SWB phone-call transcription task
[14]. The experimental results demonstrate that the DTNN gen-
erally outperforms the conventional DNN.
This paper is organized as follows. We briefly review the re-

lated work in Section II and introduce the general architecture
of the DTNN in Section III, in which the detailed components
of the DTNN and the forward computations are also described.
Section IV is dedicated to the algorithms we developed in this
work for learning DTNN weight matrices and tensors. The ex-
perimental results on MNIST digit recognition task and SWB
task are presented and analyzed in Section V. We conclude the
paper in Section VI.

II. RELATED WORK

In recent years, an extension from matrix to tensor has been
proposed to model three-way interactions and to improve the

1558-7916/$31.00 © 2012 IEEE



IE
EE

 P
ro

of

W
eb

 V
er

sio
n

2 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 0, NO. 0, 2012

modeling power of neural networks. In this section we briefly
survey the related work.
The tensor-based restricted Boltzmann machine (RBM) was

proposed to model three-way interactions among pixels in
[16] and to model pixel means and covariances in [17]. This
three-way RBM is different from ours in two ways. First, it is
a pure generative model, although it may be discriminatively
fine-tuned, while our DTNN is a discriminative model in
nature. Second, the three-way RBM has only one hidden layer
and the mechanism in its architecture design does not permit
the use of tensor weights in more than one layer stacked one
on top of another. In contrast, our DTNN is designed very
differently, with the goal of naturally embedding the tensor
weights in many stacked hidden layers.
The tensor-based RBMwas later extended to the tensor recur-

rent neural network (RNN) [18]. The tensor-RNN as discussed
in [18], however, is also mainly used as a generative model.
In a separate study reported in [19], a softmax layer was gated

with a hidden factor layer and a tensor was subsequently used
to model the joint interaction among the hidden factors, the in-
puts, and the labels. However, the gated softmax network in-
vestigated in [19] is a less effective shallow model with no ad-
ditional hidden layer other than the hidden factor layer. In addi-
tion, the work of [19] adopted the mixture model which predicts
the classes by summing over all possible hidden factor combi-
nations. The DTNN that we will present in this paper, however,
is a deep network and it predicts the upper layer directly through
the tensor connections as shown in (2) in Section III.
More recent work [20] replaced the single sigmoid hidden

layer with a tensor layer in a deep network where blocks of
shallow networks are used to construct the stacking deep ar-
chitecture and each block in the stacking network consists of
only one hidden layer. In contrast, in the DTNN, there are many
hidden layers, one after the other. In fact any sigmoid layer in the
conventional DNN may be replaced with a tensor layer. While
the technique of converting the tensor layer to a conventional
sigmoid layer in [20] has motivated and facilitated the develop-
ment of DTNN here, it is worth noting that the deep architecture
in [20] had difficulty for large vocabulary speech recognition
tasks since the output units are often limited to a moderate size
due to the special requirement for convexity in part of the net-
work. The DTNN presented in this paper is free from such a re-
striction, combining the virtue of DNN in handling large vocab-
ulary speech recognition tasks that require large senone output
units and the effective technique of handling tensors developed
from [20].
The most recent work reported in [21] presented two versions

of a tensor-based DNN. The first version extended the gated
softmax network of [19] by incorporating the gated softmax
layer into DNNs. However, much like the softmax network in
[19], this version also used a mixture model. The second ver-
sion that also explored tensors as proposed in [21] is closer to
the DTNN to be described in this paper. The main difference
is that the gating factor in [21] was estimated completely sepa-
rately from the main network and was only applied at the output
layer. In contrast, the DTNN integrates all estimation steps of
all parameters including the gating factors in a single, consis-
tent framework.

Fig. 1. Architectural illustrations of a conventional DNN and the corre-
sponding DTNN. (a) DNN. (b) DTNN: hidden layer consists of two
parts: and . Hidden layer is a tensor layer to which the connection
weights form a three-way tensor. (c) An alternative representation of
(b): tensor is replaced with matrix when is defined as the Kronecker
product of and .

In summary, the DTNN presented in this paper differentiates
itself from previous work in that we use DP layers to automati-
cally factorize information which is later combined through the
tensor layers. The distinction also lies in the more flexible in-
corporation of the DP layers and tensor layers into an otherwise
conventional DNN architecture. In addition, our work provides
a unified framework to train DNN, DTNN, and their variants
(which we will call quasi-DTNN; see Fig. 3 in Section III-B)
by mapping the input feature of each layer to a vector and the
tensor to a matrix.

III. ARCHITECTURES OF THE DEEP TENSOR NEURAL NETWORK

The deep tensor neural network (DTNN) is a new type of
DNN. It extends the conventional DNN by replacing one or
more layers with double-projection and tensor layers, which we
will define shortly. In this section we describe the general archi-
tecture of the DTNN.

A. DTNN With Double-Projection and Tensor Layers

Fig. 1 illustrates and compares the conventional DNN with
the DTNN. Fig. 1(a) shows a conventional DNN, whose input is
denoted by , an vector, and the output is , a vector.
Subscript is the layer index. In this conventional DNN, each
hidden layer connects to the next upper layer through a
weight matrix and a bias as

(1)

where are indexes of the hidden units in layers and
, respectively, and is the sigmoid

function applied element-wise.
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Fig. 1(b) is the corresponding DTNN in which hidden layer
is separated into two parts: (a vector) and
(a vector). These two parts connect to hidden

layer (a vector) through the three-way tensor [22]
of dimension , which is represented with a
cube in the figure, according to

(2)

where are indexes of the hidden units in layers ,
and , respectively. If were to function as a speaker de-
tector and were to function as a spectrum pattern detector,
(2) means that for different combinations of speaker and

spectrum pattern a different weight is assigned for
the same detector at next layer.
We call the hidden layer a double-projection (DP) layer

since the information from the previous layer is projected
into two separate subspaces at layer as and .
In this specific case, the DP layer can be considered as
a normal layer where

(3)

Here and are weight matrices connecting the hidden
layer with the DP layer parts and , respectively,
and and are the corresponding bias terms. As we will
see later in this section, however, this is not required and actually
is not the case if all layers are DP layers. The only requirement
for the DP layer is that it is split into two parts.
The hidden layer is called a tensor layer since the previous

layer is a DP layer that connects with through the weight
tensor .
Fig. 1(c) is an alternative view of the same DTNN shown in

Fig. 1(b). By defining , the input to the layer , as

(4)

where is the Kronecker product, and is the column-
vectorized representation of the matrix, we can organize and
rewrite tensor into matrix as represented by a rectangle
in Fig. 1(c). In other words, we now have

(5)

This rewriting allows us to reduce and convert tensor layers
into conventional matrix layers and to define the same inter-
face in describing these two different types of layers. For ex-
ample, in Fig. 1(c) hidden layer can now be considered as a
conventional layer as in Fig. 1(a) and can be learned using the
conventional backpropagation (BP) algorithm. This rewriting
also indicates that the tensor layer can be considered as a con-
ventional layer whose input comprises the cross product of the
values passed from the previous layer.

Fig. 2. Comparing conventional DNN and two equivalent views of a DTNN in
which all hidden layers are DP tensor layers. (a) DNN; (b) DTNN: normal view
where hidden layers are connected through three-way tensors; (c). DTNN: an
alternative view where tensors are replaced with matrices when is defined as
the Kronecker product of and .

Hidden layer , however, is still a DP layer that contains
two output parts and , which in turn are determined by
two separate weight matrices and , in the same way
for Fig. 1(b) and Fig. 1(c).
The DTNN shown in Fig. 1 contains only one DP layer.

However, nothing prevents other layers from being DP layers.
Fig. 2(b) illustrates an example DTNN in which all hidden
layers are DP tensor layers. For example, hidden layer
is also separated into two parts and and connects
to and through tensors and , respectively.
Note that in this DTNN each DP layer projects the input onto
two non-linear subspaces and . The bilinear interaction of
these two projections is then combined as the input feature to
the adjacent higher layer as quantified by (4). By defining input

to hidden layer as

(6)

tensors and can be rewritten as matrices and
as shown in Fig. 2(c). Note that, although all the layers in

Fig. 2(b) can be treated as non-tensor layers after this conver-
sion, they are still DP layers since each layer contains two parts.
To summarize, we can represent DTNNs using two types of

hidden layers: the conventional sigmoid layer and the DP layer.
Each of these hidden layer types can be flexibly placed in the
DTNN. For classification tasks the softmax layer that connects
the final hidden layer to labels can be used in the DTNN, in the
same way as that in the conventional DNN.
Table I summarizes all the forward computations involved in

the DTNN, where the input is always converted and written as
, a column vector, is the weight matrix, is the
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TABLE I
FORWARD COMPUTATIONS IN DTNNS

bias, is a column vector of the softmax layer weight matrix
, and

(7)

is the activation vector given input .
Note that for the DP layer, the output has two parts

(8)

where indexes the part number. The two hidden layer
vectors and may be augmented with ones when gen-
erating the input of the next layer. However, this is unneces-
sary since the same effect may be achieved by setting weights
to 0 and biases to a large positive number for one of the units so
that it always outputs 1.

B. Variants of DTNN

The basic DTNN architecture described above can have a
number of variants, and we describe two of them here. Fig. 3(a)
shows a DTNN variant in which linear activations (i.e., no sig-
moid nonlinearity) and are directly connected to layer
through tensor . Fig. 3(b) is the equivalent architecture

where weight tensor is converted into weight matrix by
defining

(9)

Note that the only difference between the architectures of
Fig. 3(a), 3(b) and those of Fig. 1(b), 1(c) is that the latter uses
a sigmoid non-linearity (as indicated by and instead
of and in the DP layer) before connecting to the next
layer. This provides numerical stability and also incorporates
the former as a special case if the sigmoid function is restricted
to the linear range.
Fig. 3(c) shows another variant of the DTNN in which linear

DP layers are also used but is redefined as

(10)

The difference between this model and that illustrated in
Fig. 1(b), 1(c) is that the sigmoid non-linearity is applied after

Fig. 3. Two additional types of DTNN. (a) DTNN in which the DP layer is
linear (i.e., sigmoid function is not applied). (b) Alternative view of the same
DTNN in (a). (c). a quasi-DTNN in which sigmoid non-linearity is applied to
the Kronecker product of and . This model, although it models a
three-way connection, cannot be represented using a tensor due to the sigmoid
non-linearity applied to the Kronecker product of the two input components.

the Kronecker product instead of being applied to the two indi-
vidual parts of the DP layers. Strictly speaking, the architecture
of Fig. 3(c), while also modeling the relations between two
subspaces and their upper layer, is not a DTNN since we cannot
rewrite and represent it using a tensor. For this reason, we refer
to the architecture of Fig. 3(c) as a quasi-DTNN.

IV. LEARNING ALGORITHMS

We optimize the DTNNmodel parameters by maximizing the
negative cross entropy

(11)

commonly used for the conventional DNN, where N is the total
number of samples in the training set and is the target
probability. When a hard alignment is used is 1 if
the sample’s training label is and is 0 otherwise. Under that
condition, the negative cross entropy is the same as the condi-
tional log-likelihood. The parameters can be learned using the
backpropagation (BP) algorithm.
The gradients associated with the softmax layer and the con-

ventional sigmoid layers are the same as that in conventional
DNNs. More specifically, for the softmax layer

(12)

(13)

where is the weight matrix, is the bias
column vector, and is a error column vector with

(14)
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where is the target probability and is the
model’s predicted probability. For other layers with we
define the error signal .
In the softmax layer, the error can be propagated to the im-

mediately previous layer according to

(15)

Similarly, for the conventional sigmoid layer, we have

(16)

(17)

and

(18)

where is the gradient of the sigmoid
function applied element-wise, and diag(.) is the diagonal ma-
trix determined by the operand.
However, the gradients are more complicated for the DP

layers, which we derive now. Note for the DP layer we have

(19)

where is a identity matrix. is thus a
column vector whose elements are ,

where we assume matrix and vector index is 0 based. This leads
to the gradients

(20)

whose -th element is , and

(21)

whose -th element is .
Note that for the parts

(22)

(23)

and

(24)

By defining we get

(25)

More specifically,

(26)

(27)

where reshapes to a matrix. The
gradients needed for BP algorithm in the DP layers are thus

(28)

(29)

and

(30)

The learning algorithm of the quasi-DTNN is very similar to
that of the DTNN derived and presented above. The main differ-
ence is that for the DP layers in the quasi-DTNN, the gradients
now become

(31)

(32)

(33)

and

(34)

V. EXPERIMENTAL RESULTS

In this section, we compare the DTNN with the conventional
DNN on the MNIST handwritten digit recognition task and two
Switchboard large vocabulary speech recognition tasks.
To specify a DTNN we use the notation of two numbers en-

closed in a pair of parentheses to denote the size of the DP layer.
As an example, (96:96) denotes a DP layer with 96 units in each
of the two parts. Thus, denotes a DTNN
that contains a DP layer with 64 units in each part, followed by 4
conventional sigmoid hidden layers each of which has 2 k units.
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TABLE II
COMPARE SINGLE HIDDEN LAYER NEURAL NETWORKS WITH AND WITHOUT
USING DOUBLE-PROJECTION AND TENSORS IN THE HIDDEN LAYER ON MNIST

DATASET

A. MNIST Handwritten Digit Recognition Task

The MNIST dataset [23] contains binary images of hand-
written digits. The digits have been size-normalized to fit in a
20 20 pixel box while preserving their aspect ratio and cen-
tered in a 28 28 image by computing and translating the center
of mass of the pixels. The task is to classify each 28 28 image
into one of the 10 digits. TheMNIST training set is composed of
60,000 examples from approximately 250 writers, out of which
we randomly selected 5,000 samples as the cross validation set.
The test set has 10,000 patterns. The writers of the training set
and test set are disjoint.
Our goal of using the MNIST dataset is to quickly check

whether DP and tensor layers indeed have better modeling
power than conventional sigmoid layers and to evaluate
whether we should choose DTNNs or quasi-DTNNs. For this
reason, we have used single hidden layer neural networks with
a relatively small number of hidden units. More specifically,
we have used a conventional shallow network with the con-
figuration 784-130-10 and the tensor and quasi-tensor shallow
networks with the configuration of 784-(50:50)-10. We chose
these configurations to ensure that they have a similar number of
parameters, which is
and , respec-
tively, for the 784-130-10 and 784-(50:50)-10 configurations.
We initialized weights randomly and ran 10 experiments on

each configuration. The training was carried out using stochastic
gradient ascent, taking a learning rate of 0.1 per sample for the
first 5 sweeps and 0.05 per sample afterwards. The training stops
when the error rate measured on the development set increases.
The classification results are summarized in Table II. It is clear
that both tensor and quasi-tensor layers help reduce the error
rate over the conventional sigmoid hidden layers (shaded row
in the table). Note that tensor and quasi-tensor layers give sim-
ilar error rates on this same configuration. However, we have
noticed that quasi-tensor layers are in general more likely to di-
verge in training if model parameters are not correctly initialized
or the learning rate is not properly chosen. This is likely because
multiplying two real valued numbers may send an unbounded
learning signal. For this reason we apply only DTNNs to speech
recognition tasks which take much more time to train.

B. SWB 30-hr Speech Recognition Task

The training and development sets in the SWB 30-hr task con-
tain 30 hours and 6.5 hours of data randomly sampled from the
309-hour Switchboard-I training set. The 1831-segment SWB
part of the NIST 2000 Hub5 evaluation set (6.5 hours) was used
as the test set. To prevent speaker overlap between the training
and test sets, speakers occurring in the test set were removed
from the training and development sets.

TABLE III
COMPARING THE EFFECT OF DIFFERENT DTNN CONFIGURATIONS ON THE
SWB 30-hr TASK. DTNNS WERE TRAINED FOR ONLY 10 SWEEPS, IN
WHICH THE FIRST 5 SWEEPS WERE CARRIED OUT USING A LEARNING
RATE OF PER SAMPLE AND THE REMAINING 5 SWEEPS WITH

A LEARNING RATE PER SAMPLE

The system uses a 39-dimensional feature that was reduced
using HLDA from mean- and variance-normalized 13-dimen-
sional PLP features and up to third-order derivatives. The
common left-to-right 3-state speaker-independent crossword
triphones share 1504 CART-tied states determined on the con-
ventional GMM system. The trigram language model (LM) was
trained on the 2000 h Fisher-corpus transcripts and interpolated
with a written text trigram. The test-set perplexity with a 58 k
dictionary is 84. The features, lexicon and LM used in this
study are the same as those used in our earlier work [4]–[6].
The GMM-HMM baseline system has a mixture of 40 Gaus-

sians in each HMM state. It was trained with maximum likeli-
hood (ML) and refined discriminatively with the boosted max-
imum-mutual-information (BMMI) criterion. Using more than
40 Gaussians did not improve the ML result.
Both the CD-DNN-HMM and CD-DTNN-HMM systems re-

place the Gaussian mixtures with scaled likelihoods derived
from the DNN and DTNN posteriors, respectively. The input to
the DNN and DTNN contains 11 (5-1-5) frames of the HLDA-
transformed features. The baseline DNN uses the architecture of
429-2048 5-1504. A DTNN whose hidden layers are (96:96)
5 has 21 million parameters, similar to the total number of

parameters in the baseline conventional DNN.
The training was carried out with tied-triphone state labels

generated using the ML-trained CD-GMM-HMM system. In
our experiments, the conventional DNNs were pre-trained with
the DBN-pretraining algorithm [24] before they were fine-tuned
using the BP algorithm. However, we have not developed sim-
ilar pretraining algorithms for DTNNs. DTNNs were thus
trained using the BP algorithm presented in Section IV starting
from randomly initialized weights. The pretrained DNN model
typically outperforms the randomly initialized DNN model,
with 0.3%–0.5% absolute WER reduction when the number of
hidden layers is 5.
Table III compares the effect of different DTNN configura-

tions on the recognition error rate. To reduce the overall training
time we trained DTNNs for only 10 sweeps, in which the first
5 sweeps were carried out using a learning rate of
per sample and the remaining 5 sweeps with a learning rate of

per sample.
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Note that even with this highly sub-optimal learning strategy,
a DNN with 5 hidden layers (shaded row in the table) already
significantly outperforms the CD-GMM-HMM trained using
the BMMI criterion. The results in Table III are organized so
that all configurations above the shaded line underperform the
conventional DNN and all the configurations below the shaded
line outperform DNN.
Examining Table III, we can make three observations. First,

configuration (96:96) 5 in which all layers are DP tensor
layers performs similarly to the DNN baseline that contains
a similar number of parameters, even though the DNN was
pre-trained while the DTNN was not. Note that due to the na-
ture of the DP layer, the dimension of the hidden layers in the
DTNN is much smaller (under two hundred) than comparable
conventional layers (a few thousand). Second, the configuration
in which only the bottom (first) layer was replaced with the DP
layer (configuration )
performs the worst. We believe this is because much of the in-
formation in the real-valued input is lost when the input feature
is transformed into a (much smaller than 2048
in the conventional DNN) dimension DP layer. Third, the con-
figurations that replace the top hidden layer with the DP layer
(configurations and

) perform the best and
achieve more than 5% relative WER reduction over the DNN.
This is because the top hidden layer is more invariant than the
input layer and thus the information loss caused by using the
low-dimensional DP layer is outweighed by the benefit obtained
by using the tensor layer. The DTNN in which only the middle
hidden layer is a DP layer (configuration

) performs in between.
In Table III we also included the results achieved with the

joint factorized DNN (JFDNN) described in [21]. This is in-
tended to answer the question of whether using a gated softmax
layer [19] on top of a DNN is helpful. The experiment used

factors in the gated softmax layer. It can be seen that
the JFDNNonly slightly outperforms the conventional DNN but
with much longer training time.
To eliminate the possibility that the training strategy adopted

in Table III may favor DTNNs over DNNs, we tuned the
learning strategy, including learning rates and schedule, for
DNNs and used this tuned learning strategy to train DTNNs.
More specifically, DNNs and DTNNs were trained for 15
sweeps, in which the first 9 sweeps were carried out using
a learning rate of per sample and the remaining 6
sweeps with a learning rate per sample. Further in-
creasing the training sweeps does not lead to additional gain on
the development set. In addition, we have compared DNNs and
DTNNs with 7-hidden layers. The new results are summarized
in Table IV. These results further confirm the effectiveness of
the DTNN, with 1.2% and 1.0% absolute, or 4.4% and 3.9%
relative, WER reduction over the DNNs, respectively, for the
five and seven-hidden layer systems.

C. SWB 309-hr Speech Recognition Task

In the SWB 309-hr task, we used the 309-hour Switchboard-I
training set [14]. The feature extraction process is exactly the
same as that described in Section V-B. However, the optimal

TABLE IV
COMPARING DNN AND DIFFERENT CONFIGURATIONS OF DTNN
ON THE SWB 30-hr TASK. THE LEARNING STRATEGY WAS TUNED

FOR DNN AND APPLIED TO DTNN

Fig. 4. The change of training set frame-level cross entropy after each sweep
of the 309-hr training set.

number of CART-tied triphone states determined by the GMM
system is now increased to 9304. We followed the same
procedure as described in [4], [5] to train the conventional
CD-DNN-HMM with the tied-triphone state alignment gener-
ated using the ML-trained CD-GMM-HMM. More specifically,
we swept the training data seven times. We used a learning rate
of per sample for the first three sweeps and
per sample for the remaining four sweeps. The conventional
DNN was pre-trained generatively using the DBN-pretraining
algorithm, but the DTNN was not, although the discriminative
pretraining procedure introduced in [5] could be used. To
prevent divergence, we have used a minibatch size of 128 for
the first sweep and 1024 afterwards. To investigate the gener-
alization ability we tested the model on the 6.3 h Spring 2003
NIST rich transcription set (RT03S) in addition to the Hub5’00
evaluation set. Different from the best results achieved in [4]
which used DNN realignment, the results presented here used
only the alignment generated from the GMM-ML system.
Fig. 4 and Fig. 5 illustrate the training set frame-level cross-

entropy (CE) and senone prediction accuracy, respectively, over
sweeps of the 309-hr training data. It can be seen that initially
the DTNN performs worse than the conventional DNN since the
weights were not pretrained. However, after three sweeps, the
DTNN made up the difference and eventually outperformed the
DNN.
Table V summarizes the word error rate (WER) on this task

using DNN and DTNN. From Table V we can see that the
DTNN still outperforms the DNN, but the gain is smaller with
0.5% absolute or 3% relative WER reduction on the Hub5’00
eval set. This is possibly because a DNN trained with signif-
icantly more data can generalize better even without explicit
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Fig. 5. The change of training set frame-level senone classification accuracy
after each sweep of the 309-hr training set.

TABLE V
COMPARING DNN AND DTNN ON THE SWB 309-hr TASK. WER

ON HUB5’00 AND RT03S EVALUATION SETS

modeling of subspaces and their interactions as intended by the
DTNN. Table V also indicates that when applied to the RT03S
evaluation set, the DTNN outperforms the seven hidden layer
DNN with a 0.4% and 0.5% WER reduction on the FSH and
SW parts, respectively. Compared to the nine-hidden-layer
DNN it performs slightly better on the Hub5’00 evaluation set
and SW part of the RT03S set, but slightly worse on the FSH
part of the RT03S set.

VI. SUMMARY AND CONCLUSIONS

In this paper we have proposed and implemented a novel deep
neural network, the DTNN, which involves tensor interactions
among neurons. This work is in part motivated by tensor net-
work theory in neuroscience, where tensor interactions play a
role in the central nervous system (e.g., [15]).
In a DTNN, at least one layer in the deep architecture is com-

posed of a DP and a tensor layer. The two subspaces represented
by the two parts in the DP layer interact with each other to cover
a product space. We have described an approach to map the
tensor layers to conventional sigmoid layers so that the former
can be treated and trained in a similar way to the latter. With this
mapping we can consider a DTNN as a DNN augmented with
DP layers. As a result, the BP learning algorithm for DTNNs can
be cleanly derived as we presented in Section IV of this paper.
In addition, we have described how the DP and tensor layers

can stack up to form a DTNN in which all layers are DP and
tensor layers. We have also showed how two variants of the
DTNN can be constructed and their weight parameters learned.
We have evaluated different configurations of the DTNN

architecture on the MNIST digit recognition task and on two
SWB tasks using 30 and 309 hours of training data, respec-
tively. The experimental results demonstrate that when the DP
layer is placed at the top hidden layer of the DTNN, it performs

the best and it outperforms the corresponding DNN by 4%–5%
relative WER reduction on the 30-hr SWB task and 3% on the
309-hr SWB task. Our experiments suggest that the proposed
DTNN is especially effective when the training data size is
small.
In this work, we have discovered that DTNN is a very pow-

erful deep architecture capable of representing covariance struc-
ture of the data in the hidden space and thus may show its poten-
tial in modeling noisy speech or speech with high variability. As
our future work, we will investigate to what degree the use of
speaker adapted features as the input to a DTNN would shrink
the gain from using the DTNN over the regular DNN. On the
other hand, we have noticed that having small DP layers may
hurt the performance especially when the DP layer is at the
bottom. However, increasing the DP layer size may significantly
increase the overall model size and thus introduce overfitting
problems. A possible solution is to factorize the weight tensor
using the techniques adopted in [16], [19] to reduce the number
of parameters.
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The Deep Tensor Neural Network With Applications
to Large Vocabulary Speech Recognition
Dong Yu, Senior Member, IEEE, Li Deng, Fellow, IEEE, and Frank Seide, Member, IEEE

Abstract—The recently proposed context-dependent deep
neural network hidden Markov models (CD-DNN-HMMs) have
been proved highly promising for large vocabulary speech recog-
nition. In this paper, we develop a more advanced type of DNN,
which we call the deep tensor neural network (DTNN). The DTNN
extends the conventional DNN by replacing one or more of its
layers with a double-projection (DP) layer, in which each input
vector is projected into two nonlinear subspaces, and a tensor
layer, in which two subspace projections interact with each other
and jointly predict the next layer in the deep architecture. In
addition, we describe an approach to map the tensor layers to
the conventional sigmoid layers so that the former can be treated
and trained in a similar way to the latter. With this mapping we
can consider a DTNN as the DNN augmented with DP layers so
that not only the BP learning algorithm of DTNNs can be cleanly
derived but also new types of DTNNs can be more easily devel-
oped. Evaluation on Switchboard tasks indicates that DTNNs can
outperform the already high-performing DNNs with 4–5% and
3% relative word error reduction, respectively, using 30-hr and
309-hr training sets.

Index Terms—Automatic speech recognition, CD-DNN-HMM,
large vocabulary, tensor deep neural networks.

I. INTRODUCTION

R ECENTLY, the context-dependent deep neural net-
work hidden Markov model (CD-DNN-HMM) was

developed for large vocabulary speech recognition (LVSR)
and has been successfully applied to a variety of large scale
tasks by a number of research groups worldwide [2]–[9]. The
CD-DNN-HMM adopts and extends the earlier artificial neural
network (ANN) HMM hybrid system framework [10]–[12].
In CD-DNN-HMMs, DNNs—multilayer perceptrons (MLPs)
with many hidden layers—replace Gaussian mixture models
(GMMs) and directly approximate the emission probabili-
ties of the tied triphone states (also called senones). In the
first set of successful experiments, CD-DNN-HMMs were
shown to achieve 16% [2], [3] and 33% [4]–[6] relative recog-
nition error reduction over strong, discriminatively trained

Manuscript received May 29, 2012; revised September 01, 2012 and October
24, 2012; accepted November 03, 2012. Date of publication nulldate; date of
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CD-GMM-HMMs, respectively, on a large-vocabulary voice
search (VS) task [13] and the Switchboard (SWB) phone-call
transcription task [14]. Subsequent work on Google voice
search and YouTube data [7] and on Broadcast News [8], [9]
confirmed the effectiveness of the CD-DNN-HMMs for large
vocabulary speech recognition.
In this work, we extend theDNN to a novel deep tensor neural

network (DTNN) in which one or more layers are double-pro-
jection (DP) and tensor layers (see Section III for the explana-
tion). The basic idea of the DTNN comes from the motivation
and assumption that the underlying factors, such as the spoken
words, the speaker identity, noise and channel distortion, and
so on, which affect the observed acoustic signals of speech can
be factorized and be approximately represented as interactions
between two nonlinear subspaces. This type of multi-way in-
teraction was hypothesized and explored in neuroscience as a
model for the central nervous system [15], which conceptually
features brain function as comprising functional geometries via
metric tensors in the internal central nervous system represen-
tation-spaces, both in sensorimotor and connected manifolds.
In DTNN,we represent the hidden, underlying factors by pro-

jecting the input onto two separate subspaces through a double-
projection (DP) layer in the otherwise conventional DNN. We
subsequently model the interactions among these two subspaces
and the output neurons through a tensor with three-way connec-
tions. We propose a novel approach to reduce the tensor layer to
a conventional sigmoid layer so that the model can be better
understood and the decoding and learning algorithms can be
cleanly developed. Based on this reduction, we also introduce
alternative types of DTNNs. We empirically compare the con-
ventional DNN and the new DTNN on the MNIST handwritten
digit recognition task and the SWB phone-call transcription task
[14]. The experimental results demonstrate that the DTNN gen-
erally outperforms the conventional DNN.
This paper is organized as follows. We briefly review the re-

lated work in Section II and introduce the general architecture
of the DTNN in Section III, in which the detailed components
of the DTNN and the forward computations are also described.
Section IV is dedicated to the algorithms we developed in this
work for learning DTNN weight matrices and tensors. The ex-
perimental results on MNIST digit recognition task and SWB
task are presented and analyzed in Section V. We conclude the
paper in Section VI.

II. RELATED WORK

In recent years, an extension from matrix to tensor has been
proposed to model three-way interactions and to improve the

1558-7916/$31.00 © 2012 IEEE
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modeling power of neural networks. In this section we briefly
survey the related work.
The tensor-based restricted Boltzmann machine (RBM) was

proposed to model three-way interactions among pixels in
[16] and to model pixel means and covariances in [17]. This
three-way RBM is different from ours in two ways. First, it is
a pure generative model, although it may be discriminatively
fine-tuned, while our DTNN is a discriminative model in
nature. Second, the three-way RBM has only one hidden layer
and the mechanism in its architecture design does not permit
the use of tensor weights in more than one layer stacked one
on top of another. In contrast, our DTNN is designed very
differently, with the goal of naturally embedding the tensor
weights in many stacked hidden layers.
The tensor-based RBMwas later extended to the tensor recur-

rent neural network (RNN) [18]. The tensor-RNN as discussed
in [18], however, is also mainly used as a generative model.
In a separate study reported in [19], a softmax layer was gated

with a hidden factor layer and a tensor was subsequently used
to model the joint interaction among the hidden factors, the in-
puts, and the labels. However, the gated softmax network in-
vestigated in [19] is a less effective shallow model with no ad-
ditional hidden layer other than the hidden factor layer. In addi-
tion, the work of [19] adopted the mixture model which predicts
the classes by summing over all possible hidden factor combi-
nations. The DTNN that we will present in this paper, however,
is a deep network and it predicts the upper layer directly through
the tensor connections as shown in (2) in Section III.
More recent work [20] replaced the single sigmoid hidden

layer with a tensor layer in a deep network where blocks of
shallow networks are used to construct the stacking deep ar-
chitecture and each block in the stacking network consists of
only one hidden layer. In contrast, in the DTNN, there are many
hidden layers, one after the other. In fact any sigmoid layer in the
conventional DNN may be replaced with a tensor layer. While
the technique of converting the tensor layer to a conventional
sigmoid layer in [20] has motivated and facilitated the develop-
ment of DTNN here, it is worth noting that the deep architecture
in [20] had difficulty for large vocabulary speech recognition
tasks since the output units are often limited to a moderate size
due to the special requirement for convexity in part of the net-
work. The DTNN presented in this paper is free from such a re-
striction, combining the virtue of DNN in handling large vocab-
ulary speech recognition tasks that require large senone output
units and the effective technique of handling tensors developed
from [20].
The most recent work reported in [21] presented two versions

of a tensor-based DNN. The first version extended the gated
softmax network of [19] by incorporating the gated softmax
layer into DNNs. However, much like the softmax network in
[19], this version also used a mixture model. The second ver-
sion that also explored tensors as proposed in [21] is closer to
the DTNN to be described in this paper. The main difference
is that the gating factor in [21] was estimated completely sepa-
rately from the main network and was only applied at the output
layer. In contrast, the DTNN integrates all estimation steps of
all parameters including the gating factors in a single, consis-
tent framework.

Fig. 1. Architectural illustrations of a conventional DNN and the corre-
sponding DTNN. (a) DNN. (b) DTNN: hidden layer consists of two
parts: and . Hidden layer is a tensor layer to which the connection
weights form a three-way tensor. (c) An alternative representation of
(b): tensor is replaced with matrix when is defined as the Kronecker
product of and .

In summary, the DTNN presented in this paper differentiates
itself from previous work in that we use DP layers to automati-
cally factorize information which is later combined through the
tensor layers. The distinction also lies in the more flexible in-
corporation of the DP layers and tensor layers into an otherwise
conventional DNN architecture. In addition, our work provides
a unified framework to train DNN, DTNN, and their variants
(which we will call quasi-DTNN; see Fig. 3 in Section III-B)
by mapping the input feature of each layer to a vector and the
tensor to a matrix.

III. ARCHITECTURES OF THE DEEP TENSOR NEURAL NETWORK

The deep tensor neural network (DTNN) is a new type of
DNN. It extends the conventional DNN by replacing one or
more layers with double-projection and tensor layers, which we
will define shortly. In this section we describe the general archi-
tecture of the DTNN.

A. DTNN With Double-Projection and Tensor Layers

Fig. 1 illustrates and compares the conventional DNN with
the DTNN. Fig. 1(a) shows a conventional DNN, whose input is
denoted by , an vector, and the output is , a vector.
Subscript is the layer index. In this conventional DNN, each
hidden layer connects to the next upper layer through a
weight matrix and a bias as

(1)

where are indexes of the hidden units in layers and
, respectively, and is the sigmoid

function applied element-wise.
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Fig. 1(b) is the corresponding DTNN in which hidden layer
is separated into two parts: (a vector) and
(a vector). These two parts connect to hidden

layer (a vector) through the three-way tensor [22]
of dimension , which is represented with a
cube in the figure, according to

(2)

where are indexes of the hidden units in layers ,
and , respectively. If were to function as a speaker de-
tector and were to function as a spectrum pattern detector,
(2) means that for different combinations of speaker and

spectrum pattern a different weight is assigned for
the same detector at next layer.
We call the hidden layer a double-projection (DP) layer

since the information from the previous layer is projected
into two separate subspaces at layer as and .
In this specific case, the DP layer can be considered as
a normal layer where

(3)

Here and are weight matrices connecting the hidden
layer with the DP layer parts and , respectively,
and and are the corresponding bias terms. As we will
see later in this section, however, this is not required and actually
is not the case if all layers are DP layers. The only requirement
for the DP layer is that it is split into two parts.
The hidden layer is called a tensor layer since the previous

layer is a DP layer that connects with through the weight
tensor .
Fig. 1(c) is an alternative view of the same DTNN shown in

Fig. 1(b). By defining , the input to the layer , as

(4)

where is the Kronecker product, and is the column-
vectorized representation of the matrix, we can organize and
rewrite tensor into matrix as represented by a rectangle
in Fig. 1(c). In other words, we now have

(5)

This rewriting allows us to reduce and convert tensor layers
into conventional matrix layers and to define the same inter-
face in describing these two different types of layers. For ex-
ample, in Fig. 1(c) hidden layer can now be considered as a
conventional layer as in Fig. 1(a) and can be learned using the
conventional backpropagation (BP) algorithm. This rewriting
also indicates that the tensor layer can be considered as a con-
ventional layer whose input comprises the cross product of the
values passed from the previous layer.

Fig. 2. Comparing conventional DNN and two equivalent views of a DTNN in
which all hidden layers are DP tensor layers. (a) DNN; (b) DTNN: normal view
where hidden layers are connected through three-way tensors; (c). DTNN: an
alternative view where tensors are replaced with matrices when is defined as
the Kronecker product of and .

Hidden layer , however, is still a DP layer that contains
two output parts and , which in turn are determined by
two separate weight matrices and , in the same way
for Fig. 1(b) and Fig. 1(c).
The DTNN shown in Fig. 1 contains only one DP layer.

However, nothing prevents other layers from being DP layers.
Fig. 2(b) illustrates an example DTNN in which all hidden
layers are DP tensor layers. For example, hidden layer
is also separated into two parts and and connects
to and through tensors and , respectively.
Note that in this DTNN each DP layer projects the input onto
two non-linear subspaces and . The bilinear interaction of
these two projections is then combined as the input feature to
the adjacent higher layer as quantified by (4). By defining input

to hidden layer as

(6)

tensors and can be rewritten as matrices and
as shown in Fig. 2(c). Note that, although all the layers in

Fig. 2(b) can be treated as non-tensor layers after this conver-
sion, they are still DP layers since each layer contains two parts.
To summarize, we can represent DTNNs using two types of

hidden layers: the conventional sigmoid layer and the DP layer.
Each of these hidden layer types can be flexibly placed in the
DTNN. For classification tasks the softmax layer that connects
the final hidden layer to labels can be used in the DTNN, in the
same way as that in the conventional DNN.
Table I summarizes all the forward computations involved in

the DTNN, where the input is always converted and written as
, a column vector, is the weight matrix, is the



IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

4 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 0, NO. 0, 2012

TABLE I
FORWARD COMPUTATIONS IN DTNNS

bias, is a column vector of the softmax layer weight matrix
, and

(7)

is the activation vector given input .
Note that for the DP layer, the output has two parts

(8)

where indexes the part number. The two hidden layer
vectors and may be augmented with ones when gen-
erating the input of the next layer. However, this is unneces-
sary since the same effect may be achieved by setting weights
to 0 and biases to a large positive number for one of the units so
that it always outputs 1.

B. Variants of DTNN

The basic DTNN architecture described above can have a
number of variants, and we describe two of them here. Fig. 3(a)
shows a DTNN variant in which linear activations (i.e., no sig-
moid nonlinearity) and are directly connected to layer
through tensor . Fig. 3(b) is the equivalent architecture

where weight tensor is converted into weight matrix by
defining

(9)

Note that the only difference between the architectures of
Fig. 3(a), 3(b) and those of Fig. 1(b), 1(c) is that the latter uses
a sigmoid non-linearity (as indicated by and instead
of and in the DP layer) before connecting to the next
layer. This provides numerical stability and also incorporates
the former as a special case if the sigmoid function is restricted
to the linear range.
Fig. 3(c) shows another variant of the DTNN in which linear

DP layers are also used but is redefined as

(10)

The difference between this model and that illustrated in
Fig. 1(b), 1(c) is that the sigmoid non-linearity is applied after

Fig. 3. Two additional types of DTNN. (a) DTNN in which the DP layer is
linear (i.e., sigmoid function is not applied). (b) Alternative view of the same
DTNN in (a). (c). a quasi-DTNN in which sigmoid non-linearity is applied to
the Kronecker product of and . This model, although it models a
three-way connection, cannot be represented using a tensor due to the sigmoid
non-linearity applied to the Kronecker product of the two input components.

the Kronecker product instead of being applied to the two indi-
vidual parts of the DP layers. Strictly speaking, the architecture
of Fig. 3(c), while also modeling the relations between two
subspaces and their upper layer, is not a DTNN since we cannot
rewrite and represent it using a tensor. For this reason, we refer
to the architecture of Fig. 3(c) as a quasi-DTNN.

IV. LEARNING ALGORITHMS

We optimize the DTNNmodel parameters bymaximizing the
negative cross entropy

(11)

commonly used for the conventional DNN, where N is the total
number of samples in the training set and is the target
probability. When a hard alignment is used is 1 if
the sample’s training label is and is 0 otherwise. Under that
condition, the negative cross entropy is the same as the condi-
tional log-likelihood. The parameters can be learned using the
backpropagation (BP) algorithm.
The gradients associated with the softmax layer and the con-

ventional sigmoid layers are the same as that in conventional
DNNs. More specifically, for the softmax layer

(12)

(13)

where is the weight matrix, is the bias
column vector, and is a error column vector with

(14)



IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

YU et al.: DTNN WITH APPLICATIONS TO LARGE VOCABULARY SPEECH RECOGNITION 5

where is the target probability and is the
model’s predicted probability. For other layers with we
define the error signal .
In the softmax layer, the error can be propagated to the im-

mediately previous layer according to

(15)

Similarly, for the conventional sigmoid layer, we have

(16)

(17)

and

(18)

where is the gradient of the sigmoid
function applied element-wise, and diag(.) is the diagonal ma-
trix determined by the operand.
However, the gradients are more complicated for the DP

layers, which we derive now. Note for the DP layer we have

(19)

where is a identity matrix. is thus a
column vector whose elements are ,

where we assume matrix and vector index is 0 based. This leads
to the gradients

(20)

whose -th element is , and

(21)

whose -th element is .
Note that for the parts

(22)

(23)

and

(24)

By defining we get

(25)

More specifically,

(26)

(27)

where reshapes to a matrix. The
gradients needed for BP algorithm in the DP layers are thus

(28)

(29)

and

(30)

The learning algorithm of the quasi-DTNN is very similar to
that of the DTNN derived and presented above. Themain differ-
ence is that for the DP layers in the quasi-DTNN, the gradients
now become

(31)

(32)

(33)

and

(34)

V. EXPERIMENTAL RESULTS

In this section, we compare the DTNN with the conventional
DNN on the MNIST handwritten digit recognition task and two
Switchboard large vocabulary speech recognition tasks.
To specify a DTNN we use the notation of two numbers en-

closed in a pair of parentheses to denote the size of the DP layer.
As an example, (96:96) denotes a DP layer with 96 units in each
of the two parts. Thus, denotes a DTNN
that contains a DP layer with 64 units in each part, followed by 4
conventional sigmoid hidden layers each of which has 2 k units.
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TABLE II
COMPARE SINGLE HIDDEN LAYER NEURAL NETWORKS WITH AND WITHOUT
USING DOUBLE-PROJECTION AND TENSORS IN THE HIDDEN LAYER ON MNIST

DATASET

A. MNIST Handwritten Digit Recognition Task

The MNIST dataset [23] contains binary images of hand-
written digits. The digits have been size-normalized to fit in a
20 20 pixel box while preserving their aspect ratio and cen-
tered in a 28 28 image by computing and translating the center
of mass of the pixels. The task is to classify each 28 28 image
into one of the 10 digits. TheMNIST training set is composed of
60,000 examples from approximately 250 writers, out of which
we randomly selected 5,000 samples as the cross validation set.
The test set has 10,000 patterns. The writers of the training set
and test set are disjoint.
Our goal of using the MNIST dataset is to quickly check

whether DP and tensor layers indeed have better modeling
power than conventional sigmoid layers and to evaluate
whether we should choose DTNNs or quasi-DTNNs. For this
reason, we have used single hidden layer neural networks with
a relatively small number of hidden units. More specifically,
we have used a conventional shallow network with the con-
figuration 784-130-10 and the tensor and quasi-tensor shallow
networks with the configuration of 784-(50:50)-10. We chose
these configurations to ensure that they have a similar number of
parameters, which is
and , respec-
tively, for the 784-130-10 and 784-(50:50)-10 configurations.
We initialized weights randomly and ran 10 experiments on

each configuration. The trainingwas carried out using stochastic
gradient ascent, taking a learning rate of 0.1 per sample for the
first 5 sweeps and 0.05 per sample afterwards. The training stops
when the error rate measured on the development set increases.
The classification results are summarized in Table II. It is clear
that both tensor and quasi-tensor layers help reduce the error
rate over the conventional sigmoid hidden layers (shaded row
in the table). Note that tensor and quasi-tensor layers give sim-
ilar error rates on this same configuration. However, we have
noticed that quasi-tensor layers are in general more likely to di-
verge in training if model parameters are not correctly initialized
or the learning rate is not properly chosen. This is likely because
multiplying two real valued numbers may send an unbounded
learning signal. For this reason we apply only DTNNs to speech
recognition tasks which take much more time to train.

B. SWB 30-hr Speech Recognition Task

The training and development sets in the SWB30-hr task con-
tain 30 hours and 6.5 hours of data randomly sampled from the
309-hour Switchboard-I training set. The 1831-segment SWB
part of the NIST 2000 Hub5 evaluation set (6.5 hours) was used
as the test set. To prevent speaker overlap between the training
and test sets, speakers occurring in the test set were removed
from the training and development sets.

TABLE III
COMPARING THE EFFECT OF DIFFERENT DTNN CONFIGURATIONS ON THE
SWB 30-hr TASK. DTNNS WERE TRAINED FOR ONLY 10 SWEEPS, IN
WHICH THE FIRST 5 SWEEPS WERE CARRIED OUT USING A LEARNING
RATE OF PER SAMPLE AND THE REMAINING 5 SWEEPS WITH

A LEARNING RATE PER SAMPLE

The system uses a 39-dimensional feature that was reduced
using HLDA from mean- and variance-normalized 13-dimen-
sional PLP features and up to third-order derivatives. The
common left-to-right 3-state speaker-independent crossword
triphones share 1504 CART-tied states determined on the con-
ventional GMM system. The trigram language model (LM) was
trained on the 2000 h Fisher-corpus transcripts and interpolated
with a written text trigram. The test-set perplexity with a 58 k
dictionary is 84. The features, lexicon and LM used in this
study are the same as those used in our earlier work [4]–[6].
The GMM-HMM baseline system has a mixture of 40 Gaus-

sians in each HMM state. It was trained with maximum likeli-
hood (ML) and refined discriminatively with the boosted max-
imum-mutual-information (BMMI) criterion. Using more than
40 Gaussians did not improve the ML result.
Both the CD-DNN-HMM and CD-DTNN-HMM systems re-

place the Gaussian mixtures with scaled likelihoods derived
from the DNN and DTNN posteriors, respectively. The input to
the DNN and DTNN contains 11 (5-1-5) frames of the HLDA-
transformed features. The baseline DNN uses the architecture of
429-2048 5-1504. A DTNN whose hidden layers are (96:96)
5 has 21 million parameters, similar to the total number of

parameters in the baseline conventional DNN.
The training was carried out with tied-triphone state labels

generated using the ML-trained CD-GMM-HMM system. In
our experiments, the conventional DNNs were pre-trained with
the DBN-pretraining algorithm [24] before they were fine-tuned
using the BP algorithm. However, we have not developed sim-
ilar pretraining algorithms for DTNNs. DTNNs were thus
trained using the BP algorithm presented in Section IV starting
from randomly initialized weights. The pretrained DNN model
typically outperforms the randomly initialized DNN model,
with 0.3%–0.5% absolute WER reduction when the number of
hidden layers is 5.
Table III compares the effect of different DTNN configura-

tions on the recognition error rate. To reduce the overall training
time we trained DTNNs for only 10 sweeps, in which the first
5 sweeps were carried out using a learning rate of
per sample and the remaining 5 sweeps with a learning rate of

per sample.
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Note that even with this highly sub-optimal learning strategy,
a DNN with 5 hidden layers (shaded row in the table) already
significantly outperforms the CD-GMM-HMM trained using
the BMMI criterion. The results in Table III are organized so
that all configurations above the shaded line underperform the
conventional DNN and all the configurations below the shaded
line outperform DNN.
Examining Table III, we can make three observations. First,

configuration (96:96) 5 in which all layers are DP tensor
layers performs similarly to the DNN baseline that contains
a similar number of parameters, even though the DNN was
pre-trained while the DTNN was not. Note that due to the na-
ture of the DP layer, the dimension of the hidden layers in the
DTNN is much smaller (under two hundred) than comparable
conventional layers (a few thousand). Second, the configuration
in which only the bottom (first) layer was replaced with the DP
layer (configuration )
performs the worst. We believe this is because much of the in-
formation in the real-valued input is lost when the input feature
is transformed into a (much smaller than 2048
in the conventional DNN) dimension DP layer. Third, the con-
figurations that replace the top hidden layer with the DP layer
(configurations and

) perform the best and
achieve more than 5% relative WER reduction over the DNN.
This is because the top hidden layer is more invariant than the
input layer and thus the information loss caused by using the
low-dimensional DP layer is outweighed by the benefit obtained
by using the tensor layer. The DTNN in which only the middle
hidden layer is a DP layer (configuration

) performs in between.
In Table III we also included the results achieved with the

joint factorized DNN (JFDNN) described in [21]. This is in-
tended to answer the question of whether using a gated softmax
layer [19] on top of a DNN is helpful. The experiment used

factors in the gated softmax layer. It can be seen that
the JFDNNonly slightly outperforms the conventional DNNbut
with much longer training time.
To eliminate the possibility that the training strategy adopted

in Table III may favor DTNNs over DNNs, we tuned the
learning strategy, including learning rates and schedule, for
DNNs and used this tuned learning strategy to train DTNNs.
More specifically, DNNs and DTNNs were trained for 15
sweeps, in which the first 9 sweeps were carried out using
a learning rate of per sample and the remaining 6
sweeps with a learning rate per sample. Further in-
creasing the training sweeps does not lead to additional gain on
the development set. In addition, we have compared DNNs and
DTNNs with 7-hidden layers. The new results are summarized
in Table IV. These results further confirm the effectiveness of
the DTNN, with 1.2% and 1.0% absolute, or 4.4% and 3.9%
relative, WER reduction over the DNNs, respectively, for the
five and seven-hidden layer systems.

C. SWB 309-hr Speech Recognition Task

In the SWB 309-hr task, we used the 309-hour Switchboard-I
training set [14]. The feature extraction process is exactly the
same as that described in Section V-B. However, the optimal

TABLE IV
COMPARING DNN AND DIFFERENT CONFIGURATIONS OF DTNN
ON THE SWB 30-hr TASK. THE LEARNING STRATEGY WAS TUNED

FOR DNN AND APPLIED TO DTNN

Fig. 4. The change of training set frame-level cross entropy after each sweep
of the 309-hr training set.

number of CART-tied triphone states determined by the GMM
system is now increased to 9304. We followed the same
procedure as described in [4], [5] to train the conventional
CD-DNN-HMM with the tied-triphone state alignment gener-
ated using the ML-trained CD-GMM-HMM. More specifically,
we swept the training data seven times. We used a learning rate
of per sample for the first three sweeps and
per sample for the remaining four sweeps. The conventional
DNN was pre-trained generatively using the DBN-pretraining
algorithm, but the DTNN was not, although the discriminative
pretraining procedure introduced in [5] could be used. To
prevent divergence, we have used a minibatch size of 128 for
the first sweep and 1024 afterwards. To investigate the gener-
alization ability we tested the model on the 6.3 h Spring 2003
NIST rich transcription set (RT03S) in addition to the Hub5’00
evaluation set. Different from the best results achieved in [4]
which used DNN realignment, the results presented here used
only the alignment generated from the GMM-ML system.
Fig. 4 and Fig. 5 illustrate the training set frame-level cross-

entropy (CE) and senone prediction accuracy, respectively, over
sweeps of the 309-hr training data. It can be seen that initially
the DTNN performsworse than the conventional DNN since the
weights were not pretrained. However, after three sweeps, the
DTNNmade up the difference and eventually outperformed the
DNN.
Table V summarizes the word error rate (WER) on this task

using DNN and DTNN. From Table V we can see that the
DTNN still outperforms the DNN, but the gain is smaller with
0.5% absolute or 3% relative WER reduction on the Hub5’00
eval set. This is possibly because a DNN trained with signif-
icantly more data can generalize better even without explicit
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Fig. 5. The change of training set frame-level senone classification accuracy
after each sweep of the 309-hr training set.

TABLE V
COMPARING DNN AND DTNN ON THE SWB 309-hr TASK. WER

ON HUB5’00 AND RT03S EVALUATION SETS

modeling of subspaces and their interactions as intended by the
DTNN. Table V also indicates that when applied to the RT03S
evaluation set, the DTNN outperforms the seven hidden layer
DNN with a 0.4% and 0.5% WER reduction on the FSH and
SW parts, respectively. Compared to the nine-hidden-layer
DNN it performs slightly better on the Hub5’00 evaluation set
and SW part of the RT03S set, but slightly worse on the FSH
part of the RT03S set.

VI. SUMMARY AND CONCLUSIONS

In this paper we have proposed and implemented a novel deep
neural network, the DTNN, which involves tensor interactions
among neurons. This work is in part motivated by tensor net-
work theory in neuroscience, where tensor interactions play a
role in the central nervous system (e.g., [15]).
In a DTNN, at least one layer in the deep architecture is com-

posed of a DP and a tensor layer. The two subspaces represented
by the two parts in the DP layer interact with each other to cover
a product space. We have described an approach to map the
tensor layers to conventional sigmoid layers so that the former
can be treated and trained in a similar way to the latter. With this
mapping we can consider a DTNN as a DNN augmented with
DP layers. As a result, the BP learning algorithm for DTNNs can
be cleanly derived as we presented in Section IV of this paper.
In addition, we have described how the DP and tensor layers

can stack up to form a DTNN in which all layers are DP and
tensor layers. We have also showed how two variants of the
DTNN can be constructed and their weight parameters learned.
We have evaluated different configurations of the DTNN

architecture on the MNIST digit recognition task and on two
SWB tasks using 30 and 309 hours of training data, respec-
tively. The experimental results demonstrate that when the DP
layer is placed at the top hidden layer of the DTNN, it performs

the best and it outperforms the corresponding DNN by 4%–5%
relative WER reduction on the 30-hr SWB task and 3% on the
309-hr SWB task. Our experiments suggest that the proposed
DTNN is especially effective when the training data size is
small.
In this work, we have discovered that DTNN is a very pow-

erful deep architecture capable of representing covariance struc-
ture of the data in the hidden space and thus may show its poten-
tial in modeling noisy speech or speech with high variability. As
our future work, we will investigate to what degree the use of
speaker adapted features as the input to a DTNN would shrink
the gain from using the DTNN over the regular DNN. On the
other hand, we have noticed that having small DP layers may
hurt the performance especially when the DP layer is at the
bottom. However, increasing the DP layer size may significantly
increase the overall model size and thus introduce overfitting
problems. A possible solution is to factorize the weight tensor
using the techniques adopted in [16], [19] to reduce the number
of parameters.
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